CSE-321 Programming Languages
Course Notes

Sungwoo Park

Spring 2022

Draft of February 20, 2022

This document is in draft form and is likely to contain errors.
Please do not distribute this document outside class.

ii

May 9, 2023

Preface

This is a collection of course notes for CSE-321 Programming Languages at POSTECH. Any comments
and suggestions will be greatly appreciated.

iii

iv

May 9, 2023

Contents

[1 Introduction to Functional Programming]
[L.1 Functional programming paradigm|
[[2 Expressionsand values|.

8 D DES| . . e e e e e e e e e
[L.9 Pattern matching|
[[.10 Higher-order functions] i

|1.1 1 ExceEt10n§| ..

2.1 Inductive definitions of syntactic categories| L
22 Inductive definitions of judgments] o

Derivable rules an missiblerules| L L L
2.4 Inductiveproofs|.

4.1 T ral in on| ...

2.5 Techniques for inductive proofs| L L L L
P51 Usingalemmalot i i

[25.2 Generalizing atheorem|
253 Proof by the principle of inversion]

.1 Abstract syntax for the A-calculus|. o o o000
B2 Operational semantics of the A-calculus|
B3 SubSHEUHON! o o oot

3.5 Fixed point combinator|. oo

B.6 Deriving the fixed point combinator]
B.7 DeBrujnindexes|

[4 Simply typed A-calculus| 53

4.1 Abstractsyntax] 53
472 Operational semantics] oo 54
43 Typesystem| e 55
B4 Typesafety|. 58
441 Proofofprogress| 59

4.4.2 Proof of type preservation|. L L L o 60

B5 EXEICISES| oottt 63

[5 Extensions to the simply typed A-calculus| 65
.1 Producttypes 65
.2 General product typesand unit type] oo 66

5 YPES| - o 67
P4 Fixed pointconstruct] 69
.. 71
B6 TYPESAIEEY - -« -« « o e e e e e e 71
lb__Mutable Referencesl 75
[p.1 Abstract syntax and typesystem| 76
[p2 Operational semantics| 77
[3 Typesafety]. 79

[7 Typechecking] 83
[7.1 ~Purely synthetic typechecking|. oo oo o 83
[7.2 Bidirectional typechecking|. oL L oo 84
73 Exercises| 86
i8__Evaluation contextsl 89
8.1 Evaluation contexts| e 89
[82 Typesafety|. 91
B3 Abstractmachine Tl« v v v e e e e 93
8.4 Correctness of the abstract machine C| 94
[8.5 Safety of the abstract machine C|. 97
8.6 Exercises| 97
9__Environments and Closures| 99
9.1 Evaluationjudgment| 99
0.2 Environmentsemanticsl. o e e e 101
03 AbstractmachineH 104
[9.4 Fixed point construct in the abstract machine E|, 106
... 107

btyping 115
|11.1 PrinciEIe of suthEing 115
11.2 Subtyping relations| e 116
[TT.3"Coercion semantics for subtyping]. 118

vi May 9, 2023

[12_Recursive Types| 121
31 Definition

May 9, 2023 vii

viii May 9, 2023

Chapter 1

Introduction to Functional
Programming

This chapter presents basic ideas underlying functional programming, or programming in functional
languages. All examples are written in Standard ML (abbreviated as SML henceforth), but it should
be straightforward to translate them in any other functional language because all functional languages
share the same design principle at their core. The results of running example programs are all produced
in the interactive mode of SML of New Jersey.

Since this chapter is devoted to the discussion of important concepts in functional programming,
the reader is referred to other sources for a thorough introduction to SML.

1.1 Functional programming paradigm

In the history of programming languages, there have emerged a few different programming paradigms.
Each programming paradigm focuses on different aspects of programming, showing strength in some
application areas but weakness in others. Object-oriented programming, for example, exploits the
mechanism of extending object classes to express the relationship between different objects. Func-
tional programming, as its name suggests, is unique in its emphasis on the role of functions as the
basic component of programs. Combined with proper support for modular development, functional
programming proves to be an excellent choice for developing large-scale software.

Functional programming is often compared with imperative programming to highlight its charac-
teristic features. In imperative programming, the basic component is commands. Typically a program
consists of a sequence of commands which yield the desired result when executed. Thus a program
written in the imperative style is usually a description of “how to compute” — how to sort an array,
how to add an element to a linked list, how to traverse a tree, and so on. In contrast, functional program-
ming naturally encourages programmers to concentrate on “what to compute” because every program
fragment must have a value associated with it.

To clarify the difference, let us consider an if-then-else conditional construct. In an imperative
language (e.g., C, Java, Pascal), the following code looks innocent with nothing suspicious; in fact, such
code is often inevitable in imperative programming:

if (x == 1) then

The above code executes the command to increment variable x when it is equal to 1; if it is not equal
to 1, no command is executed — nothing wrong here. Now consider the following code written in a
hypothetical functional language:

if (x = 1) then x + 1

With the else branch missing, the above code does not make sense: every program fragment must
have a value associated with it, but the above code does not have a value when x is different from 1.
For this reason, it is mandatory to provide the else branch in every functional language.

1

As with other programming paradigms, the power of functional programming can be truly ap-
preciated only with substantial experience with it. Unlike other programming paradigms, however,
functional programming is built on a lot of fascinating theoretical ideas, independently of the issue of
its advantages and disadvantages in software development. Thus functional programming should be
the first step in your study of programming language theory!

1.2 Expressions and values

In SML, programs consists of expressions which range from simple constants to complex functions. Each
expression can have a value associated with it, and the process of reducing an expression to a value is
called evaluation. We say that an expression evaluates to a value when such a process terminates. Note
that a value is a special kind of expression.

Example: integers

An integer constant 1 is an expression which is already a value. An integer expression 1 + 1 is not
a value in itself, but evaluates to an integer value 2. We can try to find the value associated with an
expression by typing it and appending a semicolon at the SML prompt:

-1+ 1;
val it = 2 : int

The second line above says that the result of evaluating the given expression is a value 2. (We ignore
the type annotation : int until Section[1.5])

All arithmetic operators in SML have names familiar from other programming languages (e.g., +, —,
*, div, mod). The only notable exception is the unary operator for negation, which is not - but ~. For
example, "1 is a negative integer, but —1 does not evaluate to an integer.

Example: boolean values

Boolean constants in SML are t rue and false, and a conditional constructhastheformif e then e
where ¢, e, and e, are all expressions and e must evaluate to a boolean value. For example:

- if 1 = "1 then 10 else 710;

val it = 710 : int
Here 1 = "1 is an expression which compares two subexpressions 1 and ~1 for equality. (In fact, = is
also an expression — a binary function taking two arguments.) Since the two subexpressions are not
equal, 1 = 71 evaluates to false, which in turn causes the whole expression to evaluate to ~10.

Logical operators available in SML include andalso, orelse, and not. The two binary opera-
tors implement short-circuiting internally, but short-circuiting makes no difference in pure functional
programming because the evaluation of an expression never produces side effects.

Exercise 1.1. Can you simplify if e then true else false?

1.3 Variables

A variable is a container for a value. As an expression, it evaluates to the very value it stores. We use the
keyword val to initialize a variable. For example, a variable x is initialized with an integer expression
1 + 1 asfollows:

- val x =1 + 1;
val x = 2 : int

Note that we must provide an expression to be used in computing the initial value for x because there
is no default value for any variable in SML. (In fact, the use of default values for variables does not
even conform to the philosophy of functional programming for the reason explained below.) After
initializing x, we may use it in other expressions:

2 May 9, 2023

else ey

X + X;

- val y =
=4 : int

val y

We say that a variable is bound to a given value when it is initialized.

Unlike variables in imperative languages, a variable in SML is immutable in that its contents never
change. In other words, a variable is bound to a single value for life. (This is the reason why it makes
no sense to declare a variable without initializing it or by initializing it with a default value.) In this
sense, “variable” is a misnomer because the contents of a variable is not really “variable.” Despite their
immutability, however, variables are useful in functional programming. Consider an example of a local
declaration of SML in which zero or more local variables are declared before evaluating a final expression:

let

val x = 1

val y = x + X
in

y ty
end

Here we declare two local variables x and y before evaluating y + y. Since y is added twice in the
final expression, it saves computation time to declare y as a local variable instead of expanding both
instances of y into x + x. The use of the local variable y also improves code readability.

While it may come as a surprise to you (especially if you still believe that executing a sequence of
commands is the only way to complete a computation, as is typical in imperative programming), im-
mutability of variables is in fact a feature that differentiates functional programming from imperative
programming — without such a restriction on variables, there would be little difference between func-
tional programming and imperative programming because commands (e.g., for updating the contents
of a variable) become available in both programming paradigms.

1.4 Functions

In the context of functional programming, a function can be thought of as equivalent to a mathematical
function, i.e., a black box mapping a given input to a unique output. Thus declaring a function in SML
is indeed tantamount to defining a mathematical function, which in turn implies that the definition of
a mathematical function is easily transcribed into an SML function. Interesting examples are given in
Section 1.6 when we discuss recursion, and the present section focuses on the concept of function and
its syntax in SML.

We use the keyword fun to declare a function. For example, we declare a function incr that returns
a given integer incremented by one as follows:

- fun incr x = x + 1;
val incr = fn : int -> int

Here x is called a formal arqument/parameter because it serves only as a placeholder for an actual arqu-
ment/parameter. x + 1 is called a function body. We can also create a nameless function with the keyword
fn. The following code creates the same function as incr and stores it in a variable incr:

- val incr = fn x => x + 1;
val incr = fn : int -> int

The two declarations above are equivalent to each other.

A function application proceeds by substituting an actual argument for a formal argument in a func-
tion body and then evaluating the resultant expression. For example, a function application incr 0
(applying function incr to 0) evaluates to integer 1 via the following steps:

incr O
= (fn x => x + 1) O
— 0 + 1
— 1

May 9, 2023 3

As an expression, a function is already a value. Intuitively a function is a black box whose internal
working is hidden from the outside, and thus cannot be further reduced. As a result, a function body
is evaluated only when a function application occurs. For example, a nameless function fn x => 0 +
1 does not evaluate to fn x => 1; only when applied to an actual argument (which is ignored in this
case) does it evaluate its body.

An important feature of functional programming is that functions are treated no differently from
primitive values such as boolean values and integers. For example, a function can be stored in a variable
(as shown above), passed as an actual argument to another function, and even returned as a return value
of another function. Such values are often called first-class objects in programming language jargon
because they are the most basic element comprising a program. Hence functions are first-class objects
in functional languages. In fact, it turns out that a program in a functional language can be thought of
as consisting entirely of functions and nothing else, since primitive values can also be encoded in terms
of functions (which will be discussed in Chapter [3).

Interesting examples exploiting functions as first-class objects are found in Section For now,
we will content ourselves with an example illustrating that a function can be a return value of another
function. Consider the following code which declares a function add taking two integers to calculate
their sum:

— fun add xy = x + vy;
val add = fn : int -> int -> int

Then what is a nameless function corresponding to add? A naive attempt does not even satisfy the
syntax rules:

- val add = fn x y => x + y;
<some syntax error message>

The reason why the above attempt fails is that every function in SML can have only a single argument!
The function add above (declared with the keyword fun) appears to have two arguments, but it is just
a disguised form of a function that take an integer and returns another function:

- val add = fn x => (fn y => x + vy);

val add = fn : int -> int -> int

That is, when applied to an argument x, it returns a new function fn y => x + y whichreturns x +
y when applied to an argument y. Thus it is legitimate to apply add to a single integer to instantiate a
new function as demonstrated below:

- val incr = add 1;

val incr = fn : int -> int
- incr 0;

val it = 1 : int

- incr 1;

val it = 2 : int

Now it should be clear how the evaluation of add 1 1 proceeds:
add 1 1

— (fn x => (fny => x + y)) 11
s (fny => 1 +y) 1
— 1 + 1
= 2
1.5 Types

Documentation is an integral part of good programming — without proper documentation, no code
is easy to read unless it is self-explanatory. The importance of documentation (which is sometimes
overemphasized in an introductory programming language course), however, often misleads students
into thinking that long documentations are always better than concise ones. This is certainly untrue!
For example, an overly long documentation on the function add can be more distracting than helpful
to the reader:

4 May 9, 2023

Takes two arguments and returns their sum.

Both arguments must be integers.

If not, the result is unpredictable.

If their sum is too large, an overflow may occur.

L T I

)

The problem here is that what is stated in the documentation cannot be formally verified by the compiler
and we have to trust whoever wrote it. As an unintended consequence, any mistake in the documenta-
tion can leave the reader puzzled about the meaning of the code rather than helping her understand it.
(For the simple case of add, it is not impossible to formally prove that the result is the sum of the two
arguments, but then how can you express this property of add as part of the documentation?)

On the other hand, short documentations that can be formally verified by the compiler are often
useless. For example, we could extend the syntax of SML so as to annotate each function with the
number of its arguments:

argnum add 2 (» NOT valid SML syntax! =)
fun add x y = x + vy;

Here argnum add 2, as part of the code, states that the function add has two arguments. The compiler
can certainly verify that add has two arguments, but this property of add does not seem to be useful.

Types are a good compromise between expressiveness and simplicity: they convey useful informa-
tion on the code (expressiveness) and can be formally verified by the compiler (simplicity). Informally
a type is a collection of values of the same kind. For example, an expression that evaluates to an in-
teger or a boolean constant has type int or bool, respectively. The function add has a function type
int -> (int -> int) because given an integer of type int, it returns another function of type
int -> int which takes an integer and returns another integerﬂ To exploit types as a means of docu-
mentation, we can explicitly annotate any formal argument with its type; the return type of a function
and the type of any subexpression in its body can also be explicitly specified:

- fun add (x:int) (y:int) : int = (x + y) : int;
val add = fn : int -> int -> int

The SML compiler checks if types provided by programmers are valid; if not, it spits out an error
message:

- fun add (x:int) (y:bool) = x + vy;
stdIn:2.23-2.28 Error: <some error message>

Perhaps add is too simple an example to exemplify the power of types, but there are countless examples
in which the type of a function explains what it does.

Another important use of types is as a debugging aid. In imperative programming, successful com-
pilation seldom guarantees absence of errors. Usually we compile a program, run the executable code,
and then start debugging by examining the result of the execution (be it a segmentation fault or a num-
ber different than expected). In functional programming with a rich type system, the story is different:
we start debugging a program before running the executable code by examining the result of the com-
pilation which is usually a bunch of type errors. Of course, neither in functional programming does
successful compilation guarantee absence of errors, but programs that successfully compile run cor-
rectly in most cases! (You will encounter numerous such examples in doing assignments.) Types are
such a powerful tool in software engineering.

1.6 Recursion

Many problems in computer science require iterative procedures to reach a solution — adding integers
from 1 to 100, sorting an array, searching for an entry in a B-tree, and so on. Because of its prominent
role in programming, iterative computation is supported by built-in constructs in all programming
languages. The C language, for example, provides constructs for directly implementing iterative com-
putation such as the for loop construct:

1—>is1rightassoci,ativeandthusint -> int -> intisequaltoint -> (int -> int).

May 9, 2023 5

for (i = 1; i <= 10; i++)
sum += 1i;

The example above uses an index variable i which changes its value from 1 to 10. Surprisingly we
cannot translate the above code in the pure fragment of SML (i.e., without mutable references) because
no variable in SML is allowed to change its value! Does this mean that SML is inherently inferior to
C in its expressive power? The answer is “no:” SML supports recursive computations which are equally
expressive to iterative computations.

Typically a recursive computation proceeds by decomposing a given problem into smaller problems,
solving these smaller problems separately, and then combining their individual answers to produce a
solution to the original problem. (Thus it is reminiscent of the divide-and-conquer algorithm which is
in fact a particular instance of recursion.) It is important that these smaller problems are also solved
recursively using the same method, perhaps by spawning another group of smaller problems to be
solved recursively using the same method, and so on. Since such a sequence of decomposition cannot
continue indefinitely (causing nontermination), a recursive computation starts to backtrack when it
encounters a situation in which no such decomposition is necessary (e.g., when the problem at hand is
immediately solvable). Hence a typical form of recursion consists of base cases to specify the termination
condition and inductive cases to specify how to decompose a problem into smaller ones.

As an example, here is a recursive function sum adding integers from 1 to a given argument n; note
that we cannot use the keyword fn because we need to call the same function in its function body:

- fun sum n =

if n =1 then 1 (x base case x)
else n + sum (n - 1); (» inductive case =x*)
val sum = fn : int -> int

The evaluation of sum 10 proceeds as follows:

sum 10
—> if 10 = 1 then 1 else 10 + sum (10 - 1)
—> if false then 1 else 10 + sum (10 - 1)
— 10 + sum (10 - 1)
— 10 + sum 9
—* 10 + 9 + -+ 2 4+ sum 1
— 10 + - 2+ (if 1 =1 then 1 else 1 + sum (1 - 1))
—> 10 + - 2 + (if true then 1 else 1 + sum (1 - 1))
— 10 + - 2 +1

As with iterative computations, recursive computations may fall into infinite loops (i.e., non-terminating
computations), which occur if the base condition is never reached. For example, if the function sum is
invoked with a negative integer as its argument, it goes into an infinite loop (usually ending up with a
stack overflow). In most cases, however, an infinite loop is due to a design flaw in the function body
rather than an invocation with an inappropriate argument. Therefore it is a good practice to design
a recursive function before writing code. A good way to design a recursive function is to formulate a
mathematical equation. For example, a mathematical equation for sum would be given as follows:

sum(l) = 1
sum(n) = 14 sum(n—1) ifn>1

Once such a mathematical equation is formulated, it should take little time to transcribe it into an SML
function. (So think a lot before you write code!)

SML also supports mutually recursive functions. The keyword and is used to declare two or more
mutually recursive functions. The following code declares two mutually recursive functions even and
odd which determine whether a given natural number is even or odd:

fun even n =
if n = 0 then true
else odd (n - 1)
and odd n =
if n = 0 then false
else even (n - 1)

6 May 9, 2023

Recursion may appear at first to be an awkward device not suited to iterative computations. This
may be because iterative approaches, which are in fact intuitively easier to comprehend than recursive
approaches, come first to mind (after being indoctrinated with mindless imperative programming!).
Once you get used to functional programming, however, you will find that recursion is not an awkward
device at all, but the most elegant device you can use in programming. (Note that elegant is synonymous
with easy-to-use in the context of programming.) So the bottom line is: always think recursively!

1.7 Polymorphic types

In a software development process, we often write the same pattern of code repeatedly only with minor
differences. As such, it is desirable to write a single common piece of code and then instantiate it with
a different parameter whenever a copy of it is needed, thereby achieving a certain degree of code reuse.
The utility of such a scheme is obvious. For example, if a bug is discovered in the program, we do not
have to visit all the different places only to make the same change.

The question of how to realize code reuse in a safe way is quite subtle, however. For example, the
C language provides macros to facilitate code reuse, but macros are notoriously prone to unexpected
errors. Templates in the C++ language are safer because their parameters are types, but they are still
nothing more than complex macros. In contrast, SML provides a code reuse mechanism, which not only
is safe but also has a solid theoretical foundation, called parametric polymorphismﬂ

As a simple example, consider an identity function id:

val id = fn x = x;

Since we do not specify the type of %, it may accept an argument of any type. Semantically such an
invocation of id poses no problem because its body does not need to know what type of value x is
bound to. This observation suggests that a single declaration of id is conceptually equivalent to an
infinite number of declarations all of which share the same function body:

val idijpy = fn (x:int) = x;
val idpeer = fn (x:bool) = x;
val idiptsint = fn (x:int -> int) = x;

When id is applied to an argument of type A, the SML compiler automatically chooses the right decla-
ration of id for type A.

The type system of SML compactly represents all these declarations of the same structure with a
single declaration by exploiting a type variable:

- val id = fn (x:"a) => x;
val id = fn : 'a -> "a

Here type variable ’ a may read “any type a"E] Then the type of id means that given an argument of
any type o, it returns a value of type a. We may also explicitly specify type variables that may appear
in a variable declaration by listing them before the variable:

- val 'a id = fn (x:"a) => x;

val id = fn : "a —> ’'a

We refer to types with no type variables as monotypes (or monomorphic types), and types with some
type variables as polytypes (or polymorphic types). The type system of SML allows a type variable to be
replaced by any monotype (but not a polytype).

1.8 Datatypes

We have briefly discussed a few primitive types in SML. Here we give a comprehensive summary of
basic types available in SML for future reference:

2 A bit similar to, but not to be confused with the polymorph spell in the Warcraft series!
3Conventionally type variables are read as Greek letters (e.g., a as alpha, ' b as beta, and so on).

May 9, 2023 7

e bool: boolean values t rue and false.

e int:integers.
Eg,0,1,71,---.

e real: floating pointer numbers.
Eg.,0.0,1.0,1.0.

e char: characters.
E.g.,#"a",#"b",#" ".

e string: character strings.
Eg.,"hello", "newline\n", "quote\"", "backslash\\".

e A -> B:functions from type A to type B.

e A » DB: pairs of types A and B.
If e; has type A and e has type B, then (e;, ez) hastype A x B.
Eg., (0, true) : int % bool.
A » Bis called a product type.

e Ay x Ay x --- % Ap:tuples of types A; through A,,.
Eg., (0, true, 1.0) : int % bool = real.
Tuple types are a generalized form of product types.

e unit: unitvalue ().
The only value belonging to type unit is (). It is useful when declaring a function taking no
interesting argument (e.g., of type unit -> int).

These types suffice for most problems in which only numerical computations are involved. There are,
however, a variety of problems for which symbolic computations are more suitable than numerical com-
putations. As an example, consider the problem of classifying images into three categories: circles,
squares, and triangles. We can assign integers 1, 2, 3 to these three shapes and use a function of type
image -> 1int to classify images (where image is the type for images). A drawback of this approach
is that it severely reduces the maintainability of the code: there is no direct connection between shapes
and type int, and programmers should keep track of which variable of type int denotes shapes and
which denotes integers.

A better approach is to represent each shape with a symbolic constant. In SML, we can use a datatype
declaration to define a new type shape for three symbolic constants:

datatype shape = Circle | Square | Triangle
Each symbolic constant here has type shape. For example:

- Circle;
val it = Circle : shape

Note that datatypes are a special way of defining new types; hence they form only a subset of types. For
example, int —> int is a (function) type but not a datatype whereas every datatype is also a type.

A datatype declaration is similar to an enumeration type in the C language, but with an important
difference: symbolic constants are not compatible with integers and cannot be substituted for integers.
Hence the new approach based on datatypes does not suffer from the same disadvantage of the previous
approach. We refer to such symbolic constants as data constructors, or simply constructors in SML.

There is another feature of SML datatypes that sets themselves apart from C enumeration types:
constructors may have arguments. For example, we can augment the above datatype declaration with
arguments for constructors:

datatype shape =
Circle of real
| Square of real
| Triangle of real * real * real

8 May 9, 2023

To create values of type shape, then, we have to provide appropriate arguments for constructors:

- Circle 1.0;

val it = Circle 1.0 : shape

- Square 1.0;

val it = Square 1.0 : shape

- Triangle (1.0, 1.0, 1.0);

val it = Triangle (1.0,1.0,1.0) : shape

Note that each constructor may be seen as a function from its argument type to type shape. For exam-
ple, Circle is a function of type real -> shape:

- Circle;
val it = fn : real -> shape

Now we will discuss two important extensions of the datatype declaration mechanism. To motivate
the first extension, consider a datatype pair_bool for pairing boolean values and another datatype
pair_int for pairing integers:

datatype pairbool = Pair of bool x bool
datatype pair_int = Pair of int x int

The two declarations are identical in structure except their argument types. We have previously seen
how declarations of functions with the same structure but with different argument types can be coa-
lesced into a single declaration by exploiting type variables. The situation here is no different: for any
type A, a new datatype pair_A can be declared exactly in the same way:

datatype pair_.A = Pair of A A

The SML syntax for parameterizing a datatype declaration with type variables is to place type variables
before the datatype name to indicate which type variables are local to the datatype declaration. Here
are a couple of examples:

datatype ’"a pair = Pair of "a *x 'a
datatype ("a, ’"b) hetero = Hetero of 'a x 'Db

- Pair (0, 1);

val it = Pair (0,1) : int pair

- Pair (0, true);

stdIn:5.1-5.15 Error: <some error message>

- Hetero (0, true);

val it = Hetero (0,true) : (int,bool) hetero

The second extension of the datatype declaration mechanism allows a datatype to be used as the
type of arguments for its own constructors. As with recursive functions, there must be at least one
constructor (corresponding to base cases for recursive functions) that does not use the same datatype
for its arguments — without such a constructor, it would be impossible to build values belonging to the
datatype. Such datatypes are commonly referred to as recursive datatypes, which enable us to implement
recursive data structures. As an example, consider a datatype itree for binary trees whose nodes store
integers:

datatype itree =
Leaf of int
| Node of itree x int * itree

The constructor Leaf represents a leaf node storing an integer of type int; the constructor Node rep-
resents an internal node which contains two subtrees as well as an integer. For example,

Node (Node (Leaf 1, 3, Leaf 2), 7, Leaf 4)

May 9, 2023 9

represents the following binary tree:

1 2
Note that without using Leaf, it is impossible to build a value of type itree.
The two extensions of the datatype declaration mechanism may coexist to define recursive datatypes
with type variables. For example, the datatype itree above can be generalized to a datatype tree for
binary trees of values of any type:

datatype 'a tree =
Leaf of ’a
| Node of "a tree * 'a "a tree

Now arguments to constructors Leaf and Node automatically determine the actual type to be substi-
tuted for type variable ’ a:

- Node (Leaf "1, 0, Leaf 1);

val it = Node (Leaf "1,0,Leaf 1) : int tree

- Node (Leaf "L", "C", Leaf "R");

val it = Node (Leaf "L","C",Leaf "R") : string tree

Note that once type variable ’ a is instantiated to a specific type (say int), values of different types (say
string) cannot be used. In other words, tree can be used only for homogeneous binary trees. The
following expression does not compile because it does not determine a unique type for ’ a:

- Node (Leaf "1, "C", Leaf 1);
stdIn:35.1-35.28 Error: <some error message>

Recursive data structures are common in both functional and imperative programming. In con-
junction with type parameters, recursive datatypes in SML (and any other functional language) enable
programmers to implement most of the common recursive data structures in a concise and elegant way.
More importantly, a recursive data structure implemented in SML can have the compiler recognize
some of its invariants, i.e., certain conditions that must hold for all instances of the data structure. For
example, given the definition of the datatype tree above, the SML compiler is aware of the invariant
that every internal node must have two child nodes. This invariant would not be trivial to enforce in
imperative programming. (Can you implement in the C or C++ language a datatype for binary trees in
which every internal node has exactly two child nodes?)

We close this section with a brief introduction to the most frequently used datatype in functional
programming: lists. They are provided as a built-in datatype 1ist with two constructors: a unary
constructor nil and a binary constructor : ::

datatype ’"a list = nil | :: of "a x "a list

nil denotes an empty list of any type (because it has no argument). : :, called cons, is a right-associative
infix operator and builds a list of type * a 1ist by concatenating its head of type ’ a and fail of type ’ a
list. For example, the following expression denotes a list consisting of 1, 2, and 3 in that order:

1 :: 2 :: 3 :: nil

Another way to create a list in SML is to enumerate its elements separated by commas , within brackets
({ and 1). For example, [1, 2, 3] is an abbreviation of the list given above. The two notations may
also appear simultaneously within any list expression. For example, the following expressions are all
equivalent:

10 May 9, 2023

1.9 Pattern matching

So far we have investigated how to create expressions of various types in SML. Equally important is
the question of how to inspect those values that such expressions evaluate to. For simple types such as
integers and tuples, the question is easy to answer: we only need to invoke operators already available
in SML. For example, we use arithmetic and comparison operators on integers to test if a given integer
belongs to a certain interval; for tuple types (including product types), we use the projection operator
#n to retrieve the n-th element of a given tuple (e.g, #2 (1, 2, 3) evaluates to 2). In order to answer
the question for datatypes, however, we need a means of testing which constructor has been applied in
creating values of a given datatype. What makes this possible in SML is pattern matching.

As an example, let us write a function 1ength that calculates the length of a given list. The way that
length works is by simple recursion:

e If the argument is nil, return 0.

o If the argument has the form <head> :: <tail>, theninvoke length on <tail> and return
the result incremented by 1 (to account for <head>).

Thus length tries to match a given list with nil and : : in either order. Moreover, when the list is
matched with : :, it also needs to retrieve arguments to : : so as to invoke itself once more. The above
definition of length is translated into the following code using pattern matching (which remotely
resembles the switch construct in the C language):

fun length 1 =
case 1 of
nil => 0
| head :: tail => 1 + length tail

Note that nil here is not a value; rather it is a pattern to be compared with 1 (or whatever follows the
keyword case). Likewise head :: tail is a pattern which, when matched, binds head to the head
of 1 and tail to the tail of 1. If a pattern match occurs, the whole case expression reduces to the
expression to the right of the corresponding =>. We call nil and head :: tail constructor patterns
because of their use of datatype constructors.

Exercise 1.2. What is the type of length?

In the case of 1ength, we do not need head in the second pattern. A wildcard pattern _may be used
if no binding is necessary:

fun length 1 =
case 1 of
nil => 0
| - :: tail => 1 + length tail

-alone is also a valid pattern, which comes in handy when not every constructor needs to be considered.
For example, a function testing if a given list is nil can be implemented as follows:

fun testNil 1 =
case 1 of
nil => true (» 1f 1 is nil «)
| - => false (» for ALL other cases *)

Regardless of constructors associated with the datatype 1ist, the case analysis above is exhaustive
because _ matches with any value.

Pattern matching in SML can be thought of as a generalized version of the if-then-else condi-
tional construct. In fact, pattern matching is applicable to any type (not just datatypes with construc-
tors). For example, if e then e; else ey may be expanded into:

case e of case e of
true => ¢e; or true => ¢
| false => eo | - => e9

May 9, 2023 11

It turns out that all variables in SML are also a special form of patterns, which in turn implies that any
variable may be replaced by another pattern. We have seen two ways of introducing variables in SML:
using the keyword val and in function declarations. Thus what immediately follows val can be not
just a single variable but also any form of pattern; similarly formal arguments in a function declaration
can be any form of pattern. As a first example, an easy way to retrieve all individual elements of a tuple
is to exploit a tuple pattern (instead of repeatedly using the projection operator #n):

val (x, y, z) = <some tuple expression>
You can even use a constructor pattern head :: tail to match with a list:
val (head :: tail) = [1, 2, 31;

Here head becomes bound to 1 and tailto [2, 3].Note, however, that the pattern is not exhaustive.
For example, if nil is given as the right hand side, there is no way to match head :: tail withnil.
(We will see in Section[I.1T| how to handle such abnormal cases.) As a second example, we can rewrite
the mutually recursive functions even and odd using pattern matching:

fun even 0 = true

| even n = odd (n - 1)
and odd 0 = false

| odd n = even (n - 1)

1.10 Higher-order functions

We have seen in Section [1.4] that every function in SML is a first-class object — it can be passed as an
argument to another function and also returned as the result of a function application. Then a func-
tion that takes another function as an argument or returns another function as the result has a function
type A —> Binwhich A and B themselves may contain function types. We refer to such a function as a
higher-order function. For example, functions of type (int -> int) -> intorint -> (int -> int)
are all higher-order functions. We may also use type variables in higher-order function types. For ex-
ample, (“a —> 'b) -> (‘b -> 'c) —> (’a -> 'c) is a higher-order function type. (Can you
guess what a function of this type is supposed to do?)

Higher-order functions can significantly simplify many programming tasks when properly used. As
an example, consider a higher-order function map of type (“a -> 'b) -> ’a list -> ’b list.

Exercise 1.3. Make an educated guess of what a function of the above type is supposed to do. If you
make a correct guess, it typifies the use of types as a means of documentation!

As you might have guessed, map takes a function f of type"a -> 'bandalist/oftype’a list,and
applies f to each element of [to create another list of type ‘b 1ist. Here is an example of using map
with the two functions even and odd defined above:

- map even [1, 2, 3, 4];

val it = [false,true, false,true] : bool list
- map odd [1, 2, 3, 41;
val it = [true, false,true, false] : bool list

The behavior of map is formally written as follows:
mapf[lllZQI"'rln] - [fllrfIQI"'lfln] (HZO) (11)
In order to implement map, we rewrite the equation inductively by splitting it into two cases:
a base case n = 0 and an inductive case n > 0. The base case is easy because the right side is an empty
list:
map f [1 =[] (1.2)

12 May 9, 2023

The inductive case exploits the observation that [f Iz, ---, f {,,] results from another application of
mapf]

map f [li,la, -+, 1n] = fli::imap f [la, ---,0,] (n>0) (1.3)
The two equations and derive the following definition of map:

fun map £ [] = []
| map £ (head :: tail) = f head :: map f tail

map processes elements of a given list independently. Another higher-order function foldl (mean-
ing “fold left”) processes elements of a given list sequentially by using the result of processing an ele-
ment when processing the next element. Ithastype (‘a » b -> 'b) -> b -> ’a list -> ’b
where " b denotes the type of the result of processing an element. Its behavior is formally written as
follows:

fOldlfCLo [ll,lQ, "',ln] = f(ln,f(lg,f(ll,ao))) (HZO) (14)

ap can be thought of as an initial value of an accumulator whose value changes as elements in the list
are sequentially processed. Thus the equation (1.4) can be expanded to a series of equations as follows:

a = f (lla aO)
az = [(lg, a1)
an = f (ln7 anfl) = fOldlfaO [l1/l21 rln]

As with map, we implement foldl by rewriting the equation (1.4) inductively. The base case returns
the initial value ag of the accumulator:

foldl fag [1 = ag (1.5)
The inductive case makes a recursive call with a new value of the accumulator:
foldl fag [li,l2, - ,1ln] = foldl f (f (l1,a0)) [l2, --+,1n] (n>0) (1.6)
The two equations and derive the following definition of foldl:

fun foldl £ a [] = a
| foldl f a (head :: tail) = foldl £ (f (head, a)) tail

As an example, we can obtain the sum of integers in a list with a call to fold1l:

- foldl (fn (x, y) => x + y) 0 [1, 2, 3, 4];
val it = 10 : int

Exercise 1.4. A similar higher-order function is foldr (meaning “fold right”) which has the same type
as foldl, but processes a given list from its last element to its first element:

foldrfao Ui, e, -, 1,1 = f(lla"'f(ln—lvf(ln;GO))"') (TLZO)

Give an implementation of foldr.

1.11 Exceptions

Exceptions in SML provide a convenient mechanism for handling erroneous conditions that may arise
during a computation. An exception is generated, or raised, either by the runtime system when an
erroneous condition is encountered, or explicitly by programmers to transfer control to a different part
of the program. For example, the runtime system raises an exception when a division by zero occurs, or

4. : has a lower operator precedence than function applications, so we do not need parentheses.

May 9, 2023 13

when no pattern in a case expression matches with a given value; programmers may choose to raise an
exception when an argument to a function does not satisfy the invariant of the function. An exception
can be caught by an exception handler, which analyzes the exception to decide whether to raise another
exception or to resume the computation. Thus not every exception results in aborting the computation.

An exception is a data constructor belonging to a special built-in datatype exn whose set of construc-
tors can be freely extended by programmers. An exception declaration consists of a data constructor
declaration preceded by the keyword exception. For example, we declare an exception Error with
a string argument as follows:

exception Error of string
To raise Error, we use the keyword raise:
raise Error "Message for Error"

As exceptions are constructors for a special datatype exn, the syntax for exception handlers also
uses pattern matching:

e handle
<patterm> => e
|

| <pattern,> => e,

If an exception is raised during the evaluation of expression e, <pattern; > through <pattern,> are
tested in that order for a pattern match. If <pattern;> matches with the exception, e¢; becomes a new
expression to be evaluated; if no pattern matches, the exception is propagated to the next exception
handler, if any.

As a contrived example, consider the following code:

exception BadBoy of int;

exception BadGirl of int;

1 + (raise BadGirl 7"1) handle
BadBoy s => (s * s)

| BadGirl s => (s + s)

Upon attempting to evaluate the second operand of +, an exception BadGirl with argument 1 is
raised. Then the whole evaluation is aborted and the exception is propagated to the enclosing exception
handler. As the second pattern matches with the exception being propagated, the expression s + s to
the right of => becomes a new expression to be evaluated. With s replaced by the argument "1 to
BadGirl, the whole expression evaluates to ~2.

Exceptions are useful in a variety of situations. Even fully developed programs often exploit the
exception mechanism to deal with exceptional cases. For example, when a time consuming computation
is interrupted with a division by zero, the exception mechanism comes to rescue to save the partial result
accumulated by the time of interruption. Here are a couple of other examples of exploiting exceptions
in functional programming:

e You are designing a program in which a function £ must never be called with a negative integer
(which is an invariant of f). You raise an exception at the entry point of £ if its argument is found
to be a negative integer.

e All SML programs that you hand in for programming assignments should compile; otherwise
you will receive no credit for your hard work. Now you have finished implementing a function
funEasy but not another function funHard, both of which are part of the assignment. Instead
of forfeiting points for funEasy, you submit the following code for funHard, which instantly
makes the whole program compile:

exception NotImplemented
fun funHard _ = raise NotImplemented

This trick works because raise NotImplemented has type ’a.

14 May 9, 2023

1.12 Modules

Modular programming is a methodology for software development in which a large program is par-
titioned into independent smaller units. Each unit contains a set of related functions, types, efc. that
can be readily reused in different programming tasks. SML provides a strong support for modular pro-
gramming with structures and signatures. A structure, the unit of modular programming in SML, is a
collection of declarations satisfying the specification given in a signature.

A structure is a collection of functions, types, exceptions, and other elements enclosed within a
struct — end construct; a signature is a collection of specifications on these declarations enclosed
within a sig — end construct. For example, the structure in the left conforms to the signature in the
right:

struct sig

type 'a set = 'a list type ’'a set

val emptySet : ’'a set = nil val emptySet : ’"a set

fun singleton x = [x] val singleton : "a —-> ’a set

fun union sl s2 = sl @ s2 val union : 'a set -> ’'a set -> ’'a set
end end

The first line in the signature states that a type declaration of *a set must be given in a structure
matching it; any type declaration resulting in a new type " a set is acceptable. In the example above,
we use a type declaration using the keyword type, but a datatype declaration like

14

datatype "a set = Empty | Singleton of 'a | Union of "a set x ’"a set

is also fine, if other elements in the same structure are redefined accordingly. The second line in the
signature states that a variable emptySet of type 'a set must be defined in a structure matching
it. The structure defines a variable emptySet of type ' a list, which coincides with *a set under
the definition of “a set. The third line in the signature states that a variable singleton of type
"a -> ’a set,or equivalently a function singleton of type “a -> ’a set, must be defined in a
structure matching it. Again singleton in the structure has type “a -> ’a list which is equal to
"a -> ’a set under the definition of " a set. The case for union is similarf]
Like ordinary values, structures and signatures can be given names. We use the keywords st ructure

and signature as illustrated below:

structure Set = signature SET =
struct sig
end end

Elements of the structure Set can then be accessed using the . notation familiar from the C language
(e.g., Set.set, Set.emptySet, ---).

Now how can we specify that the structure Set conforms to the signature SET? One way to do this
is to impose a transparent constraint between Set and SET using a colon (:):

structure Set : SET =

The constraint by : says that Set conforms to SET; the program does not compile if Set fails to imple-
ment some specification in SET. Another way is to impose an opaque constraint between Set and SET
using the symbol : >:

structure Set :> SET =

The constraint by : > says not only that Set conforms to SET but also that only those type declarations
explicitly mentioned in SET are visible to the outside. To clarify their difference, consider the following
code:

5@ is an infix operator concatenating two lists.

May 9, 2023 15

signature S = sig structure Transparent : S =

type t struct
end type t = int
val x =1
end

structure Opadque :> S =
struct

type t = int

val x = 1
end

First note that both structures Transparent and Opaque conform to signature S. Since S does not
declare variable x, there is no way to access Transparent . x and Opaque . x. The difference between
Transparent and Opaque lies in the visibility of the definition of type t. In the case of Transparent,
the definition of t as int is exported to the outside. Thus the following declaration is accepted because
it is known that Transparent.t is indeed int:

- val y : Transparent.t = 1;
val vy = 1 : Transparent.t

In the case of Opaque, however, the definition of t remains unknown to the outside, which causes the
following declaration to be rejected:

- val z : Opaque.t = 1;
stdIn:3.5-3.21 Error: <some error message>

An opaque constraint in SML allows programmers to achieve data abstraction by hiding details
of the implementation of a structure. In order to use structures given opaque constraints (e.g., those
included in the SML basis library or written by other programmers), therefore, you only need to read
their signatures to see what values are exported. Often times you will see detailed documentation in
signatures but no documentation in structures, for which there is a good reason.

SML also provides an innovative feature called functors which can be thought of as functions on
structures. A functor takes as input a structure of a certain signature and generates as output a fresh
structure specialized for the input structure. Since all structures generated by a functor share the same
piece of code found in its definition, it enhances code reuse for modular programming.

To illustrate the use of functors, consider a signature for sets of values with an order relation:

datatype order = LESS | EQUAL | GREATER

signature ORD_SET =

sig
type item (» type of elements x)
type set (» type of sets x*)
val compare : item x item -> order (» order relation *)
val empty : set (» empty set x)
val add : set —-> item -> set (» add an element x)
val remove : set —-> item -> set (» remove an element x)
end

Function compare compares two values of type item to determine their relative size (less-than, equal,
greater-than), and thus specifies an order relation on type i tem. A structure implementing the signature
ORD_SET may take advantage of such an order relation on type item. For example, it may define set
as item list with an invariant that values in every set are stored in ascending order with respect to
compare, and exploit the invariant in implementing operations on set.

Now let us consider two structures of signature ORD_SET:

structure IntSet : ORD_SET = structure StringSet : ORD_SET =
struct struct

16 May 9, 2023

type item = int type item = string

type set = item list type set = item list

fun compare (x, y) = fun compare (x, y) =
if x < y then LESS if String.< (x, y) then LESS
else if x > y then GREATER else if String.> (x, y) then GREATER
else EQUAL else EQUAL

val empty = [] val empty = []

fun add s x = ... fun add s x =

fun remove s x = ... fun remove s x =

end end

If the two structures assume the same invariant on type set (e.g., values are stored in ascending order),
code for functions add and remove can be identical in both structures. Then the two structures may
share the same piece of code except for the definition of type item and function compare. Functors
enhance code reuse in such a case by enabling programmers to write a common piece of code for both
structures just once.

Here is a functor that generates IntSet and StringSet when given appropriate structures as
input. First we define a signature ORD_KEY for input structures in order to provide types or values
specific to IntSet and StringSet:

signature ORD_KEY =

sig

type ord_key

val compare : ord_key * ord_key —-> order
end

A functor Ordset takes a structure OrdKey of signature ORD_KEY and generates a structure of signa-
ture ORD_SET:

functor OrdSet (OrdKey : ORD_KEY) : ORD_SET =
struct

type item = OrdKey.ord_key

type set = item list

val compare = OrdKey.compare

val empty = []

fun add _ _ =

fun remove _ _
end

In order to generate Int Set and St ringSet, we need corresponding structures of signature ORD_KEY

structure IntKey : ORD_KEY = structure StringKey : ORD_KEY =
struct struct
type ord_key = int type ord_key = string
fun compare (x, y) = fun compare (x, y) =
if x < y then LESS if String.< (x, y) then LESS
else if x > y then GREATER else if String.> (x, y) then GREATER
else EQUAL else EQUAL
end end

When given IntKey and StringKey as input, OrdSet generates corresponding structures of signa-
ture ORD_SET:

structure IntSet = OrdSet (IntKey)
structure StringSet = OrdSet (StringKey)

May 9, 2023 17

18

May 9, 2023

Chapter 2

Inductive Definitions

This chapter discusses inductive definitions which are an indispensable tool in the study of programming
languages. The reason why we need inductive definitions is not difficult to guess: a programming
language may be thought of as a system that is inhabited by infinitely many elements (or programs), and
we wish to give a complete specification of it with a finite description; hence we need a mechanism of
inductive definition by which a finite description is capable of yielding an infinite number of elements
in the system. Those techniques related to inductive definitions also play a key role in investigating
properties of programming languages. We will study these concepts with a few simple languages.

2.1 Inductive definitions of syntactic categories

An integral part of the definition of a programming language is its syntax which answers the question

of which program (i.e., a sequence of characters) is recognizable by the parser and which program is

not. Typically the syntax is specified by a number of syntactic categories such as expressions, types, and

patterns. Below we discuss how to define syntactic categories inductively in a few simple languages.
Our first example defines a syntactic category nat of natural numbers:

nat n == 0|Sn

Here nat is the name of the syntactic category being defined, and n is called a non-terminal. We read
::=as “is defined as” and | as “or.” 0 stands for “zero” and S “successor.” Thus the above definition is
interpreted as:

A natural number n is either 0 or S n’ where n/ is another natural number.

Note that nat is defined inductively: a natural number S n’ uses another natural number n’, and thus
nat uses the same syntactic category in its definition. Now the definition of nat produces an infinite
collection of natural numbers such as

0,80,SS0,SSS0,SSSQ, --.

Thus nat specifies a language of natural numbers.
A syntactic category may refer to another syntactic category in its definition. For example, given the
above definition of nat, the syntactic category tree below uses nat in its inductive definition:

tree t == Lleaf n|node (¢, n,t)
leaf n represents a leaf node with a natural number »; node (¢1, n, 2) represents an internal node with
a natural number n, a left child ¢, and a right child ¢;. Then tree specifies a language of regular binary

trees of natural numbers such as

leaf n, node (leaf ni,n,leaf ny), node (node (leaf ny,n,leaf ny),n’,leat n”), --- .

19

A similar but intrinsically different example is two syntactic categories that are mutually inductively
defined. For example, we simultaneously define two syntactic categories even and odd of even and odd
numbers as follows:

even e == 0]So
odd o u= Se

According to the definition above, even consists of even numbers such as
0,SsS0,SSSsSQO, ---
whereas odd consists of odd numbers such as
S0,SSS0,SSSSSO, ---.

Note that even and odd are subcategories of nat because every even number e or odd number o is also a
natural number. Thus we may think of even and odd as nat satisfying certain properties.

Exercise 2.1. Define even and odd independently of each other.

Let us consider another example of defining a syntactic subcategory. First we define a syntactic
category paren of strings of parentheses:

paren s = €|(s])s

e stands for the empty string (i.e., s = s = se). paren specifies a language of strings of parentheses with
no constraint on the use of parentheses. Now we define a subcategory mparen of paren for those strings
of matched parentheses:

mparen s == €|(s)]ss

mparen generates such strings as

¢,0-00,0), (0,000,

mparen is ambiguous in the sense that a string belonging to mparen may not be decomposed in a
unique way (according to the definition of mparen). For example, ()()() may be thought of as either ()()
concatenated with () or () concatenated with ()(). The culprit is the third case s s in the definition: for
a sequence of substrings of matched parentheses, there can be more than one way to split it into two
substrings of matched parentheses. An alternative definition of Iparen below eliminates ambiguity in
mparen:

Iparen s u= €el|(9)s

The idea behind Iparen is that the first parenthesis in a non-empty string s is a left parenthesis “(” which
is paired with a unique occurrence of a right parenthesis “)”. For example, s = (())() can be written
as (s1)s2 where s; = () and sy = (), both strings of matched parentheses, are uniquely determined by
s. ()) and (()(), however, are not strings of matched parentheses and cannot be written as (s1)ss where
both s; and s; are strings of matched parentheses.

An inductive definition of a syntactic category is a convenient way to specify a language. Even the
syntax of a full-scale programming language (such as SML) uses essentially the same machinery. It is,
however, not the best choice for investigating properties of languages. For example, how can we formally
express that n belongs to nat if S n belongs to nat, let alone prove it? Or how can we show that a string
belonging to mparen indeed consists of matched parentheses? The notion of judgment comes into play
to address such issues arising in inductive definitions.

2.2 Inductive definitions of judgments

A judgment is an object of knowledge, or simply a statement, that may or may not be provable. Here
are a few examples:

e “1 —1isequal to 0”is a judgment which is always provable.

20 May 9, 2023

e “1 4 1isequal to0” is also a judgment which is never provable.
e "It is raining” is a judgment which is sometimes provable and sometimes not.

e “S S0 belongs to the syntactic category nat” is a judgment which is provable if nat is defined as
shown in the previous section.

Then how do we prove a judgment? For example, on what basis do we assert that “1 — 1 is equal to
0” is always provable? We implicitly use arithmetic to prove “1 — 1 is equal to 0”, but strictly speaking,
arithmetic rules are not given for free — we first have to reformulate them as inference rules.
An inference rule consists of premises and a conclusion, and is written in the following form (where
J stands for a judgment):
Ji o Jy e Jy
J
The inference rule, whose name is R, states that if J; through J,, (premises) hold, then J (conclusion)

also holds. As a special case, an inference rule with no premise (i.e., n = 0) is called an axiom. Here are
a few examples of inference rules and axioms where we omit their names:

R

m is equal to 1 1 is equal ton m is equal to n

m is equal to n m+ lisequal ton + 1

My coat is wet

n is equal to n 0 is a natural number It is raining

Judgments are a general concept that covers any form of knowledge: knowledge about weather,
knowledge about numbers, knowledge about programming languages, and so on. Note that judg-
ments alone are inadequate to justify the knowledge being conveyed — we also need inference rules
for proving or refuting judgments. In other words, the definition of a judgment is complete only when
there are inference rules for proving or refuting it. Without inference rules, there can be no meaning in the
judgment. For example, without arithmetic rules, the statement “1 — 1 is equal to 0” is nothing more than
nonsense and thus cannot be called a judgment.

Needless to say, judgments are a concept strong enough to express membership in a syntactic cate-
gory. As an example, let us recast the inductive definition of nat as a system of judgments and inference
rules. We first introduce a judgment n nat:

n nat & nis a natural number

We use the following two inference rules to prove the judgment n nat where their names, Zero and Succ,
are displayed:

nat
S n nat

Zero Suce

0 nat

n in the rule Succ is called a metavariable which is just a placeholder for another sequence of 0 and
S and is thus not part of the language consisting of 0 and S. That is, n is just a (meta)variable which
ranges over the set of sequences of 0 and S; n itself (before being replaced by S 0, for example) is not
tested for membership in nat.

The notion of metavariable is similar to the notion of variable in SML. Consider an SML expression
x = 1 where x is a variable of type int. The expression makes sense only because we read x as a
variable that ranges over integer values and is later to be replaced by an actual integer constant. If
we literally read x as an (ill-formed) integer, x = 1 would always evaluate to false because x, as an
integer constant, is by no means equal to another integer constant 1.

The judgment n nat is now defined inductively by the two inference rules. The rule Zero is a base
case because it is an axiom, and the rule Succ is an inductive case because the premise contains a judg-
ment smaller in size than the one (of the same kind) in the conclusion. Now we can prove, for example,
that S S 0 nat holds with the following derivation tree, in which S S 0 nat is the root and 0 nat is the only

leaf (i.e., it is an inverted tree):

Onat Zero

S 0 nat Sgcc
S S0 nat U

Similarly we can rewrite the definition of the syntactic category tree in terms of judgments and inference
rules:

May 9, 2023 21

t tree & tisaregular binary tree of natural numbers

t1 tree m nat iy tree

n nat
f

—_— ode
leaf n tree

node (t1,n,ta) tree
A slightly more complicated example is a judgment that isolates full regular binary trees of natural

numbers, as shown below. Note that there is no restriction on the form of judgment as long as its
meaning is clarified by inference rules. We may even use English sentences as a valid form of judgment!

t ctree(d) & tisa full reqular binary tree of natural numbers of depth d

t1 ctree(d) mnat ity ctree{d
n nat leaf 1 (d) 2 (d) Cnode

leaf n ctree(0) node (t1,n,ta) ctree(S d)

The following derivation tree proves that

0
0 0
0 0 0 O
is a full regular binary tree of depth S S O:

~—— Zero ~—— Zero

0 nat 0 nat
————— Cleaf —— ————— Clea
leaf 0 ctree(0) | Gat 240 Teato ctree(0) Z;

node (Leaf 0,0, leaf 0) ctree(S 0) "% Dnat (omitted)

node
node (node (leaf 0,0, leaf 0),0,node (leaf 0,0,1leaf 0)) ctree(S S 0)

We can also show that ¢ = node (leaf 0,0,node (leaf 0,0, leaf 0)) is not a full regular binary tree as
we cannot prove ¢ ctree(d) for any natural number d:

Onat d' =0 Cleaf — 7 . d =8d" Crode
leaf O ctree(d’) 0nat ““’ node (leaf 0,0,1eaf 0) ctree(d’) COnod
noae

node (leaf 0,0,node (leaf 0,0, leaf 0)) ctree(S d')

It is easy to see why the proof fails: the left subtree of ¢ requires d’ = 0 while the right subtree of ¢
requires d’ = S d”, and there is no way to solve two conflicting equations on d’.

As with the syntactic categories even and odd, multiple judgments can be defined simultaneously.
For example, here is the translation of the definition of even and odd into judgments and inference rules:

n even & nis an even number
n odd & nisan odd number
n odd n even
— — —— 7 SuccO
0 even Zerok S n even SuccE S n odd

The following derivation tree proves that S S 0 is an even number:

——— JeroF
0 even SuceO

S 0 odd
SS0even Succk

Exercise 2.2. Translate the definition of paren, mparen, and Iparen into judgments and inference rules.

22 May 9, 2023

2.3 Derivable rules and admissible rules

As shown in the previous section, judgments are defined with a certain (fixed) number of inference
rules. When put together, these inference rules justify new inference rules which may in turn be added
to the system. The new inference rules do not change the characteristics of the system because they can
all be justified by the original inference rules, but may considerably facilitate the study of the system.
For example, when multiplying two integers, we seldom employ the basic arithmetic rules, which can
be thought of as original inference rules; instead we mostly use the rules of the multiplication table,
which can be thought of as new inference rules.

There are two ways to introduce new inference rules: as derivable rules and as admissible rules. A
derivable rule is one in which the gap between the premise and the conclusion can be bridged by a
derivation tree. In other words, there always exists a sequence of inference rules that use the premise
to prove the conclusion. As an example, consider the following inference rule which states that if n is a

natural number, sois S S n:
n nat

S Snnat Succ?

The rule Succ? is derivable because we can justify it with the following derivation tree:

n nat s
S n nat gcc
S Sn nat QU

Now we may use the rule Succ? as if it was an original inference rule; when asked to justify its use, we
can just present the above derivation tree.

An admissible rule is one in which the premise implies the conclusion. That is, whenever the
premise holds, so does the conclusion. A derivable rule is certainly an admissible rule because of the
derivability of the conclusion from the premise. There are, however, admissible rules that are not deriv-
able rules. (Otherwise why would we distinguish between derivable and admissible rules?) Consider
the following inference rule which states that if S n is a natural number, so is n:

S n nat
n nat

Suce™?
First observe that the rule Succ™! is not derivable: the only way to derive n nat from S n nat is by the
rule Succ, but the premise of the rule Succ is smaller than its conclusion whereas S n nat is larger than
n nat. That is, there is no derivation tree like

S n nat
= Succ™?!

_— —1
nnat Suce

Now suppose that the premise S n nat holds. Since the only way to prove S n nat is by the rule Succ,
S n nat must have been derived from n nat as follows:

Then we can extract a smaller derivation tree : which proves n nat. Hence the rule Succ™? is
n nat

justified as an admissible rule.

An important property of derivable rules is that they remain valid even when the system is aug-
mented with new inference rules. For example, the rule Succ2 remains valid no matter how many
new inference rules are added to the system because the derivation of S S n nat from n nat is always
possible thanks to the rule Succ (which is not removed from the system). In contrast, admissible rules
may become invalid when new inference rules are introduced. For example, suppose that the system
introduces a new (bizarre) inference rule:

n tree

- Bizarre
S n nat

May 9, 2023 23

The rule Bizarre invalidates the previously admissible rule Succ™! because the rule Succ is no longer
the only way to prove S n nat and thus S n nat fails to guarantees n nat. Therefore the validity of an
admissible rule must be checked each time a new inference rule is introduced.

n even
Exercise 2.3. Istherule 5§, even SuccE? derivable or admissible? What about the rule % SuccE~2 ?

2.4 Inductive proofs

We have learned how to specify systems using inductive definitions of syntactic categories or judg-
ments, or inductive systems of syntactic categories or judgments. While it is powerful enough to specify
even full-scale programming languages (i.e., their syntax and semantics), the mechanism of inductive
definition alone is hardly useful unless the resultant system is shown to exhibit desired properties. That
is, we cannot just specify a system using an inductive definition and then immediately use it without
proving any interesting properties. For example, our intuition says that every string in the syntactic
category mparen has the same number of left and right parentheses, but the definition of mparen itself
does not automatically prove this property; hence we need to formally prove this property ourselves in
order to use mparen as a language of strings of matched parentheses. As another example, consider the
inductive definition of the judgments n even and n odd. The definition seems to make sense, but it still
remains to formally prove that n in n even indeed represents an even number and n in n odd an odd
number.

There is another important reason why we need to be able to prove properties of inductive systems.
An inductive system is often so complex that its soundness, i.e., its definition being devoid of any
inconsistencies, may not be obvious at all. In such a case, we usually set out to prove a property that
is supposed to hold in the system. Then each flaw in the definition that destroys the property, if any,
manifests itself at some point in the proof (because it is impossible to complete the proof). For example,
an expression in a functional language is supposed to evaluate to a value of the same type, but this
property (called type preservation) is usually not obvious at all. By attempting to prove type preservation,
we can either locate flaws in the definition or partially ensure that the system is sound. Thus proving
properties of an inductive system is the most effective aid in fixing errors in the definition.

First we will study a principle called structural induction for proving properties of inductive systems
of syntactic categories. Next we will study another principle called rule induction for proving properties
of inductive systems of judgments. Since an inductive system of syntactic category is a simplified
presentation of a corresponding inductive system of judgments, structural induction is in fact a special
case of rule induction. Nevertheless structural induction deserves separate treatment because of the
role of syntactic categories in the study of programming languages.

2.4.1 Structural induction

The principle of structural induction states that a property of a syntactic category may be proven induc-
tively by analyzing the structure of its definition: for each base case, we show that the property holds
without making any assumption; for each inductive case, we first assume that the property holds for
each smaller element in it and then prove the property holds for the entire case.

A couple of examples will clarify the concept. Consider the syntactic category nat of natural num-
bers. We wish to prove that P(n) holds for every natural number n. Examples of P(n) are:

e 1 has a successor.
e nis 0 or has a predecessor n’ (i.e., Sn' = n).

e n is a product of prime numbers (where definitions of products and prime numbers are assumed
to be given).

By structural induction, we prove the following two statements:
e P(0) holds.
e If P(n) holds, then P(S n) also holds.

24 May 9, 2023

The first statement is concerned with the base case in which 0 has no smaller element in it; hence we
prove P(0) without any assumption. The second statement is concerned with the inductive case in
which S n has a smaller element n in it; hence we first assume, as an induction hypothesis, that P(n)
holds and then prove that P(S n) holds. The above instance of structural induction is essentially the
same as the principle of mathematical induction.

As another example, consider the syntactic category tree of regular binary trees. In order to prove
that P(¢) holds for every regular binary tree ¢, we need to prove the following two statements:

e P(leaf n) holds.
e If P(t1) and P(t2) hold as induction hypotheses, then P(node (¢1, n, t2)) also holds.

The above instance of structural induction is usually called tree induction.

As a concrete example of an inductive proof by structural induction, let us prove that every string
belonging to the syntactic category mparen has the same number of left and right parentheses. (Note
that we are not proving that mparen specifies a language of strings of matched parentheses.) We first
define two auxiliary functions left and right to count the number of left and right parentheses. For
visual clarity, we write left[s] and right[s] instead of left(s) and right(s). (We do not define left and right
on the syntactic category paren because the purpose of this example is to illustrate structural induction
rather than to prove an interesting property of mparen.)

lefte] = 0
left[(s)] = 1+ left[s]
left[s1 sa] = left[s1] + left[so]
rightle] = 0
m’ght[(s)} = 1+ right]s]

right[s1 s2] = right[s1] + right[sa]
Now let us interpret P(s) as “left[s] = right[s].” Then we want to prove that if s belongs to mparen,
written as s € mparen, then P(s) holds.

Theorem 2.4. If s € mparen, then left[s] = right|s].

Proof. By structural induction on s.
Each line below corresponds to a single step in the proof. It is written in the following format:

conclusion justification

This format makes it easy to read the proof because in most cases, we want to see the conclusion first
rather than its justification.

Case s = e
leftle] = 0 = rightle]

Case s = (¢'):
left[s'] = right[s'] by induction hypothesis on s’
left[s] = 1 + left[s'] = 1 + right[s'] = right[s] from left[s'] = right[s']

Case s = 57 s9:
left[s1] = right[s1] by induction hypothesis on s;
left[sa] = right[ss] by induction hypothesis on s,
left[sq1 s2] = left[s1] + left[s2] = right[si] + right[s2] = Tight[s1 s2]

from left[s1] = right[s1] and left[sa] = right[ss]

O

In the proof above, we may also say “by induction on the structure of s” instead of “by structural
induction on s.”

May 9, 2023 25

2.4.2 Rule induction

The principle of rule induction is similar to the principle of structural induction except that it is applied
to derivation trees rather than definitions of syntactic categories. Consider an inductive definition of a
judgment J with two inference rules:

o Jl J2 RN Jn
Jb Rbase J’L

We want to show that whenever J holds, another judgment P(J) holds where P(J) is a new form of
judgment parameterized over J. For example, when J is “n nat”, P(J) may be “either n even or n odd.”
To this end, we prove the following two statements:

e P(Jp) holds.
e If P(J1), P(J2), - --,and P(J,) hold as induction hypotheses, then P(J;) holds.

By virtue of the first statement, the following inference rule makes sense because we can always prove
P (J b):

R
P(Jb) base

The following inference rule also makes sense because of the second statement: it states that if P(.J;)
through P(J,,) hold, then P(J;) also holds, which is precisely what the second statement proves:

P(J1) P(h) --- P(Jn)

Rilnd
Now, for any derivation tree for J using the rules Ry, and Ring, we can prove P(J) using the rules
R/base and Ri/nd:

jb Rpase — m Ri)ase

ST Jn n = P(J1) P(Js) P(J.)
Ji ind P(Jz) ind

In other words, J always implies P(.J). A generalization of the above strategy is the principle of rule
induction.

As a trivial example, let us prove that n nat implies either n even or n odd. We let P(n nat) be “either
n even or n odd” and apply the principle of rule induction. The two rules Zero and Succ require us to
prove the following two statements:

e P(0 nat) holds. That is, for the case where the rule Zero is used to prove n nat, we have n = 0 and
thus prove P(0 nat).

e If P(n’ nat) holds, P(S n’ nat) holds. That is, for the case where the rule Succ is used to prove
n nat, we have n = S n’ and thus prove P(S n/ nat) using the induction hypothesis P(n/ nat).

According to the definition of P(.J), the two statements are equivalent to:

o Either 0 even or 0 odd holds.

e If either n’ even or n’ odd holds, then either S n’ even or S n’ odd holds.
A formal inductive proof proceeds as follows:

Theorem 2.5. If n nat, then either n even or n odd.

26 May 9, 2023

Proof. By rule induction on the judgment n nat.

It is of utmost importance that we apply the principle of rule induction to the judgment n nat rather
than the natural number n. In other words, we analyze the structure of the proof of n nat, not the struc-
ture of n. If we analyze the structure of n, the proof degenerates to an example of structural induction!
Hence we may also say “by induction on the structure of the proof of n nat” instead of “by rule induc-
tion on the judgment n nat.”

Case Onat 2¢" (where n happens to be equal to 0):

(This is the case where n nat is proven by applying the rule Zero. It is not obtained as a case where n is
equal to O, since we are not analyzing the structure of n. Note also that we do not apply the induction
hypothesis because the premise has no judgment.)

0 even by the rule ZeroE
" nat ’

Case o 7 & Succ (where n happens to be equal to S n'):

(This is the case where n nat is proven by applying the rule Succ.)

n’ even or n’ odd by induction hypothesis

Sn' odd or S n' even by the rule SuccO or SuccE

O

Rule induction can also be applied simultaneously to two or more judgments. As an example, let us
prove that n in n even represents an even number and n in n odd an odd number. We use the rules ZeroFE,
SuccE, and SuccO in Section 2.2]along with the following inference rules using a judgment n double n':

D n double n’ Dsuce
0 double 0 “#" s double S S 7/

Intuitively n double n’ means that »n’ is a double of n (i.e., n’ = 2 x n). The properties of even and odd
numbers are stated in the following theorem:

Theorem 2.6.
If n even, then there exists n' such that n' double n.
If n odd, then there exist n’ and n” such that n’ double n” and S n”" = n.

The proof of the theorem follows the same pattern of rule induction as in previous examples except
that P(J) distinguishes between the two cases J = n even and J = n odd:

e P(n even) is “there exists n’ such that n’ double n.”

e P(n odd) is “there exist n’ and n’ such that n’ double n” and S n” = n.

An inductive proof of the theorem proceeds as follows:

Proof of Theorem By simultaneous rule induction on the judgments n even and n odd.

Case Qeven ZeroE yihere n = 0:
0 double 0 by the rule Dzero
Weletn’ = 0.
C n, odd h P

ase W SuccE Wheren = Np:
n,, double n; and S n; = n,, by induction hypothesis
S n;, double S S n;) by the rule Dsucc with n;, double n;)
S n;, double n fromSSn; =Sn,=n
Weletn' =8 n).

P
n, even SuecO

Case g 1, odd uccO wheren = S ny:
n,, double n,, by induction hypothesis
We let n’ = nj, and n" = n, fromn = Sn,

O

May 9, 2023 27

2.5 Techniques for inductive proofs

An inductive proof is not always as straightforward as the proof of Theorem For example, the
theorem being proven may be simply false! In such a case, the proof attempt (which will eventually
fail) may help us to extract a counterexample of the theorem. If the theorem is indeed provable (or is
believed to be provable) but a direct proof attempt fails, we can try a common technique for inductive
proofs. Below we illustrate three such techniques: introducing a lemma, generalizing the theorem, and
proving by the principle of inversion.

2,51 Usingalemma

We recast the definition of the syntactic categories mparen and Iparen as a system of judgments and
inference rules:

smparen .. .- S1mparen sy mparen
———— Meps b Mseq
€ mparen (s) mparen 51 S mparen
s1 Iparen s5 Iparen
—— Leps
¢ Iparen (s1) s2 Iparen

Our goal is to show that s mparen implies s Iparen. It turns out that a direct proof attempt by rule
induction fails and that we need a lemma. To informally explain why we need a lemma, consider
the case where the rule Mseq is used to prove s mparen. We may write s = s; s with s; mparen and
s9 mparen. By induction hypothesis on s; mparen and s; mparen, we may conclude s; Iparen and s Iparen.
From s; Iparen, there are two subcases to consider:

o If 51 = ¢ then s = s1 s3 = s and s Iparen implies s Iparen.
o If 51 = () s with s Iparen and s/ Iparen, then s = (s) s7 sa.

In the second subcase, it is necessary to prove si sa Iparen from s/ Iparen and so Iparen, which is not
addressed by what is being proven (and is not obvious). Thus the following lemma needs to be proven
first:

Lemma 2.7. If s Iparen and s’ Iparen, then s s’ Iparen.

Then how do we prove the above lemma by rule induction? The lemma does not seem to be provable
by rule induction because it does not have the form “If J holds, then P(J) holds” — the If part contains
two judgments! It turns out, however, that rule induction can be applied exactly in the same way. The
trick is to interpret the statement in the lemma as:

If s Iparen, then s’ Iparen implies s s’ Iparen.

Then we apply rule induction to the judgment s Iparen with P(s Iparen) being “s’ Iparen implies s s’ Iparen.”
An inductive proof of the lemma proceeds as follows:

Proof of Lemma By rule induction on the judgment s Iparen. Keep in mind that the induction hypoth-
esis on s Iparen yields “s’ Iparen implies s s’ Iparen.” Consequently, if s’ Iparen is already available as an
assumption, the induction hypothesis on s Iparen yields s s’ Iparen.

Case ¢ |paren Leps wwhere s = e:

s’ Iparen assumption
ss'=es' =4

s &' Iparen from s’ Iparen
Case lparen _s5 lparen Lseq where s = (s1) sa:

(s1) s2 Iparen

s’ Iparen assumption
ss' =(s1) 828

“s’ Iparen implies s s’ Iparen” by induction hypothesis on s Iparen

28 May 9, 2023

s9 s’ Iparen from the assumption s’ Iparen
(s1) s2 s’ Iparen by the rule Lseq with s; Iparen and s; s’ Iparen
O]

Exercise 2.8. Can you prove Lemma[2.7]by rule induction on the judgment s’ Iparen?
Now we are ready to prove that s mparen implies s Iparen.

Theorem 2.9. If s mparen, then s Iparen.

Proof. By rule induction on the the judgment s mparen.

Case emparen MePS where s = e
e Iparen by the rule Leps
s’ mparen

Case (') mparen Mpar where s = (s'):

s’ Iparen by induction hypothesis

s’ Iparen e Iparen

Leps
(s') Iparen from Lseq and (s') = (s') €

(s') € Iparen
$1 mparen sy mparen

Case 51 5, mparen Mseq where s = 51 s9:

s1 Iparen by induction hypothesis on s; mparen
sg Iparen by induction hypothesis on s, mparen
51 S9 Iparen by Lemma[2.7]

O

2.5.2 Generalizing a theorem

We have seen in Theorem [2.4| that if a string s belongs to the syntactic category mparen, or if s mparen
holds, s has the same number of left and right parentheses, i.e., left[s] = right[s]. The result, however,
does not prove that s is a string of matched parentheses because it does not take into consideration
positions of matching parentheses. For example, s =)(satisfies left[s] = right[s], but is not a string of
matched parentheses because the left parenthesis appears after its corresponding right parenthesis.

In order to be able to recognize strings of matched parentheses, we introduce a new judgment k > s
where k is a non-negative integer:

k>s <k left parentheses concatenated with s form a string of matched parentheses
< ((--- (sisastring of matched parentheses
~——

k

The idea is that we scan a given string from left to right and keep counting the number of left parenthe-
ses that have not yet been matched with corresponding right parentheses. Thus we begin with k£ = 0,
increment k each time a left parenthesis is encountered, and decrement & each time a right parenthesis

is encountered:
k+1>s k—1>s k>0

P
k(s left k>)s

—— Peps Pright

0> e
The second premise k > 0 in the rule Pright ensures that in any prefix of a given string, the number of
right parentheses may not exceed the number of left parentheses. Now a judgment 0 > s expresses that
s is a string of matched parentheses. Here are a couple of examples:

0me L% 150
Pright
1) Pright (the rule Pright is not applicable because 0 % 0)
2> 0>
) Pleft I Pright
=0 1)
eft Pleft
0> (()) 0> ()

May 9, 2023 29

Note that while an inference rules is usually read from the premise to the conclusion, i.e., “if the
premise holds, then the conclusion follows,” the above rules are best read from the conclusion to the
premise: “in order to prove the conclusion, we prove the premise instead.” For example, the rule Peps
may be read as “in order to prove 0 I> ¢, we do not have to prove anything else,” which implies that
0> € automatically holds; the rule Pleft may be read as “in order to prove k > (s, we only have to prove
k41> s.” This bottom-up reading of the rules corresponds to the left-to-right direction of scanning a
string. For example, a proof of 0> (()) would proceed as the following sequence of judgments in which
the given string is scanned from left to right:

o (()) — 1() — 2p>) — 1) — 0>e

Exercise 2.10. Rewrite the inference rules for the judgment k > s so that they are best read from the
premise to the conclusion.

Now we wish to prove that a string s satisfying 0> s indeed belongs to the syntactic category mparen:
Theorem 2.11. If0 > s, then s mparen.

It is easy to see that a direct proof of Theorem 2.11|by rule induction fails. For example, when 0 > (s
follows from 1> s by the rule Pleft, we cannot apply the induction hypothesis to the premise because it
does not have the form 0 t> s’. What we need is, therefore, a generalization of Theorem that covers
all cases of the judgment k 1> s instead of a particular case k = 0:

Lemma 2.12. If k> s, then ((-- - (s mparen.
k

Lemma formally verifies the intuition behind the general form of the judgment & 1> s. Then Theo-
rem is obtained as a corollary of Lemma

The proof of Lemma requires another lemma whose proof is left as an exercise (see Exer-
cise[2.18):

Lemma 2.13. If ((-- - (s mparen, then ((--- (()s mparen.
~—— ——

k k

Proof of Lemma By rule induction on the judgment £ > s.

Case 0 L% wherek=0ands =«
€ mparen by the rule Meps
((-++- (s mparen from ((---(s=¢
——— ——
k k
E+1>s
Er2PS p — (s
Case = — & eft where s = (s
((--- (s mparen by induction hypothesis on k& + 1 > s
——
k+1
((--- (s mparen from ((---(s" = ((---((s"= ((--- (s
~—— ~—— ~—— ~——
k k+1 k k
k-—1ps" k>0 .
Case oS Pright where s =)s':
((--- (s mparen by induction hypothesison k — 1> s
~——
k—1
((---(()s' mparen by Lemma/|2.13
~——r
k—1
((--- (s mparen from ((---(()s" = ((---()s" = ((--- (s
~—— ~—— ~—— ~——
k k—1 k k

It is important that generalizing a theorem is different from introducing a lemma. We introduce
a lemma when the induction hypothesis is applicable to all premises in an inductive proof, but the
conclusion to be drawn is not a direct consequence of induction hypotheses. Typically such a lemma,

30 May 9, 2023

which fills the gap between induction hypotheses and the conclusion, requires another inductive proof
and is thus proven separately. In contrast, we generalize a theorem when the induction hypothesis is
not applicable to some premises and an inductive proof does not even work. Introducing a lemma is
to no avail here, since the induction hypothesis is applicable only to premises of inference rules and
nothing else (e.g., judgments proven by a lemma). Thus we generalize the theorem so that a direct
inductive proof works. (The proof of the generalized theorem may require us to introduce a lemma, of
course.)

To generalize a theorem is essentially to find a theorem that is harder to prove than, but immedi-
ately implies the original theorem. (In this regard, we can also say that we “strengthen” the theorem.)
There is no particular recipe for generalizing a theorem, and some problem requires a deep insight into
the judgment to which the induction hypothesis is to be applied. In many cases, however, identify-
ing an invariant on the judgment under consideration gives a clue on how to generalize the theorem.
For example, Theorem deals with a special case of the judgment k 1> s, and its generalization in
Lemma[2.12] precisely expresses what the judgment k t> s means.

2.5.3 Proof by the principle of inversion

Nl 7 I R . Inorder to apply the rule R, we first have to establish
proofs of all the premises J; through J,,, from which we may judge that the conclusion J also holds.
An alternative way of reading the rule R is that in order to prove J, it suffices to prove Ji,--- , J,. In
either case, it is the premises, not the conclusion, that we have to prove first.

Now assume the existence of a proof of the conclusion J. That is, we assume that J is provable,
but we may not have a concrete proof of it. Since the rule R is applied in the top-down direction, the
existence of a proof of J does not license us to conclude that the premises Jy,- - - , J,, are also provable.
JJy e Jm

J
but using different premises. In this case, we cannot be certain that the rule R has been applied at the
final step of the proof of J, and the existence of proofs of Ji, - - - , J, is not guaranteed.

If, however, the rule R is the only way to prove the conclusion J, we may safely “invert” the rule R
and deduce the premises Ji, - - -, J,, from the existence of a proof of J. That is, since the rule R is the
only way to prove J, the existence of a proof of J is subject to the existence of proofs of all the premises
of the rule R. Such a use of an inference rule in the bottom-up direction is called the principle of inversion.

As an example, let us prove that if S n is a natural number, so is n:

Consider an inference rule

For example, there may be another rule, say R’ , that deduces the same conclusion,

Proposition 2.14. If S n nat, then n nat.

We begin with an assumption that S n nat holds. Since the only way to prove S n nat is by the rule Succ,
S n nat must have been derived from n nat by the principle of inversion:

n nat
S n nat

Suce

Thus there must be a proof of n nat whenever there exists a proof of S n nat, which completes the proof
of Proposition[2.14]

2.6 Exercises

Exercise 2.15. Suppose that we represent a binary number as a sequence of digits 0 and 1. Give an
inductive definition of a syntactic category bin for positive binary numbers without a leading 0. For
example, 10 belongs to bin whereas 00 does not. Then define a function num which takes a sequence
b belonging to bin and returns its corresponding decimal number. For example, we have num(10) = 2
and num(110) = 6. You may use ¢ for the empty sequence.

Exercise 2.16. Prove the converse of Theorem 2.9} if s Iparen, then s mparen.

May 9, 2023 31

Exercise 2.17. Given a judgment ¢ tree, we define two functions numLeaf (t) and numNode(t) for calcu-
lating the number of leaves and the number of nodes in ¢, respectively:

numLeaf(leaf n) = 1

numLeaf (node (t1,n,t2)) = numLeaf(t1) + numLeaf (t2)
numNode(leat n) = 0

numNode(node (t1,n,t2)) = numNode(t;) + numNode(ts) + 1

Use rule induction to prove that if ¢ tree, then numLeaf (t) — numNode(t) = 1.

Exercise 2.18. Prove alemma: if ((- - - (s Iparen, then ((- - - (()s Iparen. Use this lemma to prove Lemmaf2.13
~—— ~——

k k
Your proof needs to exploit the equivalence between s mparen and s Iparen as stated in Theorem [2.9]and

Exercise2.16
Exercise 2.19. Proof the converse of Theorem [2.11} if s mparen, then 0 &> s.

Exercise 2.20. Consider an SML implementation of the factorial function:

fun fact’ 0 a = a
| fact’” n a = fact’” (n - 1) (n % a)
fun fact n = fact’ n 1

We wish to prove that fact 7 evaluates to nl by mathematical induction on n > 0, where 7 stands for
an SML constant expression for a mathematical integer n. Since fact nreducesto fact’ n 1, wetry

to prove a lemma that fact’ 7 1 evaluates to nl. Unfortunately it is impossible to prove the lemma

by mathematical induction on n. How would you generalize the lemma so that mathematical induction
works on n?

Exercise 2.21. The principle of mathematical induction states that for any natural number n, ajudgment
P(n) holds if the following two conditions are met:

1. P(0) holds.
2. P(k) implies P(k + 1) where k > 0.

There is another principle, called complete induction, which allows stronger assumptions in proving
P(k+1):

1. P(0) holds.
2. P(0),P(1),---,P(k) imply P(k+ 1) where k > 0.

It turns out that complete induction is not a new principle; rather it is a derived principle which can
be justified by the principle of mathematical induction. Use mathematical induction to show that if the
two conditions for complete induction are met, P(n) holds for any natural number n.

Exercise 2.22. Consider the following inference rules for comparing two natural number for equality:

——— EqZero —2=™_ EqSucc
0=0 Sn=8Sm

Show that the following inference rule is admissible:

n=m n doul/)|§ n’ ; m double m’ EqDouble
n =m

Exercise 2.23. Consider yet another inductive definition of strings of matched parentheses where we
use a new judgment s tparen:

S1 tparen so tparen

Teps Tseq

€ tparen s1 (s2) tparen

Give a proof of the following lemma:

32 May 9, 2023

Lemma 2.24. If s tparen and s’ tparen, then s s’ tparen.
Use Lemma to prove the following theorem:
Theorem 2.25. If s mparen, then s tparen.

In conjunction with the result from Exercise Theorem proves that s Iparen implies s tparen.
Now we wish to prove this result directly, i.e., without using the judgment s mparen:

Theorem 2.26. If s Iparen, then s tparen.

Try to prove Theorem 2.26by rule induction on s Iparen. If you can complete the proof, write it. If you
need a lemma to complete the proof, state the lemma, prove it, and use it to complete the proof.

Exercise 2.27. Consider two SML implementations of the Fibonacci function. £ib1 is an ordinary re-
cursive function whereas £1ib2 is a tail-recursive function. All arguments to both functions are assumed
to be natural numbers (which include zero).

fun fibl 0 = 0

| fibl 1 =1

| fibl n = fibl (n - 1) + fibl (n - 2) // n > 2
fun fib2 m n 0 = m

| fib2 m n p = fib2 n (m + n) (p - 1) // p > 1

Use mathematical induction or complete induction to prove the following properties. We assume that
every variable (p, z, m, n) ranges over natural numbers.

e fib2 (fibl p) (fibl (p + 1)) 2z = fibl (z + p).
e fib2 mn (p + 1) =m * £ibl p + n » fibl (p + 1).
e fibl (2 * p) + fibl p » fibl p = 2 » fibl p » fibl (p + 1).

e fibl (2 p + 1) = fibl p % fibl p + fibl (p + 1) = fibl (p + 1).

May 9, 2023 33

34

May 9, 2023

Chapter 3

A-Calculus

This chapter presents the A-calculus, a core calculus for functional languages (including SML of course).
It captures the essential mechanism of computation in functional languages, and thus serves as an
excellent framework for investigating basic concepts in functional languages. According to the Church-
Turing thesis, the A-calculus is equally expressive as Turing machines, but its syntax is deceptively sim-
ple. We first discuss the syntax and semantics of the A-calculus and then show how to write programs
in the A-calculus.

Before we proceed, we briefly discuss the difference between concrete syntax and abstract syntax.
Concrete syntax specifies which string of characters is accepted as a valid program (causing no syntax
errors) or rejected as an invalid program (causing syntax errors). For example, according to the concrete
syntax of SML, a string “1 is interpreted as an integer —1, but a string -1 is interpreted as an infix
operator - applied to an integer argument 1 (which later causes a type error). A parser implementing
concrete syntax usually translates source programs into tree structures. For example, a source program
1 + 2 » 3 istranslated into

+

2 3
after taking into account operator precedence rules. Such tree structures are called abstract syntax trees
which abstract away from details of parsing (such as operator precedence/associativity rules) and focus
on the structure of source programs; abstract syntax is just the syntax for such tree structures.

While concrete syntax is an integral part of designing a programming language, we will not discuss
it in this course. Instead we will work with abstract syntax to concentrate on computational aspects
of programming languages. For example, we do not discuss why 1 + 2 « 3and 1 + (2 = 3),
both written in concrete syntax, are translated by the parser into the same abstract syntax tree shown
above. For the purpose of understanding how their computation proceeds, the abstract syntax tree
alone suffices.

3.1 Abstract syntax for the \-calculus
The abstract syntax for the A-calculus is given as follows:
expression e = x|lr.elee

e An expression z is called a variable. We may use other names for variables (e.g., z, s, t, f, arg,
accum, and so on). Strictly speaking, therefore, x itself in the inductive definition of expression is a
metavariable.

e An expression Az.e is called a A-abstraction, or just a function, which denotes a mathematical
function whose formal argument is and whose body is e. We may think of Az. e as an internal
representation of a nameless SML function fn 2 => e in abstract syntax.

35

We say that a variable z is bound in the A-abstraction Az. e (just like a variable z is bound in an
SML function fn = => e). Alternatively we can say that = is a bound variable in the body e.

e An expression e; e is called a A-application or an application which denotes a function application
(if e1 is shown to be equivalent to a A-abstraction somehow). We may think of e; e, as an internal
representation of an SML function application in abstract syntax. As in SML, applications are
left-associative: e; e3 e3 means (e; es) eg instead of e; (e e3).

The scope of a A-abstraction extends as far to the right as possible. Here are a few examples:

e \z.z y is the same expression as a A-abstraction Az. (z y) whose body is = y. It should not be
understood as an application (Az.) y.

e \x.\y.x y is the same expression as Az. Ay. (z y) = Az. (A\y. (x y)). It should not be understood as
an application (Az. \y. z) y.

As it turns out, every expression in the A-calculus denotes a mathematical function. That is, the
denotation of every expression in the A-calculus is a mathematical function. Section 3.2 discusses how
to determine unique mathematical functions corresponding to expressions in the A-calculus, and in
the present section, we develop the intuition behind the A-calculus by considering a few examples of
A-abstractions.

Our first example is an identity function:

id = Az.z

id is an identity function because when given an argument z, it returns « without any further computa-
tion. Like higher-order functions in SML, a A-abstraction may return another M-abstraction as its result.
For example, tt belows takes ¢ to return another A-abstraction A f. t which ignores its argument; ff below
ignores its argument ¢ to return a A-abstraction Af. f:

tt = M At = M.(Nf1)
ff = XA = MO

Similarly a A-abstraction may expect another A-abstraction as its argument. For example, the A-abstraction
below expects another A-abstraction s which is later applied to z:

one = As.Az.sz = As.(Az.(s2))

3.2 Operational semantics of the \-calculus

The semantics of a programming language answers the question of “what is the meaning of a given
program?” This is an important question in the design of programming languages because lack of for-
mal semantics implies potential ambiguities in interpreting programs. Put another way, lack of formal
semantics makes it impossible to determine the meaning of certain programs. Surprisingly not every
programming language has its semantics. For example (and perhaps to your surprise), the C language
has no formal semantics — the same C program may exhibit different behavior depending on the state
of the machine on which the program is executed.

There are three approaches to formulating the semantics of programming languages: denotational
semantics, axiomatic semantics, and operational semantics. Throughout this course, we will use exclusively
the operational semantics approach for its close connection with judgments and inference rules. The
operational semantics approach is also attractive because it directly reflects the implementation of pro-
gramming languages (e.g., interpreters or compilers).

In general, the operational semantics of a programming language specifies how to transform a
program into a value via a sequence of “operations.” In the case of the A-calculus, values consist of
A-abstractions and “operations” are called reductions. Thus the operational semantics of the A-calculus
specifies how to reduce an expression e into a value v where v is defined as follows:

value v o= Ar.e

36 May 9, 2023

Then we take v as the meaning of e. Since a M-abstraction denotes a mathematical function, it follows
that every expression in the A-calculus denotes a mathematical function.

With this idea in mind, let us formally define reductions of expressions. We introduce a reduction
judgment of the form e — e ﬂ

ers e & ereduces to e

We write —* for the reflexive and transitive closure of — . Thatis, e —* ¢ holdsife — e; — -+ —
e, = ¢ where n > 0. (See Exercise for a formal definition of —*.) We say that e evaluates to v if
e —* v holds.

Before we provide inference rules to complete the definition of the judgment e — ¢, let us see what
kind of expression can be reduced to another expression. Clearly variables and A-abstractions cannot
be further reduced:

Ax.e o -

(e & - means that e does not reduce to another expression.) Then when can we reduce an application
e1 e2? If we think of it as an internal representation of an SML function application, we can reduce it
only if e; represents an SML function. Thus the only candidate for reduction is an application of the
form (Az. €}) es.

If we think of Az.e] as a mathematical function whose formal argument is « and whose body is
e}, the most natural way to reduce (Az. e}) ey is by substituting e, for every occurrence of z in e}, or
equivalently, by replacing every occurrence of z in ¢ by es. (For now, we do not consider the issue of
whether e, is a value or not.) To this end, we introduce a substitution [¢’ /x]e:

[€'/x]e is defined as an expression obtained by substituting e’ for every occurrence of x in e.

[¢//xz]e may also be read as “applying a substitution [¢’/z] to e.” Then the following reduction is justified
(Ax.e) e v [€/x]e

where the expression being reduced, namely (Az. e) €, is called a redex (reducible expression). For his-
torical reasons, the above reduction is called a 3-reduction.

Simple as it may seem, the precise definition of [¢ /]e is remarkably subtle (see Section[3.3). For now,
we just avoid complex examples whose reduction would require the precise definition of substitution.
Here are a few examples of S-reductions; the redex for each step is underlined:

(A\z.7) (Ay-y) = Mgy
A Aft) Az z) (My.y) — (Af dzx) (My.y) = Ax.T
AL AS) Qz.z) My-y) = (ML) (Mg y) = Ay.y
(As.Az.s2) (Ax.z) (A\y.y) — (Az.(Az.2) 2) (Ay.y) — (Az.x) (A\y.y) — Iy.y

The B-reduction is the basic principle for reducing expressions, but it does not yield unique infer-
ence rules for the judgment e — ¢’. That is, there can be more than one way to apply the S-reduction
to an expression, or equivalently, an expression may contain multiple redexes in it. For example,
(Az.z) ((Ay.y) (A\z. 2)) contains two redexes in it:

Az.2) (Ay.y) (Az.2)) = (Ay.y) (Az.2) = Az.z
= (Az.z) (A\z.2) = Az.z

In the first case, the expression being reduced has the form (Az.e) ¢/ and we immediately apply the
B-reduction to the whole expression to obtain [¢’ /z]e. In the second case, we apply the S-reduction to ¢’
which happens to be a redex; if ¢’ was not a redex (e.g., ¢’ = At. t), the second case would be impossible.
Here is another example of an expression containing two redexes:

(As.Az.s2) (Ax.z) (A\y.y) = Az.((Az.z) (A\y.y)) z — Az.(A\y.y) z — Az.z
(As.Az.s2) (Ax.z) (M\y.y) = (As.Az.82) (My.y) = Az.(Ay.y) z — Az.z

1 After all, the notion of judgment that we learned in Chapteris not really useless!

May 9, 2023 37

In the course of reducing an expression to a value, therefore, we may be able to apply the S-reduction
in many different ways. As we do not want to apply the S-reduction in an arbitrary way, we need a
certain reduction strategy so as to apply the S-reduction in a systematic way.

In this course, we consider two reduction strategies: call-by-name and call-by-value. The call-by-name
strategy always reduces the leftmost and outermost redex. To be specific, given an expression e; ey, it
checks if e; is a A-abstraction Axz. e}. If so, it applies the S-reduction to the whole expression to obtain
[ea/x]e]. Otherwise it attempts to reduce e; using the same reduction strategy without considering
e2; when ey later reduces to a value (which must be a A-abstraction), it applies the -reduction to the
whole expression. Consequently the second subexpression in an application (e.g., ez in e; e3) is never
reduced. The call-by-value strategy is similar to the call-by-name strategy, but it reduces the second
subexpression in an application to a value v after reducing the first subexpression. Hence the call-by-
value strategy applies the S-reduction to an application of the form (Az.e) v only. Note that neither
strategy reduces expressions inside a A-abstraction, which implies that values are not further reduced.

As an example, let us consider an expression (id; idz) (ids (Az.ids z)) which reduces in different
ways under the two reduction strategies; id; is an abbreviation of an identity function Az;. z;:

call-by-name call-by-value
— idy (ids (Az.idy 2)) — idy (ids (Az.idy4 2))
= Az.idg 2z — (Az.idy 2)

The reduction diverges in the second step: the call-by-name strategy applies the S-reduction to the
whole expression because it does not need to inspect the second subexpression ids (Az.id4 z) whereas
the call-by-value strategy chooses to reduce the second subexpression which is not a value yet.

Now we are ready to provide inference rules for the judgment e — ¢/, which we refer to as reduction
rules. The call-by-name strategy uses two reduction rules (Lam for Lambda and App for Application):

e1— e

e1 ea > €] es Lam (Az.e) e — [e'/x]e

The call-by-value strategy uses an additional rule to reduce second subexpression in applications; we
reuse the reduction rule names from the call-by-name strategy (Arg for Argument):

e1 — e I es > €l
—— Lam
€1 e3> €} eo (Ax.e) ea = (Az.e) €

Arg App

(Az.e)v— [v/z]e

A drawback of the call-by-name strategy is that the same expression may be evaluated multiple
times. For example, (Az. z x) ((A\y.y) (Az. 2)) evaluates (Ay.y) (Az. z) to Az. z eventually twice:

Az.z x) (Ay-y) (A2 2))

(Ay y) (Az.2)) (Ay-y) (Az.2))
-2) (\y-y) (A\z.2))
2y) (Az.2)

(
(
(Az
My

1111

ANz, z2

In the case of the call-by-value strategy, (A\y.y) (Az. z) is evaluated only once:

M.z x) (My.y) (Az.2))
(Az.z x) (Az.2)

’-)
= (Az.2) (\z.2)
= Az 2

38 May 9, 2023

On the other hand, the call-by-name strategy never evaluates expressions that do not contribute to
evaluations. For example,

(AL AS) ((Ay-y) (2. 2)) (') (A 2)

does not evaluate (Ay. y) (Az. z) at all because it is not used in the evaluation:

AL) (Qw-y) (A2 2)) (M) (A2 21))
= (M) (M) (A 2)
H PR

The call-by-value strategy evaluates (Ay. y) (Az. z), but the result Az. z is ignored in the next reduction:

(AL) (O-9) (A2-2)) (W) (.)
= (AL) (Azo2) (W y) (A2 2")

= (AL) (A y) (A2 27)

H P

The call-by-name strategy is adopted by the functional language Haskell. Haskell is called a lazy
or non-strict functional language because it evaluates arguments to functions only if necessary (i.e.,
“lazily”). The actual implementation of Haskell uses another reduction strategy called call-by-need,
which is semantically equivalent to the call-by-name strategy but never evaluates the same expression
more than once. The call-by-value strategy is adopted by SML which is called an eager or strict functional
language because it always evaluates arguments to functions regardless of whether they are actually
used in function bodies or not (i.e., “eagerly”).

We say that an expression is in normal form if no reduction rule is applicable. Clearly every value
(which is a A-abstraction in the case of the A-calculus) is in normal form. There are, however, expressions
in normal form that are not values. For example, x Ay. y is in normal form because z cannot be further
reduced, but it is not a value either. We say that such expression is stuck or its reduction gets stuck.
A stuck expression may be thought of as an ill-formed program, and ideally should not arise during
an evaluation. Chapter [presents an extension of the A-calculus which statically (i.e., at compile time)
guarantees that a program satisfying a certain criterion never gets stuck.

3.3 Substitution

This section presents a definition of substitution [e/z]e to complete the operational semantics of the
A-calculus. While an informal interpretation of [¢’/x]e is obvious, its formal definition is a lot trickier
than it appears.

First we need the notion of free variable which is the opposite of the notion of bound variable and
plays a key role in the definition of substitution. A free variable is a variable that is not bound in any
enclosing A-abstraction. For example, y in Az.y is a free variable because no A-abstraction of the form
Ay. e encloses its occurrence. To formalize the notion of free variable, we introduce a mapping FV(e) to
mean the set of free variables in e:

FV(z) = {«}
FV(hx.e) = FVie)—{z}
FV(€1 62) = FV(el) U FV(@Q)

Since a variable is either free or bound, a variable z in e such that x ¢ FV(e) must be bound in some
A-abstraction. We say that an expression e is closed if it contains no free variables, i.e., FV(e) = @. Here
are a few examples:

FVQx.2) = {}
FV(zy) = {z.y}
FV(az.zy) = {y}
FV(ay. Ax.zy) = {}
FV(Az.zy) (Ax.xz2) = {y,z}

May 9, 2023 39

A substitution [e/z]e’ is defined inductively with the following cases:

[e/z]lx = e
le/aly =y if x#y
[e/x](ere2) = [e/x]er [e/x]e;

In order to give the definition of the remaining case [e/z]\y. ¢/, we need to understand two properties of
variables. The first property is that the name of a bound variable does not matter, which also conforms
to our intuition. For example, an identity function Az.x inside an expression e may be rewritten as
Ay.y for an arbitrary variable y without changing the intended meaning of e, since both Az.z and
Ay.y denote an identity function. Another example is to rewrite Az. Ay. 2 y as Ay. Az.y x where both
expressions denote the same function that applies the first argument to the second argument.

Formally we use a judgment e =, €’ to mean that e can be rewritten as e’ by renaming bound vari-
ables in e and vice versa. Here are examples of e =, ¢’:

Az =4 MYy
ALY Ty a Az Ay.zy
AT AYy.xy =4 AT Az.x 2
AL ANY.ZY =o N AT.YT

By a historical accident, =, is called the a-equivalence relation, or we say that an a-conversion of e into ¢’
rewrites e as ¢’ by renaming bound variables in e. It turns out that a definition of e =, €’ is also tricky
to develop, which is given at the end of the present section.

The first property justifies the following case of substitution:

[e'/z] z.e = Mx.e

Intuitively, if we rewrite Ax. e as another A-abstraction of the form \y. ¢’ where y is a fresh variable such
that = # y, the substitution [e’/z] is effectively ignored because x is found nowhere in \y. e”. Here is a
simple example with e = x:

[€'/z] \z.x =, [¢//z] \y.y
Ay.y
=, .z

A generalization of the case is that [¢/ /2] has no effect on e if z is not a free variable in e:
[e'/z]le = e if v & FV(e)

That is, we want to apply [¢//z] to e only if x is a free variable in e.

The second property is that a free variable x in an expression e never turns into a bound variable;
when explicitly replaced by another expression ¢/, as in [¢’/x]e, it simply disappears. To better under-
stand the second property, let us consider a naive definition of [¢’/x]\y. e where y may or may not be a
free variable in €’:

[€/x] y.e = Ay.[e//x]e ifx#y

Now, if y is a free variable in ¢/, it automatically becomes a bound variable in \y. [¢//z]e, which is not
acceptable. Here is an example showing such an anomaly:

Az Ay.x) y = ly/z] y.x = Ny [y/x]e = Ay.y

Before the substitution, \y.x is a A-abstraction that ignores its argument and returns x, but after the
substitution, it turns into an identity function! What happens in the example is that a free variable y to
be substituted for x is supposed to remain free after the substitution, but is accidentally captured by the
A-abstraction Ay. x and becomes a bound variable. Such a phenomenon is called a variable capture which
destroys the intuition that a free variable remains free unless it is replaced by another expression. This
observation is generalized in the following definition of [¢//x]\y. e which is called a capture-avoiding
substitution:

/e = Myle/ale i x#yy g FV(E)

40 May 9, 2023

If a variable capture occurs because y € FV(e’), we rename y to another variable that is not free
in e. For example, (Az. A\y. z y) y can be safely reduced after renaming the bound variable y to a fresh
variable z:

Az dy.zy) y = [y/z) y.zy = [y/z] z.x 2= Xz y 2

In the literature, the unqualified term “substitution” universally means a capture-avoiding substitution
which renames bound variables as necessary.

Now we give a definition of the judgment e =, ¢/. We need the notion of variable swapping [z <>
yle which is obtained by replacing all occurrences of z in e by y and all occurrences of y in e by x.
We emphasize that “all” occurrences include even those next to A in A-abstractions, which makes it
straightforward to implement [z <> y]e. Here is an example:

[xey e dy.cy = Ay jzeylly.azy = Iy Az jzeyllzy) = Iy dz.yx

The definition of e =, ¢’ is given inductively by the following inference rules:

j— / — /
€1 =a €1 €2 =q €y

- A
T = T Var,, e1 €2 =, €] €} PPa
e =, € Lam x£ty ygFVie) [zeyle=a€ Lam!
_— am
Ae.e =4 M\x. € o Ax.e =, \y. € «

The rule Lam,, says that to compare Az.e and Ax. e’ which bind the same variable, we compare their
bodies e and ¢’. To compare two A-abstractions binding different variables, we use the rule Lam.,.

To see why the rule Lam,, works, we need to understand the implication of the premise y & FV(e).
Since y ¢ F'V(e) implies y & FV(Az.e) and we have z ¢ FV(Az. e), an outside observer would notice no
difference even if the two variables x and y were literally swapped in Az.e. In other words, Az. e and
[z > y]Az. e are effectively the same from the point of view of an outside observer. Since [z > y]Az.e =
A\y. [z ¢ yle, we compare [z <+ yle with €/, which is precisely the third premise in the rule Lam,,. As an
example, here is a proof of Az. A\y. x y =4 A\y. Az.y x:

m VCL’I’a m Xara

yr=ayz PP
x#£y y& FVQy.xy) ALY T =q A\2.YT N
Lam

[0

AL AY. T Y =4 AY. AT Y X
Exercise 3.1. Can we prove Az.e =, A\y.¢’ whenz # yand y € FV(e)?

Exercise 3.2. Suppose x ¢ FV(e) and y & FV(e). Prove e =, [x <> yle.

Finally we give a complete definition of substitution:

[e/z]lx = e
le/z]ly = y ifx#y
[e/z](ere2) = [e/a]er [e/a]es
[e'/zx]Az.e = Mx.e
[e'/z]Ay.e = Ay.[¢'/a]e if v #y,y ¢ FV(e)
['/z] y.e = Xz.[¢/z][y+ z]e if x £y,y € FV(e)
where z £ y,z ¢ FV(e),z # x,z & FV(¢')

The last equation implies that if y is a free variable in ¢/, we choose another variable z satisfying the
where clause and rewrite \y. e as Az. [y ¢+ z]e by a-conversion:

y£z 2¢FVe) yorzeZa lyor e
Ay.e =4 Az [y z]e

!/
(o3

Lam

May 9, 2023 41

Then z € FV(e') allows us to rewrite [¢/ /x]\z. [y <> z]e as Az. [/z][y > z]e. In a typical implementation,
we obtain such a variable z just by generating a fresh variable. In such a case, replacing z by y never
occurs and thus the last equation can be written as follows:

[€'/x] y.e = Az.[e/x][z/yle

The new equation is less efficient, however. Consider e = z y (Ay.z y) for example. [y <> z]e gives
x z (A\z.z z) and [¢’ /z][y > z]e encounters no variable capture:

[€/z)ly<szle = [e'/z](x 2 (Nz.x 2)) = € 2 (\z.€ 2)
In contrast, [z/y]e gives x z (A\y. z y) and [¢’ /z][z/y]e again encounters a variable capture in [¢/ /x| y. x y:
€ /z][z/yle = [¢'/z](x 2 (\y.xy)) = € z[e/z](\y.x y)
So we have to generate another fresh variable!

Exercise 3.3. What is the result of a-converting each expression in the left where a fresh variable to be
generated in the conversion is provided in the right? Which expression is impossible to a-convert?

Az =, M.
e .z 2 =, .
e .z 2 =, M.

3.4 Programming in the \-calculus

In order to develop the A-calculus to a full-fledged functional language, we need to show how to encode
common datatypes such as boolean values, integers, and lists in the A-calculus. Since all values in the
A-calculus are A-abstractions, all such datatypes are also encoded with A-abstractions. Once we show
how to encode specific datatypes, we may use them as if they were built-in datatypes.

3.4.1 Church booleans

The inherent capability of a boolean value is to choose one of two different options. For example, a
boolean truth chooses the first of two different options, as in an SML expression 1f true then e;
else ey. Thus boolean values in the A-calculus, called Church booleans, are written as follows:

tt = M At
ffo= MAS

Then a conditional construct if e then e; else e; is defined as follows:
if ethenejelsees = eejeq
Here are examples of reducing conditional constructs under the call-by-name strategy:

if tt then el else eg =tte; e = (At)\f t) €1 € ()\f 61) €y —r €1
if ff then e else eq = ff eg ea = (AL AS. f) e1 ea = (Af. f) ea — €9

Logical operators on boolean values are defined as follows:

and = Az. A\y.zyff
or = Ax.A\y.xtty
not = JAz.zfftt

As an example, here are sequences of reductions of and e; e; when e; —* tt and e; —* ff, respectively,
under the call-by-name strategy:

and e es and e ea
—* €1 €2 ff —* €1 €2 ff
=" tteg ff —* ffeqff
—* €9 —* ff

The left sequence shows that when e; —* tt holds, and e; e; denotes the same truth value as e;. The
right sequence shows that when e; —* ff holds, and e; e; evaluates to ff regardless of e,.

42 May 9, 2023

Exercise 3.4. Consider the conditional construct if e then e; else e; defined as e e; ez under the call-by-
value strategy. How is it different from the conditional construct in SML?

Exercise 3.5. Define the logical operator xor. An easy way to define it is to use a conditional construct
and the logical operator not.

3.4.2 Pairs

The inherent capability of a pair is to carry two unrelated values and to retrieve either value when
requested. Thus, in order to represent a pair of e; and ey, we build a A-abstraction which returns e; and
e2 when applied to tt and ff, respectively. Projection operators treat a pair as a A-abstraction and applies
it to either tt or ff.

pair = Az.Ay.Ab.bzxy
fst = Ap.ptt
snd = Ap.pff

As an example, let us reduce fst (pair e; e3) under the call-by-name strategy. Note that pair e; ey
evaluates to \b.b e; e; which expects a boolean value for b in order to select either e; or ep. If tt is
substituted for b, then b e; e; reduces to e;.

fst (pairej e2) +— (pair eq e2) tt
=" (/\b bey 62) tt
— tt e; eo
H

3.4.3 Church numerals

The inherent capability of a natural number n is to repeat a given process n times. In the case of the A-
calculus, n is encoded as a A-abstraction 7, called a Church numeral, that takes a function f and returns
f" = fof---of(ntimes). Note that f° is an identity function Az. z because f is applied 0 times to its
argument z, and that 1 itself is an identity function \f. f.

0 MO = Az

1 = M = M fa

2 = M.f2 = M. f(fz)

3 AP = Mox f(f (f)

o= A ft o= M f(f(f - (fa))

If weread fas S and z as 0, 7 f « returns the representation of the natural number n shown in Chapter[2]

Now let us define arithmetic operations on natural numbers. The addition operation add 77 72 returns
m + n which is a M\-abstraction taking a function f and returning f"*". Since " may be written as
Az. fF" x, we develop add as follows; in order to differentiate natural numbers (e.g., n) from their
encoded form (e.g., 7), we use 7 and 7 as variables:

add = i AR AfL ftn

= N A AL . fE g
A N A Az 7 (F @)
= M A AL Az f (7 f @)

Note that f™ is obtained as 7 f (and similarly for f).
Exercise 3.6. Define the multiplication operation mult /i 7 which returns m n.

The multiplication operation can be defined in two ways. An easy way is to exploit the equation
mxmn =m+m+---+m(ntimes). Thatis, m * n is obtained by adding m to zero exactly n times.
Since add 1 is conceptually a function adding m to its argument, we apply add 7.2 to 0 exactly n times to
obtain m % n, or equivalently apply (add 7)™ to 0:

mult = M. M. (add 7)™ 0

= A A (add 1) 0

May 9, 2023 43

An alternative way (which may in fact be easier to figure out than the first solution) is to exploit the
equation f™*" = (f™)" = (i f)" =n (i f):

mult = M A AR (R f)

The subtraction operation is more difficult to define than the previous two operations. Suppose
that we have a predecessor function pred computing the predecessor of a given natural number: pred 7

returns n — 1if n > 0 and 0 otherwise. To define the subtraction operation sub 172 72 which returns m — n
if m > n and 0 otherwise, we apply pred to 1 exactly n times:

sub = A\ M. pred™
= A An. (0 pred) m

Exercise 3.7. Define the predecessor function pred. Use an idea similar to the one used in a tail-recursive
implementation of the Fibonacci function.

The predecessor function pred uses an auxiliary function next which takes pair k 77, ignores k, and
returns pair m m + 1:
next = Ap.pair (snd p) (add (snd p) 1)

It can be shown that by applying next to pair 0 0 exactly n times, we obtain pair n—1nifn > 0 (under
a certain reduction strategy):

next’ (pair 00) +—* pair00
next' (pair00) +—* pair01
next? (pair 00) +—* pairl?2

—

next” (pair00) —* pairn—1n

Since the predecessor of 0 is 0 anyway, the first component of next™ (pair 0 0) encodes the predecessor
of n. Thus pred is defined as follows:

pred = An.fst (next™ (pair

00))
= M. fst (7 next (pair 0 0

)

Exercise 3.8. Define a function isZero = An. - - - which tests if a given Church numeral is 0. Use it to
define another function eq = Ari. Af. - - - which tests if two given Church numerals are equal.

3.5 Fixed point combinator

Since the A-calculus is equally powerful as Turing machines, every Turing machine can be simulated by
a certain expression in the A-calculus. In particular, there are expressions in the A-calculus that corre-
spond to Turing machines that do not terminate and Turing machines that compute recursive functions.

It is relatively easy to find an expression whose reduction does not terminate. Suppose that we wish
to find an expression omega such that omega +— omega. Since it reduces to the same expression, its
reduction never terminates. We rewrite omega as (A\x. e) ¢’ so that the S-reduction can be applied to the
whole expression omega. Then we have

omega = (A\z.e) €' — [¢//x]e = omega.

Now omega = [¢//z]e = (Az.e) ¢’ suggests e = ¢” x for some expression e” such that [¢//z]e” = Az.e
(and [¢’/z]x = €'):

omega = [¢//x]e
= [e'/x](e" x) frome=¢€"x
= [e//x]e" [¢//x]x
— [el/x}e// 6/
= (Az.e)¢e from [¢//x]e” = Az. e

44 May 9, 2023

From e = ¢’ x and [¢//z]e” = Az.e, we obtain [¢//z]e” = Ax.e” x. By letting ¢ = z in [¢//z]e’ =
Az. e’ x, we obtain ¢ = Az.z x. Then omega can be defined as follows:

omega = (Az.e)e
= (Az.e’z)e frome=¢" 2
= (Az.zz)e frome” =z
= (M.zz) (\r.z) frome' = \z.zx

Now it can be shown that the reduction of omega defined as above never terminates.

Then how do we write recursive functions in the A-calculus? We begin by assuming a recursive
function construct fun f x.e which defines a recursive function f whose argument is and whose body
is e. Note that the body e may contain references to f. Our goal is to show that fun f x. e is syntactic
sugar (which dissolves in the A-calculus) in the sense that it can be rewritten as an existing expression
in the A-calculus and thus its addition does not increase the expressive power of the A-calculus.

As a working example, we use a factorial function fac:

fac = fun fn.if eqn 0 then 1 else mult n (f (pred n))

Semantically f in the body refers to the very function fac being defined. First we mechanically derive a
A-abstraction FAC = A f. An. e from fac = fun f n.e:

FAC = \f. \n.if eqn 0then 1 else mult n (f (pred n))

Note that FAC has totally different characteristics than fac: while fac takes a natural number n to return
another natural number, FAC takes a function f to return another function. (If fac and FAC were allowed
to have types, fac would have type nat — nat whereas FAC would have type (nat— nat) — (nat — nat).)

The key idea behind constructing FAC is that given a partial implementation f of the factorial func-
tion, FAC f returns an improved implementation of the factorial function. Suppose that f correctly com-
putes the factorial of any natural number up to n. Then FAC f correctly computes the factorial of any
natural number up to n + 1, which is an improvement over f. Note also that FAC f correctly com-
putes the factorial of 0 regardless of f. In particular, even when given a least informative function
f = An.omega (which does nothing because it never returns), FAC f correctly computes the factorial
of 0. Thus we can imagine an infinite chain of functions {facy, facy,--- ,fac;,--- } which begins with
facy = FAC An. omega and repeatedly applies the equation fac;;; = FAC fac;:

facp = FAC An.omega
facc, = FACfacy = FAC? An.omega
facc = FACfac; = FAC® An.omega
fac, = FACfac;_; = FAC'T! An. omega

Note that fac; correctly computes the factorial of any natural number up to i. Then, if w denotes an infi-
nite natural number (greater than any natural number), we may take fac,, as a correct implementation
of the factorial function fac, i.e., fac = fac,,.

Another important observation is that given a correct implementation fac of the factorial function,
FAC fac returns another correct implementation of the factorial function, That is, if fac is a correct im-
plementation of the factorial function,

An.if eq n 0 then 1 else mult n (fac (pred n))

is also a correct implementation of the factorial function. Since the two functions are essentially identical
in that both return the same result for any argument, we may let fac = FAC fac. If we substitute fac,, for
fac in the equation, we obtain fac,, = fac,,+; which also makes sense because w < w + 1 by the definition
of + and w + 1 < w by the definition of w (which is greater than any natural number including w + 1).

Now it seems that FAC contains all necessary information to derive fac = fac,, = FAC fac, but exactly
how? It turns out that fac is obtained by applying the fixed point combinator fix to FAC, i.e., fac = fix FAC,
where fix is defined as follows:

fix = A\ FQx.ffa)M.FQx ffx))

May 9, 2023 45

Here we assume the call-by-value strategy; for the call-by-name strategy, we simplify Az. f f « into f f
and use the following fixed point combinator fixcgn:

fixcen = ML(ALE(f) M-F(ff))

To understand how the fixed point combinator fix works, we need to learn the concept of fixed point.
A fixed point of a function f is a value v such that v = f(v). For example, the fixed point of a function
f(z) =2 —xis 1 because 1 = f(1). As its name suggests, fix takes a function F' (which itself transforms
a function f into another function f’) and returns its fixed point. That is, fix F' is a fixed point of F:

fix F = F (fix F)

Informally the left expression transforms into the right expression via the following steps; we use a
symbol ~ to emphasize “informally” because the transformation is not completely justified by the g-
reduction alone:

fix ' = gg where g = Af. F (Az. f f x)
— (\LFOaff2)g
— F(Ar.ggz)
~ F(gg) because \x.g gx ~ g g
~ F (fix F) because fix F'+— g g

Now we can explain why fix FAC gives an implementation of the factorial function. By the nature of
the fixed point combinator fix, we have

fix FAC = FAC (fix FAC).

That is, fix FAC returns a function f satisfying f = FACf, which is precisely the property that fac needs
to satisfy! Therefore we take fix FAC as an equivalent of facE]

An alternative way to explain the behavior of fix FAC is as follows. Suppose that we wish to compute
fac n for an arbitrary natural number n. Since fix FAC is a fixed point of FAC, we have the following
equation:

fix FAC = FAC (fix FAC)
= FAC (FAC (fix FAC)) = FAC? (fix FAC)
FAC? (FAC (fix FAC)) = FAC? (fix FAC)
= FAC™ (FAC (fix FAC)) = FAC™™! (fix FAC)

The key observation is that FAC"*" (fix FAC) correctly computes the factorial of any natural number up
to n regardless of what fix FAC does (see Page . Since we have fix FAC = FAC™ " (fix FAC), it follows that
fix FAC correctly computes the factorial of an arbitrary natural number. That is, fix FAC does precisely
what fac does.

In summary, in order to encode a recursive function fun f z.e in the A-calculus, we first derive a
A-abstraction F' = Af. Az. e. Then fix F' automagically returns a function that exhibits the same behavior
as fun f z. e does.

Exercise 3.9. Under the call-by-value strategy, fac, or equivalently fix FAC, never terminates when
applied to any natural number! Why? (Hint: Exercise|3.4)

3.6 Deriving the fixed point combinator

This section explains how to derive the fixed point combinator. As its formal derivation is extremely
intricate, we will illustrate the key idea with an example. Students may choose to skip this section if
they wish.

2 The fixed point combinator fix actually yields what is called the least fixed point. That is, a function F' may have many fixed
points and fix returns the least one in the sense that the least one is the most informative one. The least fixed point is what we
usually expect.

46 May 9, 2023

Let us try to write a factorial function fac without using the fixed point combinator. Consider the
following function facyrong:

facwrong = An.if eqn 0 then 1 else multn (f (pred n))

facwrong 1s simply wrong because its body contains a reference to an unbound variable f. If, however, f
points to a correct implementation fac of the factorial function, facrong would also be a correct imple-
mentation. Since there is no way to use a free variable f in reducing an expression, we have to introduce
it in a A-abstraction anyway:

FAC = Af.An.ifeqn Othen 1 else multn (f (pred n))

FAC is definitely an improvement over facyrong, but it is not a function taking a natural number;
rather it takes a function f to return another function which refines f. More importantly, there seems
to be no way to make a recursive call with FAC because FAC calls only its argument f in its body and
never makes a recursive call to itself.

Then how do we make a recursive call with FAC? The problem at hand is that the body of FAC, which
needs to call fac, calls only its argument f. Our instinct, however, says that FAC contains all necessary
information to derive fac (i.e., FAC = fac) because its body resembles a typical implementation of the
factorial function. Thus we are led to try substituting FAC itself for f. That is, we make a call to FAC
using FAC itself as an argument — what a crazy idea it is!:

FACFAC = Mn.if eqn 0 then 1 else mult n (FAC (pred n))

Unfortunately FAC FAC returns a function which does not make sense: in its body, a call to FAC is
made with an argument pred n, but FAC expects not a natural number but a function. It is, however,
easy to fix the problem: if FAC FAC returns a correct implementation of the factorial function, we only
need to replace FAC in the body by FAC FAC. That is, what we want in the end is the following equation

FACFAC = Mn.if eqn 0then 1 else mult n (FAC FAC (pred n))

where FAC FAC serves as a correct implementation of the factorial function.

Let us change the definition of FAC so that it satisfies the above equation. All we need to do is to
replace a reference to f in its body by an application f f. Thus we obtain a new function Fac defined as
follows:

Fac = \f. \n.ifeqn 0then 1 else multn (f f (pred n))

It is easy to see that Fac satisfies the following equation:
FacFac = An.if eqn 0 then 1 else mult n (Fac Fac (pred n))
Since Fac Fac returns a correct implementation of the factorial function, we define fac as follows:
fac = FacFac

Now let us derive the fixed point combinator fix by rewriting fac in terms of fix (and FAC as it turns
out). Consider the body of Fac:

Fac = \f. \n.ifeqn 0then 1 else multn (f f (pred n))

The underlined expression is almost the body of a typical factorial function except for the application
f f. The following definition of Fac abstracts from the application f f by replacing it by a reference to
a single function g:

Fac = \f.(Ag.n.if eqn 0 then 1 else mult n (g (pred n))) (f f)
Af.FAC(f f)

Then fac is rewritten as follows:

fac = FacFac

(Af-FAC(f f)) (Af.FAC (f [))
E(M.F (f £) (M. F (f 1)) FAC
= fiXCBN FAC

May 9, 2023 47

In the case of the call-by-value strategy, fixcen FAC always diverges. A quick fix is to rewrite f f as
Ax. f f x and we obtain fix:

fac = FacFac
= AE(OMLF (f) (MF (f £))) FAC
= :\F ((éf. F(x. f fo)) M.F (A\x. f fx))) FAC
= fix FA

This is how to derive the fixed point combinator fix!

3.7 De Bruijn indexes

As X-abstractions are intended to denote mathematical functions with formal arguments, variable names
may seem to be an integral part of the syntax for the A-calculus. For example, it seems inevitable to in-
troduce a formal argument, say x, when defining an identity function. On the other hand, a specific
choice of a variable name does not affect the meaning of a A-abstraction. For example, Az. x and A\y.y
both denote the same identity function even though they bind different variable names as formal argu-
ments. In general, a-conversion enables us to rewrite any A-abstraction into another A-abstraction with
a different name for the bound variable. This observation suggests that there may be a way to represent
variables in the A-calculus without specific names. An example of such a nameless representation of
variables is de Bruijn indexes.

The basic idea behind de Bruijn indexes is to represent each variable by an integer value, called a
de Bruijn index, instead of a name. (De Bruijn indexes can be negative, but we consider non-negative
indexes only.) Roughly speaking, a de Bruijn index counts the number of A-binders, such as Az, Ay, and
Az, lying between a given variable and its corresponding (unique) A-binder. For example, x in the body
of A\z. z is assigned a de Bruijn index 0 because there is no intervening A-binder between x and Az. In
contrast, = in the body of Az. A\y.z y is assigned a de Bruin index 1 because there lies an intervening
A-binder \y between « and Az. Thus a de Bruijn index for a variable specifies the relative position of its
corresponding A-binder. This, in turn, implies that the same variable can be assigned different de Bruijn
indexes depending on its position. For example, in Az. z (Ay. x y), the first occurrence of x is assigned 0
whereas the second occurrence is assigned 1 because of the A-binder Ay.

Since all variables are now represented by integer values, there is no need to explicitly introduce
variables in A-abstractions. In fact, it is impossible because the same variable can be assigned different
de Bruijn indexes. Thus, expressions with de Bruijn indexes, or de Bruijn expressions, are inductively
defined as follows:

n|AM|MM
0|1|2|...

de Bruijn expression M
de Bruijn index n

For de Bruijn expressions, we use metavariables M and N; for de Bruijn indexes, we use metavariables
n, m, and 1.

We write e =¢g M to mean that an ordinary expression e is converted to a de Bruijn expression M.
Sometimes it suffices to literally count the number of A-binders lying between each variable and its
corresponding A-binder, as in all the examples given above:

A\X. T =dB A0
Ar.Ay.zy =gg AA10
Ar.x (Ay.zy) =4 A.0(A.10)

In general, however, converting an ordinary expression e into a de Bruijn expression requires us to
interpret e as a tree-like structure rather than a linear structure. As an example, consider Az. (z (Ay.z y)) (Az. x 2).
Literally counting the number of A-binders results in a de Bruijn expression A. (0 (A.10)) (A.20), in
which the last occurrence of z is assigned a (wrong) de Bruijn index 2 because of Ay and Az. In-
tuitively, however, the last occurrence of x must be assigned a de Bruijn index 1 because its corre-
sponding A-binder can be located irrespective of the A-binder Ay. Thus, a proper way to convert an
expression e to a de Bruijn expression is to count the number of A-binders found along the way from
each variable to its corresponding A-binder in the tree-like representation of e. For example, we have

Az (z (Ay.2y)) (Az.2x 2) =¢g A. (0 (A.10)) (A.10) asillustrated below:

48 May 9, 2023

3.7.1 Substitution

In order to exploit de Bruijn indexes in implementing the operational semantics of the A-calculus, we
need a definition of substitution for de Bruijn expressions, from which a definition of S-reduction can
be derived. We wish to define oo (M, V) such that the following relationship holds:

Ar.e) e’ — [€'/x]e
=dB =dB
AMM)N — ao(M,N)

That is, applying A. M to N, or substituting N for the variable bound in A. M, results in o (M, N). (The
meaning of the subscript 0 in o (M, N) is explained later.)

Instead of beginning with a complete definition of o¢(M, N), let us refine it through a series of
examples. Consider the following example in which the redex is underlined:

Ar. dy.(Az.zy 2) Aw.w) — Az dy.zy Aw. w)

=4B =dB
A A (A210)(A.0) — AA10(X0)

We observe that 0, which corresponds to z bound in the A-abstraction Az. z y z, is replaced by the argu-
ment A. 0. The other indexes 1 and 2 are decremented by one because the A-binder Az disappears. These
two observations lead to the following partial definition of oo (M, N):

O'Q(Ml MQ,N) = Uo(Ml,N) Uo(M27N)
UO(OvN) = N
oo(m,N) = m-1 ifm>0

To see how the remaining case og(A. M, N) is defined, consider another example in which the redex
is underlined:
Az Ay (Az. Q. zy zw)) Aw.w) = Az Ay Qu.z y Aw. w) u)

=dB =dB
A (A (A.3210)) (1.0) — A (A21(X.0)0)

We observe that unlike in the first example, 0 remains intact because it corresponds to u bound in
Au.z y z u, while 1 corresponds to z and is thus replaced by A.0. The reason why 1 is now replaced
by A.0 is that in general, a de Bruijn index m outside A\. M points to the same variable as m + 1 inside
A. M, ie., within M. This observation leads to an equation oo(X. M, N) = A. 01 (M, N) where o1 (M, N)
is defined as follows:

o1(My My, N) = o01(M1,N)o01(Ma,N)
o1(0,N) = 0
(71(1 N) = N
oi(m,N) = m-—1 ifm>1

In the two examples above, we see that the subscript n in ¢, (M, N) serves as a “boundary” index:
m remains intact if m < n, m is replaced by N if m = n, and m is decremented by one if m > n.

May 9, 2023 49

Alternatively n in o, (M, N) may be read as the number of A-binders enclosing M as illustrated below:
oo(A A - A M N) = A --- A o, (M,N)
—r —

The following definition of o, (M, N) uses n as a boundary index and also generalizes the relationship
between og(A. M, N) and A. o1 (M, N):

O’n(Ml MQ,N) = (Tn(Ml,N) CTn(MQ,N)
o\ M,N) = Mopsr(M,N)
on(my,N) = m ifm<n
on(n,N) = N
on(m,N) = m-—1 ifm>n

The following example combines the two examples given above:

Az Ay. Az (Au.zy zu) (zy 2) Qw.w) — Az Ay Au.zy Qw.w) w) (zy Aw. w))

AA (N (A3 251doB) (210)) (A.0) - AN (N21 (A.ES)B 0) (10 (\.0))

The use of de Bruijn indexes obviates the need for a-conversion because variable names never clash.
Put simply, there is no need to rename bound variables to avoid variable captures because variables
have no names anyway.

3.7.2 Shifting

Although the previous definition of o, (M, N) is guaranteed to work if IV is closed, it may not work if
N represents an expression with free variables. To be specific, the equation o,,(n, N) = N ceases to hold
if n > 0 and NV represents an expression with free variables. Consider the following example in which
the redex is underlined:

Az Ay, (Az. (A 2) 2) Qw.zyw) — Az dy. (Auw dw.z yw) (Aw.z y w)

=dB =dB
A A (A (A1)0) (A.210) > A A (AA320)(A210)

The previous definition of o, (M, N) yields a wrong result because o1 (1, A.2 1 0) yields A.2 1 0 instead
of A.320:

A (A1) 0)(A210) = oo((A\1)0,X.210)
= 00(A1,1.210)00(0,A.210)
= (Ao1(1,A.210))00(0,A.210)
= (AXN210)(A\.210)

4 (AA320)(\210)

To see why o, (n, N) = N fails to hold in general, recall that the subscript n in ¢,,(n, N) denotes the
number of A-binders enclosing the de Bruijn index n:

oA A - A, N) = LA A op(n, N)

n n

Therefore all de Bruijn indexes in N corresponding to free variables must be shifted by n after the
substitution so that they correctly skip those n A-binders enclosing the de Bruijn index n. For example,

we have:
go(A N - A n,m) = A A op(n,m) = A - Aom+n
_— - -

n n n
(Here m + n is a single de Bruijn index adding m and n, not a composite de Bruijn index expression
consisting of m, n, and +.)
Let us write 7" (N) for shifting by n all de Bruijn indexes in N corresponding to free variables. Now
we use o, (n, N) = 7"(N) instead of o,,(n, N) = N. A partial definition of 7" (N) is given as follows:

Tn(Nl Ng) = Tn(Nl) Tn(NQ)
T™(m) = m+n

50 May 9, 2023

The remaining case 7"(A. N), however, cannot be defined inductively in terms of 7 (V), for example,
like 7(A. N) = A.7"(N). The reason is that within N, not every de Bruijn index corresponds to a free
variable: 0 finds its corresponding A-binder in A. N and thus must remain intact.

This observation suggests that we need to maintain another “boundary” index (similar to the bound-
ary index n in 0,,(M, N)) in order to decide whether a given de Bruijn index corresponds to a free vari-
able or not. For example, if the boundary index for A. N starts at 0, it increments to 1 within N. Thus
we are led to use a general form 7;*(N) for shifting by n all de Bruijn indexes in IV corresponding to free
variables where a de Bruijn index m in N such that m < i does not count as a free variable. Formally

7I*(N) is defined as follows:

(N1 N2) = 7'(N) 7' (N2)
'(AN) = X718 (N)
"(m) = m+n ifm>i
" (m) = m ifm<i

Un(Ml MQ,N) = O’n(Ml,N) O'n(M27N)
on(A.M,N) = Xopt1(M,N)
on(m,N) = m ifm<n
on(n, N) = 75(N)
on(m,N) = m-—1 ifm>n

Now (A. (A.1) 0) (A.210) from the earlier example reduces correctly:

(A (A1)0) (A\.210) — 0o((\.1)0,A.210)
= 09(A.1,1.210)00(0,).210)
= (Ao1(1,1.210)) 09(0,1.210)
(A 73(A.210)) 79(\.210)
A ATH210) A 72(210)
= (AXE2+1)(1+1)0) (A (240)(1+0)0)
(AX.320)(A.210)

When converting an ordinary expression e with free variables g, z1, - - - , 2, into a de Bruijn expres-
sion, we may convert Azg. Azi. - - - Azy. e instead, which effectively assigns de Bruijn indexes 0,1,--- ,n
to o, 1, -+, xp, respectively. Then we can think of reducing e as reducing Azg. Az1. - - - Azy,. e where
the n A-binders are all ignored. In this way, we can exploit de Bruijn indexes in reducing expressions
with free variables (or global variables).

3.8 Exercises

Exercise 3.10. We wish to develop a weird reduction strategy for the A-calculus:
e Given an application e; e3, we first reduce e;.
o After reducing e; to a value, we reduce e;.
e When e; reduces to a A-abstraction, we apply the S-reduction.
Give the rules for the reduction judgment e — ¢’ under the weird reduction strategy.

Exercise 3.11. In a reduction sequence judgment e —* ¢/, we use —* for the reflexive and transitive
closure of — . Thatis, e —»* ¢’ holdsife — e; + -+ +— ¢, = ¢’ where n > 0. Formally we use the
following inductive definition:

e—~e e'—*e

Re Trans
i

e—*e

May 9, 2023 51

We would expect that e —* ¢’ and ¢’ —* ¢’ together imply e —* ¢” because we obtain a proof of

e —* ¢’ simply by concatenating e — e1 +— --- — e, =€ and e’ — e = - e, =€

erver s e, =€ el el =

Give a proof of this transitivity property of —*: if e —»* €’ and ¢’ —* €”, then e —* ¢”. To which
judgment of e —* ¢’ and ¢’ —* ¢’ do we have to apply rule induction?

Exercise 3.12. Define a function double = Afi. - -- for doubling a given natural number encoded as a

—

Church numeral. Specifically double 7 returns 2 * n.
]ix\ercise 3.13. Define an operation halve for halving a given natural number. Specifically halve 7 returns
n/2:

e halve 2 k returns k.

e halve (2 wk+ 1) returns k.

You may use pair, fst, and snd without expanding them into their definitions. You may also use zero for
a natural number zero and succ for finding the successor to a given natural number:

zero = 0 = M. z.x
succ = An.Af. A z.n f (f x)

52 May 9, 2023

Chapter 4

Simply typed A-calculus

This chapter presents the simply typed A-calculus, an extension of the A-calculus with types. Since the
A-calculus in the previous chapter does not use types, we refer to it as the untyped A-calculus so that we
can differentiate it from the simply typed A-calculus.

Unlike the untyped A-calculus in which base types (such as boolean and integers) are simulated with
A-abstractions, the simply typed A-calculus assumes a fixed set of base types with primitive constructs.
For example, we may choose to include a base type bool with boolean constants true and false and a
conditional construct if e then e else es. Thus the simply typed A-calculus may be thought of as not
just a core calculus for investigating the expressive power but indeed a subset of a functional language.
Then any expression in the simply typed A-calculus can be literally translated in a functional language
such as SML.

As with the untyped A-calculus, we first formulate the abstract syntax and operational semantics
of the simply typed A-calculus. The difference in the operational semantics is nominal because types
play no role in reducing expressions. A major change arises from the introduction of a type system, a
collection of judgments and inference rules for assigning types to expressions. The type assigned to an
expression determines the form of the value to which it evaluates. For example, an expression of type
bool may evaluate to either true or false, but nothing else.

The focus of the present chapter is on type safety, the most basic property of a type system that an
expression with a valid type, or a well-typed expression, cannot go wrong at runtime. Since an expression
is assigned a type at compile time and type safety ensures that a well-typed expression is well-behaved
at runtime, we do not need the trial and error method (of running a program to locate the source of bugs
in it) in order to detect fatal bugs such as adding memory addresses, subtracting an integer from a string,
using an integer as a destination address in a function invocation, and so forth. Since it is often these
simple (and stupid) bugs that cause considerable delay in software development, type safety offers a
huge advantage over those programming languages without type systems or with type systems that
fail to support type safety. Type safety is also the reason behind the phenomenon that programs that
successfully compile run correctly in many cases.

Every extension to the simply typed A-calculus discussed in this course will preserve type safety.
We definitely do not want to squander our time developing a programming language as uncivilized as
C!

4.1 Abstract syntax

The abstract syntax for the simply typed A-calculus is given as follows:

type A = P|A—A
base type P == bool
expression e = wz|ix:Aelee]
true | false | if e then e else e
value v u= Ax:A.e]true| false

53

A type is either a base type P or a function type A— A’. A base type is a type whose primitive con-
structs are given as part of the definition. Here we use a boolean type bool as a base type with which
three primitive constructs are associated: boolean constants true and false and a conditional construct
if e then e; else e5. A function type A— A’ describes those functions taking an argument of type A and
returning a result of type A’. We use metavariables A, B, C for types.

It is important that the simply typed A-calculus does not stipulate specific base types. In other
words, the simply typed A-calculus is just a framework for functional languages whose type system is
extensible with additional base types. For example, the definition above considers bool as the only base
type, but it should also be clear how to extend the definition with another base type (e.g., an integer type
int with integer constants and arithmetic operators). On the other hand, the simply typed A-calculus
must have at least one base type. Otherwise the set P of base types is empty, which in turn makes the
set A of types empty. Then we would never be able to create an expression with a valid type!

As in the untyped A-calculus, expressions include variables, A-abstractions or functions, and appli-
cations. A A-abstraction Az : A. e now explicitly specifies the type A of its formal argument . If Az: A. e
is applied to an expression of a different type A’ (i.e., A # A’), the application does not typecheck
and thus has no type, as will be seen in Section We say that variable z is bound to type A in a
A-abstraction Az: A. e, or that a A-abstraction Az : A. e binds variable « to type A.

4.2 Operational semantics

The development of the operational semantics of the simply typed A-calculus is analogous to the case
for the untyped A-calculus: we define a mapping FV(e) to calculate the set of free variables in e, a
capture-avoiding substitution [¢’/x]e, and a reduction judgment e — ¢’ with reduction rules. Since the
simply typed A-calculus is no different from the untyped A-calculus except for its use of a type system,
its operational semantics reverts to the operational semantics of the untyped A-calculus if we ignore
types in expressions.

A mapping FV(e) is defined as follows:

V@) = {x}
FV(Ax:A.e) = FV(e) —{x}
FV(eie2) = FV(ie1) U FV(es)
FV(true) = @
FV(false) = o
FV(if ethenej elsees) = FV(e)U FV(e1)U FV(e2)

As in the untyped A-calculus, we say that an expression is closed if it contains no free variables.
A capture-avoiding substitution [¢’/x]e is defined as follows:

[e'/z]le = €
[e'/zly =y ifx#y
['/z] \x:A.e = Ax:A.e
[€'/x] y:A.e = Ay:A.[e//x]e if x £y,y & FV(e)
[¢'/z)(er ea) = [¢'/]er [¢'/x]es
[e//x]true = true
[€//z]false = false
[¢'/z]if ethen ey elseey = if [¢//x]e then [e/x]e; else [¢’/z]eq

When a variable capture occursin [¢//z] Ay : A. e, we rename the bound variable y using the a-equivalence
relation =,. We omit the definition of =, because it requires no further consideration than the defini-
tion given in Chapter

54 May 9, 2023

As with the untyped A-calculus, different reduction strategies yield different reduction rules for the
reduction judgment e — €’. We choose the call-by-value strategy which lends itself well to extend-
ing the simply typed A-calculus with computational effects such as mutable references, exceptions, and
continuations (to be discussed in subsequent chapters). Thus we use the following reduction rules:

e1 — €} I es — €h A 4
————— Lam T
e1 ex > €] eg (Ax:A.e)es— (Ax:A.e) e v (Az:A.e)v— [v/x]e bp
ers e
if e then e; else e5 — if €/ then e; else ey
- 1 - 1
if true then e; else ey — € Ftrue if false then e; else e5 — €3 Ftase

The rules Lam, Arg, and App are exactly the same as in the untyped A-calculus except that we use a A-
abstraction of the form Az: A.e. (To implement the call-by-name strategy, we remove the rule Arg and

rewrite the rule App as (\z:A.¢) ¢/ s [¢//a]e App .) The three rules If, If,., and If¢,,. combined
together specify how to reduce a conditional construct if e then e; else es:

e We reduce e to either true or false.
e If e reduces to true, we choose the then branch and begin to reduce e;.
e If e reduces to false, we choose the else branch and begin to reduce e;.

As before, we write —* for the reflexive and transitive closure of — . We say that e evaluates to v if
e —* v holds.

4.3 Type system

The goal of this section is to develop a system of inference rules for assigning types to expressions in
the simply typed A-calculus. We use a judgment called a typing judgment, and refer to inference rules
deducing a typing judgment as typing rules. The resultant system is called the type system of the simply
typed A-calculus.

To figure out the right form for the typing judgment, let us consider an identity function id =
Az:A. z. Intuitively id has a function type A— A because it takes an argument of type A and returns a
result of the same type. Then how do we determine, or “infer,” the type of id? Since id is a A-abstraction
with an argument of type A, all we need is the type of its body. It is easy to see, however, that its body
cannot be considered in isolation: without any assumption on the type of its argument x, we cannot
infer the type of its body z.

The example of id suggests that it is inevitable to use assumptions on types of variables in typing
judgments. Thus we are led to introduce a typing context to denote an unordered set of assumptions on
types of variables; we use a type binding x : A to mean that variable x assumes type A:

typing context r == |INz:A4
e - denotes an empty typing context and is our notation for an empty set @.

e I',z : A augments I with a type binding = : A and is our notation for I' U {x : A}. We abbreviate
& : Aasz : Ato denote a singleton typing context {x : A}.

e We use the notation for typing contexts in a flexible way. For example, ',z : A,I" denotesT" U {x : A} UT",
and I', IV denotes T U T".

For the sake of simplicity, we assume that variables in a typing context are all distinct. Thatis, I',z : A
is not defined if I" contains another type binding of the form x : A’, or simply if z : A" € T.
The type system uses the following form of typing judgment:

May 9, 2023 55

'ke:A & expression e has type A under typing context I

I' F e : A means that if we use each type binding = : AinI" as an assumption, we can show that expres-
sion e has type A. An easy way to understand the role of I is by thinking of it as a set of type bindings
for free variables in e, although I' may also contain type bindings for those variables not found in e.
For example, a closed expression e of type A needs a typing judgment - - ¢ : A with an empty typing
context (because it contains no free variables), whereas an expression ¢’ with a free variable x needs a
typing judgment I' - ¢’ : A’ where IT" contains at least a type binding z : B for some type B

With the above interpretation of typing judgments, we can now explain the typing rules for the
simply typed A-calculus:

v:AeT Iz:Ale: B | The:A—>B Phe:A o
TFz:A " TrFl:Ac:A>B I'tee: B
T Eal I'te:bool T'key: A FI—eQ:AIf
T F true : bool "¢ T F false : bool ' 2°¢ I'kifethenejelseey: A

e The rule Var means that a type binding in a typing context is an assumption. Alternatively we
may rewrite the rule as follows:

z:Al'Fz: A Var

o The rule —Isays that if ¢ has type B under the assumption that x has type A, then Az : A. e has type
A— B. If we read the rule —| from the premise to the conclusion (i.e., top-down), we “introduce” a
function type A— B from the judgment in the premise, which is the reason why it is called the “—
Introduction rule.” Note that if I" already contains a type binding for variable x (i.e., z : A’ € T),
we rename z to a fresh variable by a-conversion. Hence we may assume without loss of generality
that variable clashes never occur in the rule —l.

e The rule —E says that if e has type A— B and ¢’ has type A, then e €’ has type B. If we read the
rule —E from the premise to the conclusion, we “eliminate” a function type A— B to produce an
expression of a smaller type B, which is the reason why it is called the “— Elimination rule.”

e The rules True and False assign base type bool to boolean constants true and false. Note that typing
context I is not used because there is no free variable in true and false.

e Therule If says that if e has type bool and both e; and e, have the same type A, then if e then e, else ey
has type A.

A derivation tree for a typing judgment is called a typing derivation. Here are a few examples of valid
typing derivations. The first example infers the type of an identify function (where we use no premise
in the rule Var):

Iz:AFz: A Var |
T\ Az:A—A

Since Axz: A. x is closed, we may use an empty typing context - for I':

rz:AFz: A Var
‘FXr:Ax: A=A

—l

1A typing judgment T' - e : A is an example of a hypothetical judgment which deduces a “judgment” e : A using each “judg-
ment” z; : A; in I as a hypothesis. From this point of view, the turnstile symbol |- is just a syntactic device which plays no
semantic role at all. Although the notion of hypothetical judgment is of great significance in the study of logic, I do not find it
particularly useful in helping students to understand the type system of the simply typed A-calculus.

56 May 9, 2023

In the second example below, we abbreviate I, z : bool,y; : A,y2 : AasI”. Note also that bool = A — A — A
is equivalent to bool — (A — (A — A)) because — is right-associative:

x : bool € TV y:Ael’ yo: Ael”
T'Fxz:bool "o TFy:A ' Thy:A

Iz :bool,y; : A,y : A if x then yy else ys : A

Iz :bool,y; : AF Ays: A.if x thenyjelseys : A=A

'z :bool k- Ay : A Ays: A.if ztheny elseys : A A— A
T'F Ax:bool. \yy : A. Ay : A.if x then y; else y5 : bool > A—A— A -

Var
If

—l

—l

The third example infers the type of a function composing two functions f and g where we abbreviate
If:A—»B,g: B—>C,z:AasT":

f:A-Bel’ rx:Ael’
, 7 ar —; Var
g:B—)CEl—‘V I"rf:A—>B IMFz: A E
T'Fg:Bo>C o FEfeiB -
T.f:A5B,g:B=Ca:AFg(fz):C |
F,f:A%B,g:B—>C’|—)\x:A.g(ch):A—>C_> |
If:A-»BFXg:B—=C. Ax:A.g(fz): (B=>C)—=(A—C) -

FFAf:A—=-B.Ag:B—=C.Ax:A.g(fz): (A—=>B)=>(B—>C)—=(A—C) -

We close this section by proving two properties of typing judgments: permutation and weakening. The
permutation property reflects the assumption that a typing context I' is an unordered set, which means
that two typing contexts are identified up to permutation. For example, I', z : A,y : B is identified with
I'y:B,z: A withz: A T,y: B, withz: A y: B,T, and so on. The weakening property says that if
we can prove that expression e has type A under typing context I', we can also prove it under another
typing context I'" augmenting I with a new type binding = : A (because we can just ignore the new type
binding). These properties are called structural properties of typing judgments because they deal with
the structure of typing judgments rather than their derivations

Proposition 4.1 (Permutation). IfT'F e : Aand I is a permutation of T, then I F e : A.
Proof. By rule induction on the judgmentI' e : A. O
Proposition 4.2 (Weakening). IfT'Fe: C, thenT',x : A e: C.

Proof. By rule induction on the judgmentI' - e : C'. We show three cases. The remaining cases are simi-
lar to the case for the rule —E.

y:Cel
Case m Var where e = y:
y:Celx: A fromy:C el
Tez:AkFy: C by the rule Var

. /.
Case T l_F)’\Zy/:'CCf;, 6016;2) G —| wheree = \y:C;.¢’ and C = C; — Cs:
This is the case where I' - e : C' is proven by applying the rule —I. In other words, the last inference
rule applied in the proof of I' - e : C' is the rule —I. Then e must have the form Ay :C}. ¢’ for some type
C = €y — Cy; otherwise the rule —| cannot be applied. Then the premise is uniquely determined as

Dy:CiFe:C.

Iy:Ci,x:AFe :Cy by induction hypothesis
Ix:Ay:CiFe:Cy by Proposition 41|
Tyo: AR My:Cr.e : C1—Cy by the rule —l

2 There is no strict rule on whether a property should be called a theorem or a proposition, although a general rule of thumb is
that a property relatively easy to prove is called a proposition. A property that is of great significance is usually called a theorem.
(For example, it is Fermat’s last theorem rather than Fermat’s last proposition.) A lemma is a property proven for facilitating
proofs of other theorems, propositions, or lemmas.

May 9, 2023 57

C FF615B4)C FFGQSB E h . .
ase Fl—el 6220 — where € = €1 ea:
This is the case where I' - e : C' is proven by applying the rule —E. Then e must have the form e; e; and

the two premises are uniquely determined for some type B; otherwise the rule —E cannot be applied.

Iz:AkFe : B=C by induction hypothesisonI' e, : B—C
Ix:AFe;: B by induction hypothesison I' - e; : B
I'x:AFejey: C by the rule —E

O

As typing contexts are always assumed to be unordered sets, we implicitly use the permutation
property in proofs. For example, we may deduceI',z : AF A\y:Cy.€' : C1 — Cy directly from T,y : Ci,z: Ak e : Cy
without an intermediate step of permutating I',y : C;,z : Ainto ',z : A,y : C}.

4.4 Type safety

In order to determine properties of expressions, we have developed two systems for the simply typed
A-calculus: operational semantics and type system. The operational semantics enables us to find out
dynamic properties, namely values, associated with expressions. Values are dynamic properties in the
sense that they can be determined only at runtime in general. For this reason, an operational semantics
is also called a dynamic semantics. In contrast, the type system enables us to find out static properties,
namely types, of expressions. Types are static properties in the sense that they are determined at com-
pile time and remain “static” at runtime. For this reason, a type system is also called a static semantics.

We have developed the type system independently of the operational semantics. Therefore there
remains a possibility that it does not respect the operational semantics, whether intentionally or unin-
tentionally. For example, it may assign different types to two expressions e and e’ such that e — ¢/,
which is unnatural because we do not anticipate a change in type when an expression reduces to an-
other expression. Or it may assign a valid type to a nonsensical expression, which is also unnatural
because we expect every expression of a valid type to be a valid program. Type safety, the most basic
property of a type system, connects the type system with the operational semantics by ensuring that it
lives in harmony with the operational semantics. It is often rephrased as “well-typed expressions cannot
go wrong.”

Type safety consists of two theorems: progress and type preservation. The progress theorem states that
a (closed) well-typed expression is not stuck: either it is a value or it reduces to another expression:

Theorem 4.3 (Progress). If - - e : A for some type A, then either e is a value or there exists €’ such that e — ¢'.

The type preservation theorem states that when a well-typed expression reduces, the resultant expres-
sion is also well-typed and has the same type; type preservation is also called subject reduction:

Theorem 4.4 (Type preservation). IfT'Fe: Aande— €', thenT €' : A.

Note that the progress theorem assumes an empty typing context (hence a closed well-typed expres-
sion €) whereas the type preservation theorem does not. It actually makes sense if we consider whether
a reduction judgment e — ¢’ is part of the conclusion or is given as an assumption. In the case of the
progress theorem, we are interested in whether e reduces to another expression or not, provided that it
is well-typed. Therefore we use an empty typing context to disallow free variables in e which may make
its reduction impossible. If we allowed any typing context I, the progress theorem would be downright
false, as evidenced by a simple counterexample e = z which is not a value and is irreducible. In the
case of the type preservation theorem, we begin with an assumption e — ¢’. Then there is no reason not
to allow free variables in e because we already know that it reduces to another expression ¢’. Thus we
use a metavariable I' (ranging over all typing contexts) instead of an empty typing context.

Combined together, the two theorems guarantee that a (closed) well-typed expression never reduces
to a stuck expression: either it is a value or it reduces to another well-typed expressions. Consider a
well-typed expression e such that - - e : A for some type A. If e is already a value, there is no need to
reduce it (and hence it is not stuck). If not, the progress theorem ensures that there exists an expression
e/ such that e — ¢/, which is also a well-typed expression of the same type A by the type preservation
theorem.

58 May 9, 2023

Below we prove the two theorems using rule induction. It turns out that a direct proof attempt
by rule induction fails, and thus we need a couple of lemmas. These lemmas (canonical forms and
substitution) are so prevalent in programming language theory that their names are worth memorizing.

4.4.1 Proof of progress

The proof of Theorem[4.3]is relatively straightforward: the theorem is written in the form “If .J holds, then
P(J) holds,” and we apply rule induction to the judgment J, which is a typing judgment - - e : A. So we
begin with an assumption - I- e : A. If e happens to be a value, the P(J) part holds trivially because the
judgment “e is a value” holds. Thus we make a stronger assumption - - e : A with e not being a value.
Then we analyze the structure of the proof of - I e : A, which gives three cases to consider:

r:Ac€- ‘Fe1:A—B Fey: A -Fep:bool -Fe:A -Fex: A

~|—917:AVar -Fejey: B —E -Fif ey thenej elseeqy : A If

The case Var is impossible because z : A cannot be a member of an empty typing context -. That is,
the premise = : A € - is never satisfied. So we are left with the two cases —E and If. Let us analyze
the case —E in depth. By the principle of rule induction, the induction hypothesis on the first premise
- e : A— B opens two possibilities:

1. ey is a value.
2. e; is not a value and reduces to another expression €}, i.e., e; — €.
If the second possibility is the case, we have found an expression to which e; e, reduces, namely e} es:

el — el
————— Lam
€1 eg — €] €2

Now what if the first possibility is the case? Since e; has type A— B, it is likely to be a A-abstraction,
in which case the induction hypothesis on the second premise - I- e5 : A opens another two possibilities
and we use either the rule Arg or the rule App to show the progress property. Unfortunately we do not
have a formal proof that e; is indeed a A-abstraction; we know only that e; has type A— B under an
empty typing context. Our instinct, however, says that e; must be a A-abstraction because it has type
A— B. The following lemma formalizes our instinct on the correct, or “canonical,” form of a well-typed
value:

Lemma 4.5 (Canonical forms).
If v is a value of type bool, then v is either true or false.
If v is a value of type A— B, then v is a A-abstraction Az: A.e.

Proof. By case analysis of v. (Not every proof uses rule induction!)

Suppose that v is a value of type bool. The only typing rules that assign a boolean type to a given
value are True and False. Therefore v is a boolean constant true or false. Note that the rules Var, —E, and
If may assign a boolean type, but never to a value.

Suppose that v is a value of type A— B. The only typing rule that assigns a function type to a given
value is —I. Therefore v must be a A-abstraction of the form Az : A. e (which binds variable x to type A).
Note that the rules Var, —E, and If may assign a function type, but not to a value. O

Now we are ready to prove the progress theorem:

Proof of Theorem By rule induction on the judgment - ¢ : A.
If e is already a value, we need no further consideration. Therefore we assume that e is not a value.
Then there are three cases to consider.

:Ae-
Case xl_xieA Var where ¢ = z:
impossible fromz: A¢&-
-Fer:B—A -Fey:B
Case T eres A —E wheree =¢; e3:

May 9, 2023 59

ey is a value or there exists €/ such that e; — €] by induction hypothesison - e, : B— A
es is a value or there exists €5, such that e; — €5 by induction hypothesison - ey : B

Subcase: e; is a value and e5 is a value

e = Mz:B.¢} by Lemma [4.5]
€9 = Uy because e, is a value
e1 ex — [va/x]e} by the rule App

We let €’ = [v2/x]e].

Subcase: e; is a value and there exists ¢/, such that ex — €},

e1 = \r:B.¢} by Lemma [4.5]
e1 ea — (Ax:B.€)) €} by the rule Arg

Welete' = (Az:B.¢€}) éb.

Subcase: there exists €} such that e; — €]
e1 ex > €} eg by the rule Lam
We lete' = ¢ es.

-Fep:bool -Fe:A -Fey: A
-Fif ey thenej elseeqy : A
ey is either a value or there exists ¢, such that e, — ¢}, by induction hypothesis on - F- ¢, : bool

Case If where e = if ¢, then e else es:

Subcase: ¢, is a value

ey is either true or false by Lemma[4.5]
if e, then e else e; — e or if e, then e else ex — €3 by the rule If . or If t,sc

Welete' = e ore’ = es.

Subcase: there exists e; such that e; — ¢,
if e, then ey else e — if €} then e; else ey by the rule If
We let ¢/ = if €] then ey else es. O

4.4.2 Proof of type preservation

The proof of Theorem [4.4]is not as straightforward as the proof of Theorem 4.3 because the If part in
the theorem contains two judgments: I'-e: A and e — ¢’. (We have seen a similar case in the proof
of Lemma 2.7]) Therefore we need to decide to which judgment of I' ¢ : A and e — ¢’ we apply rule
induction. It turns out that the type preservation theorem is a special case in which we may apply rule
induction to either judgment!

Suppose that we choose to apply rule induction to e — ¢’. Since there are six reduction rules, we
need to consider (at least) six cases. The question now is: which case do we do consider first?

As a general rule of thumb, if you are proving a property that is expected to hold, the most difficult
case should be the first to consider. The rationale is that eventually you have to consider the most
difficult case anyway, and by considering it at an early stage of the proof, you may find a flaw in the
system or identify auxiliary lemmas required for the proof. Even if you discover a flaw in the system
from the analysis of the most difficult case, you at least avoid considering easy cases more than once.
Conversely, if you are trying to locate flaws in the system by proving a property that is not expected to
hold, the easiest case should be the first to consider. The rationale is that the cheapest way to locate a
flaw is to consider the easiest case in which the flaw manifests itself (although it is not as convincing
as the previous rationale). The most difficult case may not even shed any light on hidden flaws in the
system, thereby wasting your efforts to analyze it.

Since we wish to prove the type preservation theorem rather than refute it, we consider the most
difficult case of e — ¢’ first. Intuitively the most difficult case is when e — ¢’ is proven by applying the
rule App, since the substitution in it may transform an application e into a completely different form of
expression, for example, a conditional construct. (The rules If,, . and If¢,. are the easiest cases because
they have no premise and ¢’ is a subexpression of e.)

So let us consider the most difficult case in which (Az: A.e) v — [v/z]e holds. Our goal is to use an

60 May 9, 2023

assumption I' - (Az: A.e) v : C to prove I' F [v/x]e : C. The typing judgment I' F (Az: A.e) v : C must
have the following derivation tree:

Iz:AFe: C

I'FXx:Ae: A=C I'tv: A
I'(A\z:Ae)v:C

—l

—E

Therefore our new goal is to use two assumptions I,z : A-e:CandI'-v: Atoprove 'l [v/z]e: C.
The substitution lemma below generalizes the problem:

Lemma 4.6 (Substitution). IfT'Fe: Aand T,z : Ar-¢e' : C, thenT + [e/z]e’ : C.

The substitution lemma is similar to the type preservation theorem in that the If part contains two
judgments. Unlike the type preservation theorem, however, we need to take great care in applying rule
induction because picking up a wrong judgment makes it impossible to complete the proof!

Exercise 4.7. To which judgment do you think we have to apply rule induction in the proof of Lemma[4.6p
'te:Aorlz: At e : C? Why?

The key observation is that [e/z]e¢’ analyzes the structure of ¢/, not e. That is, [e/x]e’ searches for
every occurrence of variable x in ¢’ only to replace it by e, and thus does not even need to know the
structure of e. Thus the right judgment for applying rule inductionis ',z : AF¢€’ : C.

Proof of Lemma By rule induction on the judgmentI',z : AF €’ : C. Recall that variables in a typing
context are assumed to be all distinct. We show four cases. The first two deal with those cases where ¢’
is a variable. The remaining cases are similar to the case for the rule —E.

Case % Var wheree’ =yandy: C €T

This is the case where ¢’ is a variable y that is different from z. Since y # z, the premisey : C € ',z : A
implies the side conditiony : C € T'.

'ky:C fromy:C el
[e/x]y =y fromz # y
Ikle/zly:C

' wheree/’ = zand C = A:

Case T, z:AbFz: A Va
This is the case where €’ is the variable z.
'te:A assumption

Tkle/z]x: A le/z]x =e
Dyx:Ay:Cike":Cy , 9

Case T Ay Crd Or 0, —l where e’ = \y:Cy.e¢" and C = Cy — Ca:

Here we may assume without loss of generality that y is a fresh variable such that y ¢ FV(e) and

y # x. If y € FV(e) or y = x, we can always choose a different variable by applying an a-conversion to

Ay:Cy.e”.

L,y:CiFle/zle” : Cy by induction hypothesis
T Ay:Ch.le/z]e” : C1—Cy by the rule —l
le/z)Ay:Cr.e” = Ay:Ch. [e/x]e” fromy ¢ FV(e) andz # y

'k le/z]Ay:Cy.e¢” : C1—Cy
INz:AkFey: B—>C T,x:AFey: B

Case T2 Arcien:C —E wheree’ = e es:

I'tle/zle; : B—=C by induction hypothesison ',z : A-e; : B—C
I't[e/x]lez : B by induction hypothesison T,z : Ak ey : B
Tk le/x]ey [e/x]es : C by the rule —E
Tk le/z](e1 e2): C from [e/z](e1 e2) = [e/x]e1 [e/x]ez

O
At last, we are ready to prove the type preservation theorem. The proof proceeds by rule induction
on the judgment e — ¢'. It exploits the fact that there is only one typing rule for each form of expression.

May 9, 2023 61

For example, the only way to prove I' - ey ez : A is to apply the rule —E. Thus the type system is said
to be syntax-directed in that the syntactic form of expression e in a judgment I' - e : A decides, or directs,
the rule to be applied. Since the syntax-directedness of the type system decides a unique typing rule
R for deducing I' - e : A, the premises of the rule R may be assumed to hold whenever I I- ¢ : A holds.
For example, I' - e; e5 : A can be proven only by applying the rule —E, from which we may conclude
that the two premises I'-e; : B—A and I' - e : B hold for some type B. This is called the inversion
property which inverts the typing rule so that its conclusion justifies the use of its premises. We state the
inversion property as a separate lemma.

Lemma 4.8 (Inversion). Suppose'-¢: C.
Ife=ua,thenz :C €T
Ife=Xz:A.€, thenC=A—Band T,z : At ¢ : B for some type B.
Ife=-ej ey thenl'tFey : A->Cand T F ey : A for some type A.
If e = true, then C' = bool.
If e = false, then C = bool.
Ife =if ey then e else ey, then T' ke, : boolandT'e; : CandT'F ey : C.

Proof. By the syntax-directedness of the type system. A formal proof proceeds by rule induction on the
judgmentI'te: C. O

Proof of Theorem By rule induction on the judgment e — ¢'.

e1 — el
Case ——————— Lam
€1 €g > €] €2
I'kejex: A assumption
I'te;: B—Aand T+ ey : B for some type B by Lemma[4.§|
I'tel:B—=A by induction hypothesis on e; > €] withI'-e; : B— A
rEo 4 ¢ 'te):B—A They: B .
e es: rom Tr ey A —
eg > €
A
Case (Ax:B.¢€}) ea — (Ax:B.¢€}) € Y
'F(A\x:B.ef)es: A assumption
F'FXx:B.ef:B—AandT'Fey: B by Lemma [4.§|
I'ey:B by induction hypothesis on e; — e, withI'-e; : B
[k Og:Bele: A ¢ 'FXx:B.e¢f:B—A T'ke,:B .
(Az:B.e1) e : rom TF(\z:B.¢))eh:A -
A
Case (\z:B.¢|) v [v/z]e] bp
PH(Az:B.ej)v: A assumption
'FAz:B.¢f :B+Aand'tv: B by Lemma [4.§|
Iz:Brej:A by Lemmaf.8onT - Az:B.¢} : B— A
Ik [v/z]e} : A by applying Lemmaf.6tol'-v: Band ',z : B¢} : A
c ep > €]
ase if e, then ey else eg > if €] then e else ey
T'Hif ey thenejelsees : A assumption
T'tep:boolandT ey : Aand ey A by Lemma[4.§|
I't ¢} : bool by induction hypothesis on e;, — e; with T' - e;, : bool

I'ey:bool T'Fej: A T'hey: A it

T'Fif e th | cA f
" & then €1 €lse €2 rom I't-if) then ey else ey : A
1
Case if true then e; else es — €1 Firue
T'Fif truethenejelseey : A assumption
I'Ftrue:booland'Fe;: Aand ey : A by Lemma [4.§|

T'ke : A

62 May 9, 2023

I
Case if false then e else ey — e [tase
(Similar to the case for the rule If,,,.) O

4.5 Exercises

Exercise 4.9. Prove Theorem [4.4by rule induction on the judgment T' e : A.

Exercise 4.10. For the simply typed A-calculus considered in this chapter, prove the following structural
property. The property is called contraction because it enables us to contract x : A,z : A in a typing
context to z : A.

IfTl o Ajx: A e:C, thenT,x : Ate: C.

In your proof, you may assume that a typing context I' is an unordered set. That is, you may identify

typing contexts up to permutation. For example, I,z : A,y : B is identified with I,y : B,z : A. As is
already implied by the theorem, however, you may not assume that variables in a typing context are
all distinct. A typing context may even contain multiple bindings with different types for the same
variable. For example, I' = IV, 2 : A,z : B is a valid typing context even if A # B. (In this case, = can
have type A or type B, and thus typechecking is ambiguous. Still the type system is sound.)

May 9, 2023 63

64

May 9, 2023

Chapter 5

Extensions to the simply typed
A-calculus

This chapter presents three extensions to the simply typed A-calculus: product types, sum types, and the
fixed point construct. Product types account for pairs, tuples, records, and units in SML. Sum types are
sometimes (no pun intended!) called disjoint unions and can be thought of as special cases of datatypes
in SML. Like the fixed point combinator for the untyped A-calculus, the fixed point construct enables us to
encode recursive functions in the simply typed A-calculus. Unlike the fixed point combinator, however,
it is not syntactic sugar: it cannot be written as another expression and its addition strictly increases the
expressive power of the simply typed A-calculus.

5.1 Product types

The idea behind product types is that a value of a product type A; x A; contains a value of type A4,
and also a value of type As. In order to create an expression of type A; x A,, therefore, we need two
expressions: one of type A; and another of type A2; we use a pair (e1, ez) to pair up two expressions
e1 and ey;. Conversely, given an expression of type A; x Az, we may need to extract its individual
components. We use projections fst e and snd e to retrieve the first and the second component of e,
respectively.

- | (eye) | fste|snde

type A
expression e

As with function types, a typing rule for product types is either an introduction rule or an elimina-
tion rule. Since there are two kinds of projections, we need two elimination rules (x E; and x E):

F|—61:A1 F|—€21A2 <1 F|_€ZA1><A2 % F}—e:Aleg
Tk (e1,e2): Ay X Ay Tk fste: Ay ! Thrsnde: A4,

XE2

As for reduction rules, there are two alternative strategies which differ in the definition of values
of product types (just like there are two reduction strategies for function types). If we take an eager
approach, we do not regard (eq, e2) as a value; only if both e; and e, are values do we regard it as a
value, as stated in the following definition of values:

value v ou= - | (v,v)
Here the ellipsis - - - denotes the previous definition of values which is irrelevant to the present dis-

cussion of product types. Then the eager reduction strategy is specified by the following reduction
rules:

65

e1 — e Pui €9 > €l Puir!
ailr
(e1,€2) — (€}, €2) (vi,e2) = (vi,eh) * "

e e e e
———— Fst —F————— ' ————— 9nd
fst e > fst e’ fst (v1,v2) — V1 Fst snd e — snd €’ snd (v1,v9) — vy

Snd’

Alternatively we may take a lazy approach which regards (e, e3) as a value:
value v o= - | (e €)

The lazy reduction strategy reduces (e, e2) “lazily” in that it postpones the reduction of e; and e, until
the result is explicitly requested. It is specified by the following reduction rules:

e e , e e

- = - = = - !
fst e — fst e/ Fst fst (e1,e2) — €1 Fst snd e — snd e’ Snd snd (e1,e2) — €9 Snd

Exercise 5.1. Why is it a bad idea to reduce fst (eq, e2) to e; (and similarly for snd (e1, e2)) under the
eager reduction strategy?

In order to incorporate these reduction rules into the operational semantics, we extend the definition
of F'V(e) and [¢'/x]e accordingly:

FV((e1,e2)) = FV(er) U FV(ez) [€'/z](e1,e2) = ([¢'/x]er, [€'/x]es)
FV(fste) = FV(e) [€'/x]fste = fst[e//x]e
FV(snde) = FV(e) [¢//x]snde = snd[e'/z]e

5.2 General product types and unit type

Product types are easily generalized to n-ary cases A; xAax --- xA,. A tuple (e1,es, - ,e,) has a
general product type A; x Az x --- x A, if e; has type A; for 1 < i < n. A projection proj, e now uses an
index i to indicate which component to retrieve from e.

type A = o A xAox - XA,
expression e u= - | (e1 €2, ,en) | proj; e
Fl—ei:AZ—].SZSTL <1 FF62A1XA2X"'XA7L 1§’LSTL><E
T'F (e e, - ,en): AyxAgx -+ X Ay 'k proj; e : A; ‘

As in binary cases, eager and lazy reduction strategies are available for general product types. Below
we give the specification of the eager reduction strategy; the lazy reduction strategy is left as an exercise.

value v oun= e | (v1,v2,0 0, Up)
/
€; — e;)
S Pair
(017U27"' sy Vi—1,€4y " " 76n) — (/0171}27"' ,Vi—1,€5, 76n)
4 1<4<
e—e . S1=n .
————— Proj - Proj’
proj,; e — proj; e proj; (v1,va, -+« ,vy) — v;

Of particular importance is the special case n = 0 in a general product type A; x Ay x --- xA,,. To
better understand the ramifications of setting n to 0, let us interpret the rules x| and xE; as follows:

66 May 9, 2023

e The rule x| says that in order to build a value of type A; x Ay x --- x A,, we have to provide n
different values of types A4; through A, in the premise.

e The rule xE; says that since we have already provided n different values of types A; through 4,,,
we may retrieve any of these values individually in the conclusion.

Now let us see what happens when we set n to 0:

e In order to build a value of type A; x Az X - - - X Ay, we have to provide 0 different values. That is,
we do not have to provide any value in the premise at all!

e Since we have provided 0 different values, we cannot retrieve any value in the conclusion at all.
That is, the rule xE; never applies if n = 0!

The type unit is a general product type A; x Az x --- x A, with n = 0. It has an introduction rule
with no premise (because we do not have to provide any value), but has no elimination rule (because
there is no way to retrieve a value after providing no value). An expression () is called a unit and is the
only value belonging to type unit. The typing rule Unit below is the introduction rule for unit:

type A = - |unit
expression e == - |()
value v ou= - ()
TE () unit Mt

The type unit is useful when we introduce computational effects such as input/output and mutable
references. For example, a function returning a character typed by the user does not need an argument
of particular meaning. Hence it may use unit as the type of its arguments.

5.3 Sum types

The idea behind sum types is that a value of a sum type A;+ A, contains a value of type A; or else a
value of type A, but not both. Therefore there are two ways to create an expression of type A;+ As:
using an expression e; of type A; and using an expression e, of type As. In the first case, we use a
left injection, or inleft for short, inly, e1; in the second case, we use a right injection, or inright for short,
inra, es.

Then how do we extract back a value from an expression of type A;+A,? In general, it is unknown
which of the two types A; and A; has been used in creating a value of type A;+A,. For example, in
the body e of a M-abstraction Az :A;+ As. e, nothing is known about variable = except that its value can
be created from a value of either type A; or type A,. In order to examine the value associated with an
expression of type A;+ A,, therefore, we have to provide for two possibilities: when a left injection has
been used and when a right injection has been used. We use a case expression case e of inl x1. e1 | inr z2. ez
to perform a case analysis on expression e which must have a sum type A; + A;. Informally speaking,
if e has been created with a value v; of type A;, the case expression takes the first branch, reducing e,
after binding x; to v;; otherwise it takes the second branch, reducing e, in an analogous way:.

type A
expression

| A+A
<+« |inlgelinrg e|caseeofinlz.e|inrx.e

)
\

As is the case with function types and product types, a typing rule for sum types is either an intro-
duction rule or an elimination rule. Since there are two ways to create an expression of type A;+A,,
there are two introduction rules (+_ for inl 4 e and Hg for inry4 e):

May 9, 2023 67

I'ke: A o T'ke: Ay i
Thinlg,e: Aj+Ay; '© Thinrg, e: Aj+A4;, ' °

I'ke: A1+A; T,z1:A1Fer:C T,xo:Asbkey: C
IPkcaseeof inlzy.eq | inrag.eq: C

+E

In the rule +E, expressions e; and e; must have the same type; otherwise we cannot statically determine
the type of the whole case expression.

As with product types, reduction rules for sum types depend on the definition of values of sum
types. An eager approach uses the following definition of values:

value v = .- |inlgov|inrg o

Then the eager reduction strategy is specified by the following reduction rules:

e e ers e
; - 7 Inl - - ; Inr
inlger—inlyge infgerinrge
/
e e
; ; = ; Case
case e of inl 1. ey | inr xo. €9 +> case €’ of inl z1.eq | inr za. €9
li
- - . Case
caseinly vofinlzy.eq | inrxa. 0 — [v/21]e1
/
Case”

caseinrg v of inl zy.e; | inr za. e3 — [v/x2]es

A lazy approach regards inl4 e and inr4 e as values regardless of the form of expression e:
value v u= .- |inlgelinryge

Then the lazy reduction strategy is specified by the following reduction rules:

/
erse
- - VY - Case
case e of inl wy. ey | inr x9.e0 +— case e’ of inl 1. e1 | inr 5. €2
!
- - . Case
caseinlyg eof inl zy.e;1 |inr zg.e9 — [e/x1]e1
Case”

caseinry eof inl . ey | inr zo. €2 — [e/xa]es

In extending the definition of F'V(e) and [¢’/z]e for sum types, we have to be careful about case
expressions. Intuitively x; and z in case e of inl z1. ey | inr z2. 2 are bound variables, just like z in
Az:A.eis a bound variable. Thus z; and x5 are not free variables in case e of inl z;.e; | inr z5. €2, and
may have to be renamed to avoid variable captures in a substitution [¢’/z]case e of inl z1.e1 | inr x2. ea.

FV(inlae) = FVie)
FV(inrge) = FV(e)
FV(case e of inl z1. ey | inr z3. €2) FV(e) U(FV(e1) —{z1}) U (FV(e2) — {z2})
[e'/z]inlg e = inly [¢//x]e
[¢'/x]intae = inrale/z]e
[€//x]case e of inl z1.e1 | inrag.ea = case[e’/z]eof inl xy.[e'/x]er | inr xa. [e'/x]es

if © £ xy,01 & FV(e),x # x9,20 & FV()

As an example of using sum types, let us encode the type bool. The inherent capability of a boolean
value is to choose one of two different options, as mentioned in Section Hence a sum type

68 May 9, 2023

unit+unit is sufficient for encoding the type bool because the left unit corresponds to the first option
and the right unit to the second option. Then true, false, and if e then e; else e; are encoded as follows,
where z; and x5 are dummy variables of no significance:

true = inlyie ()
false = inrynit ()
if ethenej elsees = caseeof inlxy.eq |inrazg. ey

Sum types are easily generalized to n-ary cases A1+As+---+A,. Here we discuss the special case
n=0.

Consider a general sum type A = A1+As+- - -+A,. We have n different ways of creating a value of
type A: by providing a value of type A;, a value of type A, ---, and a value of type A,,. Now what
happens if n = 0? We have 0 different ways of creating a value of type A, which is tantamount to saying
that there is no way to create a value of type A. Therefore it is impossible to create a value of type A!

Next suppose that an expression e has type A = A;+As+---+A,. In order to examine the value
associated with e and obtain an expression of another type C, we have to consider n different possibili-
ties. (See the rule +E for the case n = 2.) Now what happens if n = 0?2 We have to consider 0 different
possibilities, which is tantamount to saying that we do not have to consider anything at all. Therefore
we can obtain an expression of an arbitrary type C for free!

The type void is a general sum type A;+Ax+- - -+A,, with n = 0. It has no introduction rule because
a value of type void is impossible to create. Consequently there is no value belonging to type void. The
typing rule Abort below is the elimination rule for void; abort 4 e is called an abort expression.

type A == .-]void
expression e u= ---|abortye
I' e : void Abort

I'+abortge: C

There is no reduction rule for an abort expression abort,4 e: if we keep reducing expression e, we
will eventually obtain a value of type void, which must never happen because there is no value of type
void. So we stop!

The rule Abort may be a bit disquieting because its premise appears to contradict the fact that there is
no value of type void. That is, if there is no value of type void, how can we possibly create an expression
of type void? The answer is that we can never create a value of type void, but we may still “assume” that
there is a value of type void. For example, Az :void. abort 4 « is a well-typed expression of type void — A
in which we “assume” that variable = has type void. In essence, there is nothing wrong with making an
assumption that something impossible has actually happened.

5.4 Fixed point construct

In the untyped A-calculus, the fixed point combinator is syntactic sugar which is just a particular ex-
pression. We may hope, then, that encoding recursive functions in the simply typed A-calculus boils
down to finding a type for the fixed point combinator from the untyped A-calculus. Unfortunately the
fixed point combinator is untypable in the sense that we cannot assign a type to it by annotating all
bound variables in it with suitable types. Thus the fixed point combinator cannot be an expression in
the simply typed A-calculus.

It is not difficult to see why the fixed point combinator is untypable. Consider the fixed point com-
binator for the call-by-value strategy in the untyped A-calculus:

AE.(Af.F Mz f fx) (AM.F (A\x. f fa))
Let us assign a type A to variable f:

AF.(Mf:A.F (\a. f f2)) (\f:A.F (\x. f f 2))

May 9, 2023 69

Since f in f f x is applied to f itself which is an expression of type A, it must have a type A— B for
some type B. Since f can have only a single unique type, A and A— B must be identical, which is
impossible.

Thus we are led to introduce a fixed point construct fix z: A. e as a primitive construct (as opposed
to syntactic sugar) which cannot be rewritten as an existing expression in the simply typed A-calculus:

expression e u= .- |fixz:Ae

fixz: A. e is intended to find a fixed point of a A-abstraction Az : A.e. The typing rule Fix states that a
fixed point is defined on a function of type A— A only, in which case it has also type A:

Ie:AkFe: A
I'Hfixz:A.e: A Fix

Since fix z: A. e is intended as a fixed point of a A-abstraction Az : A. e, the definition of fixed point
justifies the following (informal) equation:

fixx:A.e = (Az:A.e)fixz:A.e

As (Ax:A.e) fixx: A. e reduces to [fix z: A. e/z]e by the S-reduction, we obtain the following reduction
rule for the fixed point construct:

fixx:A. e [fixz: A e/xle Fiv

In extending the definition of FV(e) and [e’/x]e, we take into account the fact that y in fixy: A.e is a
bound variable:

FV(fixx:A.e) = FV(ie)—{z}
[€/z]fixy:A.e = fixy:A.[e/z]e if x £y,y & FV(e)

In the case of the call-by-name strategy, the rule Fiz poses no particular problem. In the case of
the call-by-value strategy, however, a reduction by the rule Fiz may fall into an infinite loop because
[fix : A. e/z]e needs to be further reduced unless e is already a value:

fixx:A. e [fixx: A e/z]le— -

For this reason, a typical functional language based on the call-by-value strategy requires that e in
fix z: A. e be a A-abstraction (among all those values including integers, booleans, A-abstractions, and so
on). Hence it allows the fixed point construct of the form fix f: A— B. Az : A. e only, which implies that
it uses the fixed point construct only to define recursive functions. For example, fix f:A—B. A\x:A.e
may be thought of as a recursive function f of type A— B whose formal argument is and whose body
is e. Note that its reduction immediately returns a value:

fix frA=B. Ar:A.e— Az A ffix frA—B. Xx:A.e/fle
One important question remains unanswered: how do we encode mutually recursive functions?
For example, how do we encode two mutually recursive functions f; of type A; — B; and f> of type
A — By? The trick is to find a fixed point of a product type (A; — Bq) X (A — Ba):
fix flg : (Al —)Bl) X (A2 —>Bg) ()\le :Al. e,)\[IJQ SAQ. 62)

In expressions e; and ez, we use fst fio and snd fi to refer to fi and fs, respectively. To be precise,
therefore, e in fix z: A. e can be not only a A-abstraction but also a pair/tuple of A-abstractions.

70 May 9, 2023

type A = AXx Alunit| A+ A |void

expression e u= -

(e,e) |fste|snde| () |inlaelinrge|caseeofinlz.e|inrz.e|fixx:A. e
value von= (v,) | () |inlav]inrgv
F|_€12A1 F|_621A2>< FF61A1XA2 <E FF€2A1XA2 < E Unit
TF(e1,e2): Ap X A T'kfste: Ay ! T'Fsnde: Ay 2 TF(): unit n
T'ke: A +| I'ke: A, "
Ikinly, e: A1+ As L Ihinry, e: Ai+ A, R
I'te:Ai+As Tioxi:A1Fer:C Thag:Asbkey: C Iz:AFe: A
I'tcaseeof inlxy.ep |inrzg.eq0: C THfixz:Ae: A '™
e1— e}) ez > € o, e e /
(e1,e2) — (e, e2) Pair (v1,e2) — (v1,€5) Pasr fst e — fst e/ Fst fst (v1,vg) — v1 Fst
ers e , ers e e e
snd e — snd €’ Snd snd (vy,v9) — vy Sn inlg e inly € n inrqg e — inry € Inr
e e
- - VY - Case
case e of inl wy.eq | inr zg. e > case ¢’ of inl xy.e; |inrzo. ey

, - - Case’
caseinly vofinlxy.eq | inrza.e2 — [v/21]er

" "
Case” fziA e [fixx:A. e/z]e Friw

caseinrg v of inl z1.eq | inr za. e3 — [v/x2]en

Figure 5.1: Definition of the extended simply typed A-calculus with the eager reduction strategy

5.5 Type inhabitation

We say that a type A is inhabited if there exists an expression of type A. For example, the function type
A— Aisinhabited for any type A because Az : A. z is an example of such an expression. Interestingly not
every type is inhabited in the simply typed A-calculus without the fixed point construct. For example,
there is no expression of type ((A—B)—A) — AE] Consequently, in order to use an expression of type
((A— B)— A)— A, we have to introduce it as a primitive construct which then strictly increases the
expressive power of the simply typed A-calculus. (callcc in Chapter[I0|can be thought of such a primitive
construct.)

The presence of the fixed point construct, however, completely defeats the purpose of introducing
the concept of type inhabitation, since every type is now inhabited: fix 2 : A. x has type A! In this regard,
the fixed point construct is not a welcome guest to type theory.

5.6 Type safety

This section proves type safety, i.e., progress and type preservation, of the extended simply typed -
calculus:

Theorem 5.2 (Progress). If - - e : A for some type A, then either e is a value or there exists €’ such that e — €’
Theorem 5.3 (Type preservation). IfT'Fe: Aande — €/, thenT e : A.

We assume the eager reduction strategy and do not consider general product types and general sum
types. Figure[5.1|shows the typing rules and the reduction rules to be considered in the proof. Note that
the extended simply typed A-calculus does not include an abort expression abort 4 ¢ which destroys the
progress property. (Why?)

The proof of progress extends the proof of Theorem [4.3] First we extend the canonical forms lemma

(Lemma[4.5).

n logic, ((A— B) — A) — A is called Peirce’s Law. Note that it is not Pierce’s Law!

May 9, 2023 71

Lemma 5.4 (Canonical forms).
If v is a value of type Ay x Ag, then v is a pair (v1, v2) of values.
If v is a value of type unit, then v is ().
If v is a value of type A1+ As, then v is either inl 4, v’ or inr 4, V.
There is no value of type void.

Proof. By case analysis of v.

Suppose that v is a value of type A; x Aj. The only typing rule that assigns a product type A; x A,
to a value is the rule x|. Therefore v must be a pair. Since v is a value, it must be a pair (v, v2) of values.
Note that other typing rules may assign a product type, but never to a value.

Suppose that v is a value of type unit. The only typing rule that assigns type unit to a value is the
rule Unit. Therefore v must be ().

Suppose that v is a value of type A; +A;. The only typing rules that assign a sum type A;+A4; to a
value are the rules H| and Hg. Therefore v must be either inl4, e orinr4, e. Since v is a value, it must be
either inl4, v' orinra, v'.

There is no value of type void because there is no typing rule assigning type void to a value. O

The proof of Theorem 5.2 extends the proof of Theorem [4.3]

Proof of Theorem[5.2] By rule induction on the judgment - - e : A. If e is already a value, we need no
further consideration. Therefore we assume that e is not a value. Then there are eight cases to consider.

~|—€1:A1 -"622142

Case F (er,00) A1 x A x| where e = (e1,e3) and A = Ay x As:
e1 is a value or there exists e} such that e; — ¢/ by induction hypothesis on - - e; : 4;
es is a value or there exists ef, such that e; — €5 by induction hypothesis on - - e3 : A

Both e; and e cannot be values simultaneously because e = (eq, e2) is assumed not to be a value.

Subcase: e; is a value and there exists e} such that e; — ¢},
(e1,e2) = (e1,€5) by the rule Pair’
We let e’ = (eq,€)).

Subcase: there exists €} such that e; — €]
(e1,€2) > (€], e2) by the rule Pair
We let e’ = (e, e2).

Case %@1:1{?2 xE; wheree =fstegand A = A;:

ep is a value or there exists ef, such that eg +— e, by induction hypothesis on - - ey : A1 x As
eo cannot be a value because e = fst ¢j is assumed not to be a value.

fst eg > fst ¢, by the rule Fst

We let e/ = fst ¢;).

(The cases for the rules x Ep, H|, and +lr are all similar.)

'F652A1+A2 £L‘12A1F615A I'QZAQF625A
-k caseegof inl zy.e1 | inrag.eq: A
es is a value or there exists €/, such that eg — e, by induction hypothesis on - e, : A1+ As

Case +E where ¢ = case e; of inl z1. €7 | inr zo. e3:

Subcase: e, is a value

es =inly, vores =inry, v by Lemmal5.4
e [v/x1]er or e — [v/z3]es by the rule Case’ or Case
We lete' = [v/z1]e; or € = [v/xa]es.

Subcase: there exists €/, such that e; — e/,

case es of inl xy.eq | inr z3. €2 — case e, of inl z1.e1 | inrx2.eg by the rule Case
We let €/ = case €, of inl 1.1 | inr x2. €.

72 May 9, 2023

r:AFey: A . .
Case ~|—fixx:A.Oeo:A Fix where e = fix z: A. eg:

fixz:A.eq — [fix x: A. eg/x]eg by the rule Fiz
We let ¢’ = [fix x: A. eg/x]e. O

The proof of type preservation extends the proof of Theorem First we extend the substitution
lemma (Lemma and the inversion lemma (Lemma[4.8).

Lemma 5.5 (Substitution). IfT'Fe: Aand T,z : A¢e' : C,thenT + [e/x]e’ : C.

Proof of Lemma By rule induction on the judgment I', z : A ¢’ : C. The proof extends the proof of
Lemma

The case for the rule x| is similar to the case for the rule —E. The cases for the rules xE;, xEy, H,
and +lr are also similar to the case for the rule —E except that ¢’ contains only one smaller subexpres-
sion (e.g., ¢’ = fst ep). The case for the rule Fix is similar to the case for the rule —I.

Ix:AbFey: Aiy+Ay T,x:Axi:A1Fer:C Tyx:Axs:Askey:C
Case I,z : Al caseegof inl zy.eq | inrzg.eq: C +E
where e’ = case e of inl z1. ey | inr z5. eq:
Without loss of generality, we may assume z1 # x, 1 € FV(e), x2 # z, and x5 ¢ F'V(e) because we can

apply a-conversions to x; and x, if necessary. This case is similar to the case for the rule —l.

Tk le/xleq : A1+ As by induction hypothesisonI',z : AFep: A1+ A
D,xy: A1k e/xley : C by induction hypothesisonI',z : A,z1 : A; Fe; : C
D ag: Ag bk [e/x]es : C by induction hypothesisonI',z : A, 22 : Ag ey : C
I' - case [e/z]eg of inl z1. [e/x]e | inr z2.[e/x]es : C by the rule +E

[e/x]case eg of inl 1. ey | inr . e9 = case [e/x]eg of inl z1. [e/x]ey | inr x2. [e/x]eq
from xy # x, 21 &€ FV(e), xo # x, xo & FV(e)
'k [e/x]case eq of inl z1.€; | inrxg.eq: C

Case I z: AL () : unit Unit \vhere ¢’ = () and C' = unit:

TF(): unit by the rule Unit

I'F [e/2]() : unit from [e/z]() = ()
O

Lemma 5.6 (Inversion). Suppose'-¢e: C.

Ife=(e1,e2), then C = Ay x AgandT'F ey : Ay and T F ey 1 Ao for some types Ay and As.

Ife=fste/, thenT' \- ¢’ : C x A, for some type As.

Ife=sndeé, thenT' ke : Ay x C for some type A;.

Ife = (), then C = unit.

Ife=inly, €, then C = Aj+ Az and T' ¢’ : Ay for some type A;.

Ife=inry, €, then C = Ay +Asand T - €' : Ay for some type As.

Ife = caseegofinlzy.er |inrazg. e, thenTheg: Ay+Ag, Tyz1: Aiber : Coand Tyt Agb e : C
for some types Ay and As.

Ife=fixz:A. e, thenC=AandT,z: Ak ¢ : A

Proof. By the syntax-directedness of the type system. O
The proof of Theorem 5.3|extends the proof of Theorem [4.4]

Proof of Theorem By rule induction on the judgment e — ¢’. We consider two cases that use Lemmal5.5|
All other cases use a simple pattern (as in the case for the rule Lam): apply Lemma[.6/toT' e : A, ap-
ply induction hypothesis, and apply a typing rule to deduce I' - ¢’ : A.

- - - Case’
Case caseinlc v of inl ;. €1 |inr 25. €9 — [v/21]e1

Ik caseinlgvofinlzy.eq |inrag.es: A assumption
Fkinlcv: Aij+Asand T x; : AjFep: Aand T g : A F ey 0 A for some types A; and A,

by Lemmal.6]
I'Fv:A,and C = A, by Lemmaf5.6on T Finlc v : Aj+A,
TH[v/xi]e; : A by applying Lemmato 'tv:Ajand T2 : AjFet A

May 9, 2023 73

(The case for the rule Case” is similar.)

Case fixz:C. e — [fix x:C.eq/x]eq Fix

IHfixz:C.eg: A assumption
A=CandT,z:Cltey:C by Lemma5.6]
T'kfixz:C.ey: C fromIDFfixx:C.eg: Aand A=C
Tk [fixz:C.ep/z]eg : C by applying Lemma5.5to '+ fixz:C.eg : Cand L',z : C'k ey : C

O

74 May 9, 2023

Chapter 6

Mutable References

In the (typed or untyped) A-calculus, or in “pure” functional languages, a variable is immutable in that
once bound to a value as the result of a substitution, its contents never change. While it may appear
to be too restrictive or even strange from the perspective of imperative programming, immutability of
variables allows us to consider A-abstractions as equivalent to mathematical functions whose meaning
does not change, and thus makes programs more readable than in other programming paradigms. For
example, the following A-abstraction denotes a mathematical function taking a boolean value z and
returning a logical conjunction of z and y where the value of y is determined at the time of evaluating
the A-abstraction:
Az :bool. if x then y else false

Then the meaning of the M-abstraction does not change throughout the evaluation; hence we only have
to look at the A-abstraction itself to learn what it means.

This chapter extends the simply typed A-calculus with mutable references, or references for short, in
the presence of which A-abstractions no longer denote mathematical functions. We will introduce three
new constructs for manipulating references; references may be thought of as another name for pointers
familiar from imperative programming, and all these constructs find their counterparts in imperative
languages:

o ref e creates or allocates a reference pointing to the value to which e evaluates.
e le obtains a reference by evaluating e, and then dereferences it, i.e., retrieves the contents of it.

e ¢:= ¢’ obtains a reference and a value by evaluating e and ¢/, respectively, and then updates the
contents of the reference with the value. That is, it assigns a new value to a reference.

It is easy to see that if a A-abstraction is “contaminated” with references, it no longer denotes a math-
ematical function. For example, the meaning of the following A-abstraction depends on the contents of
a reference in g, and we cannot decide its meaning once and for all:

Az :bool. if x then ly else false

In other words, each time we invoke the above A-abstraction, we have to look up an environment (called
a store or a heap) to obtain the value of !y. It is certainly either true or false, but we can never decide its
meaning by looking only at the A-abstraction itself. Hence it does not denote a mathematical function.

In general, we refer to those constructs that destroy the connection between A-abstractions and math-
ematical functions, or the “purity” of the A-calculus, as computational effects. References are the most
common form of computational effects; other kinds of computational effects include exceptions, con-
tinuations, and input/output. A functional language with such features as references is often called an
“impure” functional languageﬂ

Below we extend the type system and the operational semantics of the simply typed A-calculus to
incorporate the three constructs for references. The development will be incremental in that if we re-
move the new constructs, the “impure” definition reverts to the “pure” definition of the simply typed

1 SML is an impure functional language. Haskell is a pure functional language, although it comes with a few impure language
constructs.

75

A-calculus. An important implication is that immutability of variables is not affected by the new con-
structs — it is the contents of a reference that change; the contents of a variable never change!

6.1 Abstract syntax and type system

We augment the simply typed A-calculus with three constructs for references; for the sake of simplicity,
we do not consider base types P:

type A == P|A—A|unit|ref A
expression e u= z|Xx:A.elee|()|refe|lele:=e
value v = dx:A.e|()

A reference type ref A is the type for references pointing to values of type A, or equivalently, the type for
references whose contents are values of type A. All the constructs for references use reference types,
and behave as follows:

e ref e evaluates e to obtain a value v and then allocates a reference initialized with v; hence, if € has
type A, then ref e has type ref A. It uses the same keyword ref as in reference types to maintain
consistency with the syntax of SML.

e le evaluates e to obtain a reference and then retrieves its contents; hence, if e has type ref A, then
le has type A.

e ¢:=¢' evaluates e to obtain a reference and then updates its contents with a value obtained by
evaluating e’. Since the result of updating the contents of a reference is computationally meaning-
less, e := ¢’ is assigned a unit type unit.

Thus we obtain the following typing rules for the constructs for references:

I'ke: A Ref F}—e:refAD . I'Fe:ref A THe: A
Threfe:ref A ¢ T'Fle: A ere I'Fe:=¢€:unit

Assign

For proving type safety, we need to elaborate the typing judgment I' - e : A (see Section[6.3), but for
typechecking a given expression, the above typing rules suffice.

Before we give the reduction rules for the new constructs, let us consider a couple of examples
exploiting references. Both examples use syntactic sugar let z = e in €’ for (Az: A. ¢’) e for some type A.
That is, let z = e in ¢ first evaluates e and store the result in z; then it evaluates ¢’. We may think of the
rule Let below as the typing rule for let z = ein €’

I'te:A TIz:AFe': B
kletz=cine : B

Let

Both examples also assume common constructs for types bool and int (e.., if e then e; else e as a condi-
tional construct, + for addition, — for subtraction, = for equality, and so on). We use a wildcard pattern
_for a variable not used in the body of a A-abstraction.

The first example exploits references to simulate arrays of integers. We choose a functional repre-
sentation of arrays by defining type iarray for arrays of integers as follows:

iarray = ref (int—int)

That is, we represent an array of integers as a function taking an index (of type int) and returning a
corresponding element of the array. We need the following constructs for arrays:

e new : unit—iarray for creating a new array.
new () returns a new array of indefinite size; all elements are initialized as 0.

e access : iarray — int — int for accessing an array.
access a ¢ returns the i-th element of array a.

76 May 9, 2023

e update : iarray — int— int — unit for updating an array.
update a i n updates the i-th element of array a with integer n.

Exercise 6.1. Implement new, access, and update.
We implement new and access according to the definition of type iarray:

new = A_:unit.ref Ai:int.0
access = Aa:iarray. Ai:int. (la) i

To implement update, we have to first retrieve a function of type int—int from a given array and then
build a new function of type int—int:

update = Aa:iarray. Ai:int. An:int.
let old = la in
a:= Aj:int.if i = j then n else old j

The following implementation of update has a correct type, but is wrong: a in the body does not point
to the old array that exists before the update, but ends up pointing to the same array that is created after
the update:
update = Aa:iarray. Ai:int. An:int.
a:= Aj:int.if i = j then n else (la) j

The wrong implementation of update illustrates that a reference a can be assigned a value that deref-
erences the same reference a. We can exploit such “self-references” to implement recursive functions
without using the fixed point construct. The second example implements the following recursive func-
tion (written in the syntax of SML) which takes an integer n and returns the sum of integers from 0 to
n:

fun fn:int.if n =0thenOelsen + f (n — 1)

To implement the above recursive function, we first allocate a reference f initialized with a dummy
function of type int—int. Then we assign the reference f a function which dereferences the same refer-
ence f when its argument is not equal to 0, thereby effecting a recursive call:

let f = ref An:int.0in
let _= f:=An:int.if n =0thenOelsen+ (If) (n —1)in
lf

6.2 Operational semantics

The operational semantics for references needs a reduction judgment that departs from the previous
reduction judgment e — ¢’ for the simply typed A-calculus. To see why, consider how to reduce ref v
for a value v. The operational semantics needs to allocate a reference initialized with v, but allocates it
where? In fact, the abstract syntax given in the previous section does not even include expressions for
results of allocating references. That is, what is the syntax for the result of reducing ref v? Thus we are
led to extend both the abstract syntax to include values for references and the reduction judgment to
record the contents of all references allocated during an evaluation.

We use a store 1 to record the contents of all references. A store is a mapping from locations to values,
where a location [is a value for a reference, or simply another name for a reference. (We do not call
a “pointer” to emphasize that arithmetic operations may not be applied on [.) As we will see in the
reduction rules below, a fresh location [is created only by reducing ref v, in which case the store is
extended so as to map [to v. We define a store as an unordered collection of bindings of the form [— v:

expression e u= |l location
value von= e | location
store v ou= Yl

We write dom(v) for the domain of 1, i.e., the set of locations mapped to certain values under .
Formally we define dom (%)) as follows:

dom(:) = o
dom(,l—wv) = dom(y)U{l}

May 9, 2023 77

We write [l — v]t for the store obtained by updating the contents of [in 1) with v. Note that in order for
[l — v]y to be defined, I must be in dom(v):

=@, l—=v) = ¢ l—w

We write 1(1) for the value to which [is mapped under +; in order for ¢(l) to be defined, I must be in
dom(v):

W i—=v)(l) = v

Since the reduction of an expression may need to access or update a store, we use the following
reduction judgment which carries a store along with an expression being reduced:

el —e | & e with store 1) reduces to e’ with store v’

In the judgmente | ¥ — ¢’ | ¢', we definitely have e # ¢/, but ¢ and ¢’ may be the same if the reduction
of e does not make a change to . The reduction rules are given as follows:

vl 2|0 el |V . .,
erex| el ex |t am (Mx:A.e)eq | — (Ax:A.e)eh |y v (Ax:A.e)v | [v/z]e | PP
—e |y l&d
clomd v Lo igdm)
refe |y — refe |9 refv| =1, l—v
el ey Y(l) =wv
L A = /
elvtd [P g ee Do
el—e |y el—e |y
¥ K Assign K v Assign/ Assign”

e=¢ e =€ | li=el|Yp—=l:=¢|¢ li=v|= ()| [l—)e

Note that locations are runtime values. That is, they are not part of the syntax for the source language;
they are created only at runtime by reducing ref e.

Here is the reduction sequence of the expression in Section that builds a recursive function
adding integers from 0 to n. It starts with an empty store and creates a fresh location ! to store the
recursive function. Recall that let 2 = e in €’ is syntactic sugar for (Az: A. e’) e for some type A.

let f = ref An:int.0 in
let _= f:=An:int.if n =0thenOelsen+ (If) (n —1)in |-

Lf
let f=1in
— let_=f:=Xn:int.if n=0thenOelsen+ (If) (n—1)in |1~ An:int.0
Lf
—] \pmint. i — ! —1)i
. :(let, l:=An:int.if n =0thenOelsen+ (1) (n —1)in 1 Antint.0
let = () in o
— | I — An:int.if n = 0 then O else n + (1) (n — 1)

)
— N |l— An:int.if n =0thenOelsen + (1) (n — 1)
— An:int.if n =0thenOelsen+ (1) (n—1) |l An:int.if n =0thenOelsen + (1) (n — 1)

78 May 9, 2023

6.3 Type safety

This section proves type safety of the simply typed A-calculus extended with references. First of all, we
have to extend the type system for locations which are valid (runtime) expressions but have not been
given a typing rule. The development of the typing rule for locations gives rise to a new form of typing
judgment, since deciding the type of a location requires information on a store, but the previous typing
judgment I' - e : A does not include information on a store. Then a proof of type safety rewrites the
typing rules Ref, Deref, Assign in terms of the new typing judgment, although these typing rules in their
current form suffice for the purpose of typechecking expressions containing no locations.
Let us begin with the following (blatantly wrong) typing rule for locations:

TF 1 ref A4 o9

The rule Loc; does not make sense: we wish to assign [a reference type ref A only if it is mapped to a
value of type A under a certain store, but the rule does not even inspect the value to which [is mapped.
The following typing rule uses a new form of typing judgment involving a store 1), and assigns [a
reference type ref A only if it is mapped to a value of type A under ¢:

P(l)=v TFov:A
Dok l:ref A

Locs

The rule Loc; is definitely an improvement over the rule Locy, but it is still inadequate: it uses an
ordinary typing judgment I' - v : A on the assumption that value v does not contain locations, but in
general, any value in a store may contain locations. For example, it is perfectly fine to store a pair of
locations in a store. Thus we are led to typecheck v in the premise of the rule Loc, using the same typing
judgment as in the conclusion:
Y()=v T|yYFov:A
Dok l:ref A

Locs

Unfortunately the rule Locs has a problem, too: if a location [is mapped to a value containing [under
1, the derivation of T" | ¢ I [: ref A never terminates because of the infinite chain of typing judgments
all of which address the same location {:

T

v\)=-1- T|pF-l---: A
Dok l:ref A

Locs

For example, it is impossible to determine the type of a location ! that is mapped to a A-abstraction
An:int.if n. = 0 then 0 else n 4 (!I) (n — 1) containing [itself. (Section [6.2) gives an example of creating
such a binding for [.)

We fix the rule Locz by analyzing a store only once, rather than each time a location is encountered
during typechecking. To this end, we introduce a store typing context which records types of all values
in a store:

store typing context U o= | Ul A

The idea is that if a store maps location /; to value v; of type A;, itis given a store typing context mapping
l; to A; (for i = 1,--- ,n). Given a store typing context ¥ corresponding to a store v, then, we use ¥,
instead of v, for typechecking expressions:

F'|¥te:A <& expression e has type A under typing context I and store typing context U

We write dom (V) for the domain of U:

dom(:) = @
dom(¥,l— A) = dom(¥)U{l}

May 9, 2023 79

We write (1) for the type to which [is mapped under ¥; in order for ¥(!) to be defined, [must be in
dom(P):
(W, A1) = A

Now the typing rule for locations looks up a store typing context included in the typing judgment:

=4
T|OUFl:refA °°

All other typing rules are obtained by replacingI'-e: AbyI' | U - e : A in the previous typing rules:

z:-AeTl v Fx:A|Vtke:B | P|¥the:A—»B T|UFe:A £

T[UFz:A " T|[UF s:Ae:AsB T[UFee B -
TIOE () unit UMt

' VkFe:A Ref I‘|\IH—e:refAD c F'|Uhke:ref A I‘|\Il|—e':AA,

—_ n

T |UrreferefA S T|Urle:A € T|UFe:=¢:unit ss18

The remaining question is: how do we decide a store typing context ¥ corresponding to a store ?

We use a new judgment

P
to mean that ¥ corresponds to v, or simply, ¢ is well-typed with ¥. Then the goal is to give an inference
rule for the judgment ¢ :: .

Suppose that 1) maps [; to v; for i = 1,--- ,n. Loosely speaking, ¥ maps I; to A; if v; has type A;.
Then how do we verify that v; has type A;? Since we are in the process of deciding ¥ (which is unknown
yet), - | - Fv; : A; may appear to be the right judgment. The judgment is, however, inadequate because
v; itself may contain locations pointing to other values in the same store). Therefore we have to
typecheck all locations simultaneously using the same typing context currently being decided:

dom(¥) = dom(¢)) - | UEY(): U() for every | € dom (1))
P

Store

Note that the use of an empty typing context in the premise implies that every value in a well-typed
store is closed.
Type safety is stated as follows:

Theorem 6.2 (Progress). Suppose that expression e satisfies - | U \- e : A for some store typing context U and
type A. Then either:

(1) e is a value, or

(2) for any store) such that 1 :: U, there exist some expression e’ and store 1)’ such that e | ¥ — €' | ¢

Theorem 6.3 (Type preservation).

F'|Uke:A F|oke:A
Suppose Y ¥ . Then there exists a store typing context W' such that § ¥ C ¥’
ely—e |y (AREI

In Theorem ¥’ may extend v by the rule Ref’, in which case ¥’ also extends ¥, i.e., ¥/ O ¥ and
U’ - U, Note also that ¢’ is not always a superset of ¢ (i.e., ¢’ 7 1)) because the rule Assign” updates 1
without extending it. Even in this case, however, ¥/ D W still holds because ¥’ and V¥ are the same.

We use type safety to show that a well-typed expression cannot go wrong. Suppose that we are re-
ducing a closed well-typed expression e with a well-typed store ¢. Thatis, ¢ :: Tand - | U+ e : A hold
for some store typing context ¥ and type A. If e is already a value, the reduction has been finished. Oth-
erwise Theorem 6.2 guarantees that there exist some expression ¢’ and store ¢’ such thate | ¥ — ¢’ | 9.
By Theorem [6.3] then, there exists a store typing context ¥’ such that - | ¥/ F ¢’ : Aand ¢’ :: ¥'. That s,

80 May 9, 2023

¢’ is a close well-typed expression and ¢’ is a well-typed store (with ¥’). Therefore the reduction of e
with ¢ cannot go wrong!

May 9, 2023 81

82

May 9, 2023

Chapter 7

Typechecking

So far, our interpretation of the typing judgment I' - e : A has been declarative in the sense that given a
triple of I', e, and A, the judgment answers either “yes” (meaning that e has type A under I') or “no”
(meaning that e does not have type A under I'). While the declarative interpretation is enough for
proving type safety of the simply typed A-calculus, it does not lend itself well to an implementation
of the type system, which takes a pair of I' and e and decides a type for e under I', if one exists. That
is, an implementation of the type system requires not a declarative interpretation but an algorithmic
interpretation of the typing judgment I' - e : A such that given I' and e as input, the interpretation
produces A as output.

This chapter discusses two implementations of the type system. The first employs an algorithmic
interpretation of the typing judgment, and is purely synthetic in that given I" and e, it synthesizes a type
Asuch thatI' - e : A. The second mixes an algorithmic interpretation with a declarative interpretation,
and achieves what is called bidirectional typechecking. It is both synthetic and analytic in that depending
on the form of a given expression e, it requires either only I" to synthesize a type A such that ' -e : A4,
or both I and A to confirm that I' - e : A holds.

7.1 Purely synthetic typechecking

Let us consider a direct implementation of the type system, or equivalently the judgment ' e : A. We
introduce a function typing with the following invariant:

typing (I',e, A) = okay if '+e: Aholds.
typing (I',e, A) = fail if '+ e : A does not hold.

Since T', e, and A are all given as input, we only have to translate each typing rule in the direction
from the conclusion to the premise(s) (i.e., bottom-up), as illustrated in the pseudocode below:

z:Ael typing (T, z, A) =
Trz:4 Y © if 2 : A T then okay else fail
I'z:Ate:B typing (I, Az:A.e, A= B) =

-l &

F'FXx:Ae:A—B typing (I, e, B) whereI" =T,z : A

It is not obvious, however, how to translate the rule —E because both premises require a type A
which does not appear in the conclusion:

typing (T',e e, B) =
if typing (I',e, A— B) = okay
—E < andalso typing (T, e’, A) = okay
then okay else fail
where A =7

I'Fe:A—-B T'e: A
I'Fee : B

Therefore, in order to return okay, typing (I', e ¢/, B) must “guess” a type A such thatboth typing (T, e, A— B)
and typing (T', ¢/, A) return okay. The problem of guessing such a type A from e and €’ involves the prob-
lem of deciding the type of a given expression (e.g., deciding type A of expression e’). Thus we need to

83

be able to decide the type of a given expression anyway, and are led to interpret the typing judgment
I' F e : A algorithmically so that given I" and e as input, an algorithmic interpretation of the judgment
produces A as output.

We introduce a new judgment I' - e > A, called an algorithmic typing judgment, to express the algo-
rithmic interpretation of the typing judgment I' - e : A:

'Fe> A <« undertyping context T', the type of expression e is inferred as A

That is, an algorithmic typing judgment I' - e > A synthesizes type A (output) for expression e (input)
under typing context I' (input). Algorithmic typing rules (i.e., inference rules for algorithmic typing
judgments) are as given follows:

z:Ael Var Iz:AFe>B . l'teA—B The >C A:C_)
F'Fep> A @ THM:AerA—>B ° I'Fee > B

I'Fe>bool T'key >A1 T'heya>Ay A= Ay if
'k if ethenej else eg > Ay

Ea

True, False,

a

't true > bool I'+ false > bool

Note that in the rule —E,, we may not write the second premise as I' - ¢’ > A (and remove the third
premise) because type C to be inferred from I' and e’ is unknown in general and must be explicitly
compared with type A as is done in the third premise. (Similarly for types A; and A, in the rule If,.)
A typechecking algorithm based on the algorithmic typing judgment I' - e > A is said to be purely
synthetic.

The equivalence between two judgments I'-e > A and I' - e : A is stated in Theorem whose
proof uses Lemmas [7.1] and Lemma [7.1] proves soundness of I' e 1> A in the sense that if an
algorithmic typing judgment infers type A for expression e under typing context I, then A is indeed the
type for e under I'. In other words, if an algorithmic typing judgment gives an answer, it always gives
a correct answer and is thus “sound.” Lemma |7.2| proves completeness of I' - e > A in the sense that
for any well-typed expression e under typing context I, there exists an algorithmic typing judgment
inferring its type. In other words, an algorithmic typing judgment covers all possible cases of well-
typed expressions and is thus “complete.”

Lemma 7.1 (soundness). IfT'Fe > A, thenT' e : A

Proof. By rule induction on the judgmentI' e > A. O
Lemma 7.2 (completeness). If'Fe: A, then'e > A.

Proof. By rule induction on the judgmentI' - e : A O
Theorem 7.3. T'Fe: Aifand only if T Fe > A

Proof. Follows from Lemmas|[7.1]and O

7.2 Bidirectional typechecking

In the simply typed A-calculus, every variable in a A-abstraction is annotated with its type (e.g., Az : A. e).
While it is always good to know the type of a variable for the purpose of typechecking, a typechecking
algorithm may not need the type annotation of every variable which sometimes reduces code readabil-
ity. As an example, consider the following expression which has type bool:

(Af:bool—bool. f true) Az :bool. z

The type of the first subexpression A f : bool = bool. f true is (bool — bool) — bool, so the whole expression
typechecks only if the second subexpression Az :bool. z has type bool — bool (according to the rule —E).
Then the type annotation for variable z becomes redundant because it must have type bool anyway if
Az :bool. z is to have type bool — bool. This example illustrates that not every variable in a well-typed
expression needs to be annotated with its type.

84 May 9, 2023

A bidirectional typechecking algorithm takes a different approach by allowing A-abstractions with
no type annotations (i.e., Az. e as in the untyped A-calculus), but also requiring certain expressions to be
explicitly annotated with their types. Thus bidirectional typechecking assumes a modified definition of
abstract syntax:

expression e == x|Ar.e|ee|true|false|if etheneelsee] (e: A)

A X-abstraction Az. e does not annotate its formal argument with a type. (It is okay to permit A\z:A.e
in addition to Az. e, but it does not expand the set of well-typed expressions under bidirectional type-
checking.) (e : A) explicitly annotates expression e with type A, and plays the role of variable x bound
in a A-abstraction Az : A. e. Specifically it is (e : A) that feeds type information into a bidirectional type-
checking algorithm whereas it is Az: A. e that feeds type information into an ordinary typechecking
algorithm.

A bidirectional typechecking algorithm proceeds by alternating between an analysis phase, in which
it “analyzes” a given expression to verify that it indeed has a given type, and a synthesis phase, in
which it “synthesizes” the type of a given expression. We use two new judgments for the two phases of
bidirectional typechecking:

e I'- e A means that we are checking expression e against type A under typing context I'. That
is, ', e, and A are all given and we are checking if I'-e: A holds. T'F e { A corresponds to a
declarative interpretation of the typing judgmentI' - e : A.

e I' e || Ameans that we have synthesized type A from expression e under typing context I'. That
is, only I and e are given and we have synthesized type A such that I'e: Aholds. T'Fe | A
corresponds to an algorithmic interpretation of the typing judgment I' - e : A4, and is stronger (i.e.,
more difficult to prove) thanI' e { A.

Now we have to decide which of I' e ff Aand I' I- e |} A is applicable to a given expression e. Let
us consider a A-abstraction Az. e first:

TrawclAsB T o TiouwcefdsB °

Intuitively we cannot hope to synthesize type A— B from Az. e because the type of = is unknown in
general. For example, e may not use x at all, in which case it is literally impossible to infer the type of
2! Therefore we have to check Az. e against a type A— B to be given in advance:

I'z:AFe B |
TFacefAsB P

Next let us consider an application e e’:

- -
Treed UB ° O TredpB °°

Intuitively it is pointless to check e e’ against type B, since we have to synthesize type A— B for e
anyway. With type A— B for e, then, we automatically synthesize type B for e ¢’ as well, and the
problem of checking e ¢’ against type B becomes obsolete because it is easier than the problem of
synthesizing type B for e €’. Therefore we synthesize type B from e €’ by first synthesizing type A— B
from e and then verifying that ¢’ has type A:

el A—=B Tte N A

Tree || B —E
For a variable, we can always synthesize its type by looking up a typing context:
x:Ael
ThayA Vo

Then how can we relate the two judgmentsI'-e f AandI'-e | A? SinceI' - e || A is stronger than
I' - e 1+ A, the following rule makes sense regardless of the form of expression e:
I'el A

TFeft A U,

May 9, 2023 85

The opposite direction does not make sense, but by annotating e with its intended type A, we can relate
the two judgments in the opposite direction:

'kef A
PH(e:A) |y A G
The rule {1|},, says that if expression e is annotated with type A, we may take A as the type of e without
having to guess, or “synthesize,” it, but only after verifying that e indeed has type A.

Now we can classify expressions into two kinds: intro(duction) expressions I and elim(ination) ex-
pressions . We always check an intro expression I against some type A; henceI' - I {} A makes sense,
but I' - I |} A is not allowed. For an elim expression E, we can either try to synthesize its type A or
check it against some type A; hence bothI'+ E || Aand I' - E { A make sense. The mutual definition
of intro and elim expressions is specified by the rules for bidirectional typechecking;:

e I | E
z|ET|(I:A)

intro expression I
elim expression E

As you might have guessed, an expression is an intro expression if its corresponding typing rule is
an introduction rule. For example, Az. e is an intro expression because its corresponding typing rule is
the — introduction rule —I. Likewise an expression is an elim expression if its corresponding typing
rule is an elimination rule. For example, e ¢’ is an elim expression because its corresponding typing
rule is the — elimination rule —E, although it requires further consideration to see why e is an elim
expression and €’ is an intro expression.

For your reference, we give the complete definition of intro and elim expressions by including re-
maining constructs of the simply typed A-calculus. As in M-abstractions, we do not need type annota-
tions in left injections, right injections, abort expression, and the fixed point construct. We use a case
expression as an intro expression instead of an elim expression. We use an abort expression as an intro
expression because it is a special case of a case expression. Figure [/.1|shows the definition of intro and
elim expressions as well as all typing rules for bidirectional typechecking.

7.3 [Exercises

Exercise 7.4. Give algorithmic typing rules for the extended simply typed A-calculus in Figure 5.1}
Exercise 7.5. Give typing rules for true, false, and if e then e; else e; under bidirectional typechecking.

Exercise 7.6. (Az.z) () has type unit. This expression, however, does not typecheck against unit under
bidirectional typechecking. Write as much of a derivation - - (Az. z) () 1} unit as you can, and indicate
with an asterisk (*) where the derivation gets stuck.

Exercise 7.7. Annotate some intro expression in (Az. z) () with a type (i.e., convert an intro expression [
into an elim expression (I : A)), and typecheck the whole expression using bidirectional typechecking.

86 May 9, 2023

intro expression I == Xx. 1 —lp
| (1,1) X I
||n|I —HLb
[inr I Hrp
|case Eof inlz. 1 |inrz. T +Ep
| Unit,
| abort E Aborty
| fix @. T Fixp
| E e
elim expression E = x Varyp
|ET —Ep
|fStE XE]_b
| snd E x Eap
[(1: 4) s
m;AGFV Nx: AT B 'rEyA—-B TFHIQA E
TFz0A ™ Traxe.lfASB ® TFEI|B —rh
FFIl'ﬂ‘Al FFIQﬂ‘AQ FI—ElLA1><A2 F}_EU,A1XAQ
le XElb XEzb
Fl—(Il,Ig)'ﬂA1XA2 I'Hfst £ || Ay T'ksnd E | Ay
LI A N LETAq As "
CHinl I Ai+4; ™ Thinrlf Ai+4, P
FFEU«Alﬁ’AQ I‘,xlelFIlﬂC F,I'QIAQFIQ'WC_’_E
I'tcase Eof inlzy. 17 |inrzg. Io ft C b
. '+ E | void Lx: AT A _.
e — t P S — J L
T funit O Trabort B C PO Trfixzlga
THFE| A THIfA

TFENAY® TH{I:A)UA i

Figure 7.1: Definition of intro and elim expressions with their typing rules

May 9, 2023

87

88

May 9, 2023

Chapter 8

Evaluation contexts

This chapter presents an alternative formulation of the operational semantics for the simply typed A-
calculus. Compared with the operational semantics in Chapter [the new formulation is less complex,
yet better reflects reductions of expressions in a concrete implementation. The new formulation is a
basis for an abstract machine for the simply typed A-calculus, which, like the Java virtual machine, is
capable of running a program independently of the underlying hardware platform.

8.1 Evaluation contexts

Consider the simply typed A-calculus given in Chapter [4

type A == P|A->A

base type P = bool

expression e == z|Xx:A.e|ee|true|false|if etheneelsee
value v u= Ax:A.e]|truefalse

A reduction judgment e — ¢ for the call-by-value strategy is defined inductively by the following
reduction rules:

er — €} I eg — €h A 4
_— T
e1 ex > €] eg am (Ax:A.e)es— (Ax:A.e) € v (Az:A.e) v [v/x]e bp
e—eé I
if e then e; else e5 — if €/ then e; else ey

I.ftrue [ffalse

if true then e else e3 — €3 if false then e; else e — €5

Since only the rules App, If,,., and If¢, . have no premise, every derivation tree for a reduction judg-
ment e — ¢’ must end with an application of one of these rules:

A
Az:A.e") v [v/x]e” bp

e e

Iftrue Iffalse

if true then e else ex — €3 if false then e else ex — €5

ers e ers e

89

Thus the reduction of an expression e amounts to locating an appropriate subexpression (Az: A.¢e”) v,
if true then e; else eg, or if false then e; else e; of e and applying a corresponding reduction rule.
As an example, let us reduce the following expression:

e = (if A\z:A.¢")vthene; elsees) e

The reduction of e cannot proceed without first reducing the underlined subexpression (Az: A.e”) v by
the rule App, as shown in the following derivation tree:

A
Az A ") v [v/x]e” PP

1
if (Az:A.e¢”)vthene;elsees— --- /
(if (Ax:A.e”) vtheneyelseey) e +— -+

Lam

Then we may think of e as consisting of two parts: a subexpression, or a redex, (Az:A.e”) v which
actually reduces to another expression [v/z]e” by the rule App, and the rest which remains intact during
the reduction. Note that the second part is not an expression because it is obtained by erasing the redex
from e. We write the second part as (if O then e; else e2) ¢’ where the hole 0O indicates the position of the
redex.

We refer to an expression with a hole in it, such as (if O then e; else e3) €/, as an evaluation context.
The hole indicates the position of the redex (to be reduced by one of the rules App, If .., and If¢,..) for
the next step. Note that we may not use the rule Lam, Arg, or If to reduce the redex, since none of these
rules reduces the whole redex in a single step.

Since the hole in an evaluation context indicates the position of a redex, every expression is decom-
posed into a unique evaluation context and a unique redex under a particular reduction strategy. For the
same reason, not every expression with a hole in it is a valid evaluation context. For example, (e; e2) O
is not a valid evaluation context under the call-by-value strategy because given an expression (e e3) €/,
we have to reduce e; ey before we reduce ¢’. These two observations show that a particular reduction
strategy specifies a unique inductive definition of evaluation contexts. The call-by-value strategy results
in the following definition:

evaluation context k u= Olke|(A:A.e)k|if ktheneelsee

k e is an evaluation context for ¢’ e where ¢’ needs to be further reduced; (Az: A.e) « is an evaluation
context for (Az: A. e) ¢/ where ¢’ needs to be further reduced. Similarly if « then e; else es is an evaluation
context for if ¢’ then e; else e5 where e’ needs to be further reduced.

Let us write xJeK for an expression obtained by filling the hole in x with e. Here are a few examples:

OJ(Az:A.e")vK = (Az:A.e¢")v
(if O then ey else e9)J(Az: A. ") vK (if (\x:A.€"”) v then e else e3)
((if O then ey else eg) ') J(Ax:A.e”)vK = (if (Az:A.€”) vthen e else ez) ¢

A formal definition of kJeK is given as follows:

OJeK = e
(ke')JeK = krJeKeé
(Az:A.e')k)JeK = (Az:A.€e) kJeK

(if Kk then e; else e2)JeK = if kJeK then e; else ey

Now consider an expression which is known to reduce to another expression. We can write it as
xJeK for a unique evaluation context x and a unique redex e. Since xJeK is known to reduce to another
expression, e must also reduce to another expression ¢’. We write e — 3 €’ to indicate that the reduction
of e to ¢ uses the rule App, If., Or Ifpe. Then the following reduction rule alone is enough to
completely specify a reduction strategy because the order of reduction is implicitly determined by the
definition of evaluation contexts:

e—ge
———— Red B
kJeK — rJe'K

90 May 9, 2023

evaluation context k == O|ke|(Ax:A.e)k|if Ktheneelsee

(Az:A.e)v g [v/x]e
if truethene;elsee; =g e
if false then ej elseea g €2
e—ge
————— Redg
kJeK — kJe'K

Figure 8.1: Call-by-value operational semantics using evaluation contexts

evaluation context k = OJ|kelif ktheneelsee

(Az:A.e)e —p [e/z]e
if truethene; elsee; =3 e
if falsethenej elsees =5 e

er—ge
—————— Redpg
rJeK — rJe'K

Figure 8.2: Call-by-name operational semantics using evaluation contexts

The reduction relation g3 is defined by the following equations:

(Ax:A.e)v w—p [v/x]e
if truethenej elsees =3 e
if false thenej elsees =g e

Figure [8.1| summarizes how to use evaluation contexts to specify the call-by-value operational se-
mantics. An example of a reduction sequence is shown below. In each step, we underline the redex and
show how to decompose a given expression into a unique evaluation context and a unique redex.

(if (Axz:bool. x) true then Ay:bool. y else Az:bool. z) true
= ((if O then Ay:bool. y else Az:bool. z) true)J(Az: bool.) trueK
— ((if O then Ay:bool. y else Az:bool. z) true)JtrueK Redg
= (if true then \y:bool.y else A\z:bool. z) true
= (O true)Jif true then A\y:bool.y else Az:bool. zZK
— (O true)JAy:bool. yK Redg
= (Ay:bool.y) true
= 0OJ(\y:bool.y) trueK
— OJtrueK Redg
= true

In order to obtain the call-by-name operational semantics, we only have to change the inductive
definition of evaluation contexts and the reduction relation 3, as shown in Figure With a proper
understanding of evaluation contexts, it should also be straightforward to incorporate those reduction
rules in Chapter §into the definition of evaluation contexts and the reduction relation + 5. The reader

is encouraged to try to augment the definition of evaluation contexts and the reduction relation 4.
See Figures|8.3|and [8.4] for the result.

Exercise 8.1. Give a definition of evaluation contexts corresponding to the weird reduction strategy
specified in Exercise

8.2 Type safety

As usual, type safety consists of progress and type preservation:

May 9, 2023 91

evaluation context ko u= - | (Rye) | (v,R) | fst k| snd & |
inly k|inrg k| case kof inl z.e | inrax.e

fst (v1,v2) —p v
snd (v1,v2) g U2

caseinlg vofinlzy.eq |inrze.ea g |
caseinrqvofinlzy.er |inrzo.ea g [v/xa]es
fixx:A.e g [fixz:A e/x]e

Figure 8.3: Extension for the eager reduction strategy

evaluation context kK u= .- |fstk|sndk|case kof inlx.e|inrz.e

fst (61,62) =3 €1
snd (61,62) =g €2
caseinlg eof inlzi.eq |inrzg.ea g [e/z1]es
caseinrg eof inlzi.eq |inrze.ea g [e/:cg]eg
fixx:A.e g [fixz:A e/xle

Figure 8.4: Extension for the lazy reduction strategy

Theorem 8.2 (Progress). If - e : A for some type A, then either e is a value or there exist ' such that e — ¢'.
Theorem 8.3 (Type preservation). IfT'Fe: Aande — €/, thenT e : A.

Since the rule Redg uses not only a subexpression of a given expression but also an evaluation
context for it, the proof of type safety requires a new typing judgments for evaluation contexts. We
write I' - k : A = (' to mean that given an expression of type A, the evaluation context x produces an
expression of type C:

I'Fr:A=C & ifT'Fe: A thenT FrlJeK: C

Wewritex : A= Cfor-Fr:A=C.
The following inference rules are all admissible under the above definition of I' - x : A = C. That
is, we can prove that the premises imply the conclusion in each inference rule.

I'tk:A=B—-C TtFe:B

FFD:AéADCtX I'trke: A= C Lamee
I'FXz:B.e: B—>C Thk: A:>BA I'tk:A=bool T'ke :C Fl—englf
I'(A\z:B.e)k: A= C I'kif kthen ey elseey : A= C o

Proposition 8.4. The rules Octy, Lamerx, Argey,, and If iy are admissible.

Proof. By using the definition of I' - x : A = C. We show the case for the rule Lamcy.
I'tk:A=B—~C TI'Fe:B

Case 'Frke: A= C Lamey.

I'tk:A=B—CandI'Fe: B assumptions
I'e':A assumption
I'trJK: B—=C fromI'Frk: A= B—CandT'Fe : A
I'-rJeKe:C by the rule —E
'k (ke)Je'K:C from kJe'K e = (k e)Je'K
I'trke:A=C fromT ke :AandTF (ke)Je'K: C

O
The proof of Theorem [8.2]is similar to the proof of Theorem The proof of Theorem [8.3|uses the
following lemma whose proof uses Lemma

Lemma 8.5. IfT'F rJeK : C, thenT' Fe: Aand 'k : A = C for some type A.

92 May 9, 2023

Proof. By structural induction on x. We show the case for k = £’ €’.

Caserk =K' ¢

I'FrJeK: C assumption
'k (k'JeK) e : C kJeK = (k'JeK) ¢’
I'-k'JeK: B—Cand T ¢’ : B for some type B by Lemma [4.§|
I'te:Aand T+ &' : A= B—C for some type A by induction hypothesis on /'
I'tr'e:A=C by the rule Lam
'Fk:A=C O

8.3 Abstract machine C

The concept of evaluation context leads to a concise formulation of the operational semantics, but it is
not suitable for an actual implementation of the simply typed A-calculus. The main reason is that the
rule Redg tacitly assumes an automatic decomposition of a given expression into a unique evaluation
context and a unique redex, but it may in fact require an explicit analysis of the given expression in
several steps. For example, in order to rewrite

e = (if (A\z:A.€e")vthene; elseey) €

as ((if O then eq else e3) €)J(Az: A. ") vK, we would analyze e in several steps:

e OJ(if (Ax:A.e"”) v then e; else es) e'K
(O e)Jif (Az:A.e") vthen e else eoK

= ((if O then ey else e3) ") J(Ax: A. ") vK

The abstract machine C is another formulation of the operational semantics in which such an analysis
is explicit.

Roughly speaking, the abstract machine C replaces an evaluation context by a stack of frames such
that each frame corresponds to a specific step in the analysis of a given expression:

frame o) Oel (Az:A.e)O|if Othen ey else ey
stack o == 0O|o;¢

Frames are special cases of evaluation contexts which are not defined inductively. Thus we may write
¢JeK for an expression obtained by filling the hole in ¢ with e. A stack of frames also represents an
evaluation context in that given an expression, it determines a unique expression. To be specific, a stack
o and an expression e determine a unique expression oJeK defined inductively as follows:

OJeK = e
(o;0)JeK = oJpJeKK

If we write o as O; ¢1; ¢2; - - - 5 ¢y, for n > 0, 0JeK may be written as
OJo1dead- - - JpJeKK - - - KKK.

Now, for example, an implicit analysis of e = (if (Az:A.€"”) v then e, else e2) ¢’ shown above can be
made explicit by using a stack of frames:

e = (O;O¢;if Othen ey else eg)J(Ax:A.e”) vK

Note that the top frame of a stack ¢; ¢ is ¢ and that the bottom of a stack is always O.

A state of the abstract machine C is specified by a stack o and an expression ¢, in which case the
machine can be thought of as reducing an expression oJeK. In addition, the state includes a flag to
indicate whether e needs to be further analyzed or has already been reduced to a value. Thus we use
the following definition of states:

state s u= owe|oc4av

May 9, 2023 93

e o » e means that the machine is currently reducing oJeK, but has yet to analyze e.

e 0 < v means that the machine is currently reducing ¢ JuK and has already analyzed v. That is, it
is returning v to the top frame of o.

Thus, if an expression e evaluates to a value v, a state o » e will eventually lead to another state o « v.
As a special case, the initial state of the machine evaluating e is always O » e and the final state O <€ v
if e evaluates to v.

A state transition in the abstract machine C is specified by a reduction judgment s —¢ s’; we write
—¢ for the reflexive and transitive closure of —¢ . The guiding principle for state transitions is to
maintain the invariant that e —* v holds if and only if ¢ » ¢ —¢ o € v holds for any stack ¢. The rules
for the reduction judgment s ¢ s’ are as follows:

Valc Lamc

oP»V—cOo 4V opeeyt=co;dey P ey

Argc Appc

o;0e; 4z Acerco;(Az:Ace) 0P e o;(Ax:A.e) 0 qvi—cow [v/z]e

If

o » if ethen eq else e5 ¢ o;if O theneq else ey » e

IftrueC

IffalseC

o;if O then ey else eo A true —c o P €3 o;if O then e else e; « false ¢ o B €5

An example of a reduction sequence is shown below. Note that it begins with a state O » e and ends
with a state O <« v.

O » (if (Az:bool. z) true then Ay:bool. y else Az:bool. z) true Lamc
—c O; 0 true » if (Ax:bool. x) true then Ay:bool. y else Az :bool. z If
¢ O; 0 true; if O then Ay:bool. y else Az:bool. z » (Az:bool. x) true Lamc
¢ O;0 true; if O then Ay:bool.y else Az:bool. z; O true » Az :bool. © Valc
—c O;0 true; if O then Ay:bool. y else Az:bool. z; O true € Az :bool. x Argc
—c 0;0 true; if O then Ay:bool.y else Az:bool. z; (Az:bool.z) O » true Valc
¢ O; O true;if O then Ay:bool. y else Az:bool. z; (Ax:bool.) O 4 true Appc

—c O;0 true;if O then Ay:bool.y else A\z:bool. z » true Valc
—c O; 0 true;if O then Ay:bool. y else Az:bool. z « true If triec
—c O;0true » Ay:bool.y Valc
—c 0O;0true € Ay:bool.y Argc
—c O;(Ay:bool.y) OO0 » true Valc
—c O;(Ay:bool.y) O « true Appc
—c O » true Valc

—c O «true

8.4 Correctness of the abstract machine C

This section presents a proof of the correctness of the abstract machine C as stated in the following
theorem:

Theorem 8.6. ¢ —* vifandonly if O » e —¢ O < v.

A more general version of the theorem allows any stack ¢ in place of O, but we do not prove it here.
For the sake of simplicity, we also do not consider expressions of type bool altogether.

Itis a good and challenging exercise to prove the theorem. The main difficulty lies in finding several
lemmas necessary for proving the theorem, not in constructing their proofs. The reader is encouraged
to guess these lemmas without having to write their proofs.

The proof uses a generalization of kJ-K and ¢J-K over evaluation contexts:

QIR = oJkK = &k
(ke)JKWK = krJk'Ke _ -
(M\:A.e) K)IKK = (Mr:A.e) kKK (0:0)IiK = oJpJrKK

94 May 9, 2023

Note that kJx'K and oJxK are evaluation contexts.

Proposition 8.7. kJx'JeKK = rJr'KJeK.

Proof. By structural induction on . We show two cases.

Case k = [O:
O0Jx'JeKK = k'JeK = 0Jx'KJeK

Casek = k" e":

(k" ") IK'JeKK = k" Jrk'JeKK ¢’ = k" Jk'KJeK " = (k" Jk'K €”)JeK = (k" €’)J'KJeK O
Proposition 8.8. oJxJeKK = ogJxKJeK.

Proof. By structural induction on o. The second case uses Proposition[8.7}

Case o = [:
OJrJeKK = rJeK = 0JrkKJeK.

Caseo =0o';¢:
(0/;0)JcJeKK = 0’ JpJkJeEKKK = 0’ JpJkKIJeKK = ¢/ JpJkKKJeK = (¢'; ¢)JrKJeK. O

Lemma 8.9. For o and «, there exists o’ such that o » kJeK —¢ o' » eand 0JkK = o’ JOK for any expression
e.

Proof. By structural induction on «. We show two cases.

Case k = O:
Weleto’ =o.

Caserk =K' e":

o (Ke)JeK=0w r'JeKe —co;0e » k' JeK by the rule Lamc
o;0€e » K'JeK =o' »eand (0;0¢€)J'K = 0’ JOK by induction hypothesis
cJkK = 0Jk' €K = 0J(O &)J'KK = (0;0 ¢/)Jx'K = ¢/ JOK O

Lemma 8.10. Suppose oJeK = rJ f vK where f is a M-abstraction. Then one of the following cases holds:
(Dowe—go »r'IJfvKand o' JKK =k
2)o=c;0vand e = fand o' JOK = &
B)o=0c;f0ande=vand c'JOK = k

Proof. By structural induction on 0. We show two cases.

Caseo =

oJeK = e =rJfvK assumption
cw»e=0w»r]fvK

Mowe—gorrJfvKand OJkK =&

Caseoc=c";0¢€":
oJeK = (o/;0¢)JeK = o’'J(D0 €¢')JeKK = o'Je 'K = kJ f vK

Subcase (1) o’ » e e’ ¢ o’ » £'Jf vKand 6”J&'K = k: by induction hypothesis on o’

awee =coioe pego’ »rIf K assumption
Dowe—cd”"»r'IfvKand o”"JKK = &

o' =c¢"andee =r'Jf vK,and ¥’ = O assumption

e=fande =v
2 o=0;0vande= fand ¢'JOK = ¢"JK'K = &

May 9, 2023 95

o' =c"andee’ =k'Jf vK,and ¥’ = k" €'

e=r"Jf vK
Dowe—ior "Jf vKand

oc'=c¢"andee =r'Jf vK,and k' = e K"

e is a A\-abstraction and e’ = " J f vK

Mowe=c;0€e pe—co’;0e ae—ca’;eame =o5eamw "Jf vK
and (o’;e 0)J"K = o'Je K"K = 0d"JK'K = Kk

Subcases (2) and (3) impossible

ee # fandee #v

assumption

oJk'"K = (6";0€)J"K =0"Jk" K =0"JK'K = &

assumption

O

Lemma 8.11. Suppose 0JeK = xJf vK where f is a A-abstraction and f v g ¢'. Then o » e = o* » €

and 0*Je'K = kJe'K.

Proof. By Lemma we need to consider the following three cases:

Dyowe—id »rIfvKand o' JK'K = &
owbe ¢ dwrIfvK

R where ¢'Jk'K = ¢”JOK by Lemma

—~c d;guvw f
—c o;O0vaf
—c dsfomw
—c o f0<aw
—c o' we

0"Je'K = ¢"”JO0Je'KK = ¢”"JoKJe'K = ¢’ J'KJe'K = kJe'K

We let o* = o,

2)oc=c¢;0vande= fand ¢’JOK = &
cwe = Jdi;ovef

e I
c’'Je'K = ¢'J0Je’KK = ¢’ JoKJe'K = kJe'K
We let o* = ¢'.

(B)o=0¢';foande=vand o’JOK = &
cwe = Jdi;foww
—=e a e
o'Je'K = ¢’JOJe'KK = ¢/JOoKJe'K = kJe'K
Welet o* = o’.

by Proposition

by Proposition

by Proposition
O

Corollary 8.12. Suppose e1 +— eg and oJeK = e1. Then there exist o’ and e’ such that o » e —¢ o’ » €' and

o' Je'K = es.

We leave it to the reader to prove all results given below.
Proposition 8.13. Suppose e —* vand cJe'K =e. Then o » ¢/ —¢ O < v.

Corollary 8.14. Ife =* v, then O » e —¢ O < v.

Proposition 8.15.

Ifo» ersc o’ » e, then oJeK —* o’ Je'K.
Ifow errc o 4, then oJeK —* o’ Ju'K.

Corollary 8.16.

Ifowe—g o » e, then oJeK —* o' Je'K.
Ifowe—Eo 4, then oJeK —* o' JU'K.

Corollary 8.17. If O » e —¢ O € v, then e —* v.

Corollaries and prove Theorem

96

May 9, 2023

8.5 Safety of the abstract machine C

The safety of the abstract machine C is proven independently of its correctness. We use two judgments
to describe the state of C with three inference rules given below:

e s okay means that s is an “okay” state. That is, C is ready to analyze a given expression.

e s stop means that s is a “stop” state. That is, C has finished reducing a given expression.

cJOK: A= C -Fe: A Okay, cJOK: A= C -l—v:AOkay v A

o 4 v okay < O <« stop Stopq

The first clause in the following theorem may be thought of as the progress property of the abstract
machine C; the second clause may be thought of as the “state” preservation property.

Theorem 8.18 (Safety of the abstract machine C).
If s okay, then either s stop or there exists s’ such that s —c s'.
If s okay and s —c s, then s’ okay.

8.6 Exercises

Exercise 8.19. Prove Theorems[8.2land 8.3

Exercise 8.20. Consider the simply typed A-calculus extended with product types, sum types, and the
fixed point construct.

expression e = xz|Xx:A.e|ee|(ee)|fste|snde]()]|
inlgelinrye|caseeofinlz.e|inrz.e|fixz:A. e |
true | false | if e then e else e
value v = Ax:A.el|(v,v)]()|inlgv]|inrg v true | false

Assuming the call-by-value strategy, extend the definition of frames and give additional rules for the
reduction judgment s —¢ s for the abstract machine C. See Figure[8.5/for an answer.

Exercise 8.21. Prove Theorem[8.18

May 9, 2023 97

98

frame ¢ == DelvO|(Oe)|(v,0)|fstT]|sndO|
inly O]inry O] caseOof inl z.e |inrx.e|if Othen e; else ey

Pairc P air&

ow (e1,e2) —co;(0,e2) > e o;(0,e2) A vy —c o;(v,0) > e

Pair?
O';(Ul,lj)4’l]2 '—)cJ‘('Ul,’Ug) ¢

stc Fstc

owfste—co;fstOme o;fst O <« (v1,v2) —c o €v;

Sndc Sndy.

ocwsnde—co;sndO P e o;snd O 4 (v1,v2) —c o 4 vy
/

Inlc nlc

owinlyercojinlyOme o;inlg O 4v—>co dinlyv

Inrc Im"'c

oW inrger—>cointg 0P e o;infg 0 4V +—c o Ainfy v

Casec

o » caseeof inl zy.ep | inrxg.e2 —c o;case O of inl zy.eq | inrxa.e0 B e

. . . Casec
o;case O of inlzy.e1 | inrza.eq inly v i—c o » [v/x1]ey

"
Casec

o;case O of inlxy.eq | inr 2. €2 dinry v i—c o B [v/22]es

Fixc

owfixz:Ae—cow [fixz:A e/zle

Figure 8.5: Abstract machine C for product types, sum types, and the fixed point construct

May 9, 2023

Chapter 9

Environments and Closures

The operational semantics of the simply typed (or untyped) A-calculus discussed so far hinges on sub-
stitutions in reducing such expressions as applications, case expressions, and the fixed point construct.
Since the definition of a substitution [¢’/x]e analyzes the structure of e to find all occurrences of z, a
naive implementation of substitutions can be extremely inefficient in terms of time, especially because
of the potential size of e. Even worse, may not appear at all in e, in which case all the work put into
the analysis of e is wasted.

This chapter presents another form of operational semantics, called environment semantics, which
overcomes the inefficiency of the naive implementation of substitutions. The environment semantics
does not entirely eliminate the need for substitutions, but it performs substitutions only if necessary by
postponing them as much as possible. The development of the environment semantics also leads to the
introduction of another important concept called closures, which are compact representations of closed
A-abstractions (i.e., those containing no free variables) generated during evaluations.

Before presenting the environment semantics, we develop a new form of judgment for “evaluating”
expressions (as opposed to “reducing” expressions). In comparison with the reduction judgment, the
new judgment lends itself better to explaining the key idea behind the environment semantics.

9.1 Evaluation judgment

As in Chapter([8| we consider the fragment of the simply typed A-calculus consisting of the boolean type
and function types:

type A = P|A-A

base type P = bool

expression e == xz|Xx:A.el|ee]true]|false|if etheneelsee
value v = Ax:A.e|true|false

In a certain sense, a reduction judgment e +— ¢’ takes a single small step toward completing the
evaluation of e, since the evaluation of e to a value requires a sequence of such steps in general. For this
reason, the operational semantics based on the reduction judgment e — ¢’ is often called a small-step
semantics.

An opposite approach is to take a single big step with which we immediately finish evaluating a
given expression. To realize this approach, we introduce an evaluation judgment of the form e — v:

e—v & ecevaluates tov

The intuition behind the evaluation judgment is that e < v conveys the same meaning as e —* v (which
we will actually prove in Theorem[9.2). An operational semantics based on the evaluation judgment is
often called a big-step semantics.

We refer to an inference rule deducing an evaluation judgment as an evaluation rule. Unlike a re-
duction judgment which is never applied to a value (i.e., no reduction judgment of the form v — e),
an evaluation judgment v — v is always valid because v —* v holds for any value v. The three reduc-
tion rules Lam, Arg, and App for applications (under the call-by-value strategy) are now merged into a
single evaluation rule with three premises:

99

e1 = Ar:Ae ey vy [va/zle = w
Ar:A.e— A x:A.e Lam e1 ea — v App

e true e — v e false ey — v
if ethen ey else es <> v = ™ if e then e; else e3 < v

False Iffalse

true < true True false < false

Note that there is only one rule for each form of expression. In other words, the evaluation rules are
syntax-directed. Thus we may invert an evaluation rule so that its conclusion justifies the use of its
premises. (See Lemmafor a similar example.) For example, e; e2 < v asserts the existence of Az: A. e
and v, such that e; — Az: A.e, e3 < vy, and [ve/x]e — v.

The following derivation (with evaluation rule names omitted) shows how to evaluate
(Az:bool.) ((Ay:bool.y) true) to true in a single “big” step:

Ay:bool.y < Ay:bool.y true — true [true/yly — true

Az :bool. z < Az:bool. (Ay:bool.y) true < true [true/x]x < true
(Az:bool. z) ((Ay:bool.y) true) < true

Exercise 9.1. For the fragment of the simply typed A-calculus consisting of variables, A-abstractions,
and applications, give rules for the evaluation judgment e — v corresponding to the call-by-name re-
duction strategy. Also give rules for the weird reduction strategy specified in Exercise [3.10}

Theorem [9.2] states the relationship between evaluation judgments and reduction judgments; the
proof consists of proofs of Propositions[9.3land

Theorem 9.2. e — v if and only if e —* v.
Proposition 9.3. If e — v, then e —* v.
Proposition 9.4. If e —* v, then e — wv.

The proof of Proposition[9.3|proceeds by rule induction on the judgment e < v and uses Lemma(9.5}
The proof of Lemma(J.5|essentially uses mathematical induction on the length of the reduction sequence
e —* €, but we recast the proof in terms of rule induction with the following inference rules (as in

Exercise3.11):
e—e’ e
e—*e

Refl Trans

e—*e
Lemma 9.5. Suppose e —* ¢’
(1)ee —=*e e
(2) (Az:A.e")er—* (Ax:A.e") €.
(3) if e then e; else ey —* if €’ then e else es.

Proof. By rule induction on the judgment e —* ¢’. We consider the clause (1). The other two clauses are
proven in a similar way.

Case o5 ¢ P where e = e:
ee —*e e’ from e ¢’ = ¢’ ¢ and the rule Refl
e e e —*e
Case — Trans
e—*e
ere’ —*e e by induction hypothesis on e; —* ¢’
" " f € C L
———— Lam
ee’ e e TOM ¢ oy ¢, e
v e ee' e e —rel e
ee’ —*ee from T T Trans
ee’ —*ee
O

Lemma 9.6. Ife —* e/ and ¢/ —* ¢, then e —=* €.

100 May 9, 2023

Proof. See Exercise[3.11} O

Proof of Proposition By rule induction on the judgment e < v. If e = v, then e —* v holds by the rule
Refil. Hence we need to consider the cases for the rules App, If ., and Ifg, .. We show the case for the
rule App.

e1 > Ar: A€l eg s vy [va/x]e =

Case e = App wheree = e; ea:

er =" Ar: A€ by induction hypothesis on e; < Az:A.¢€
e1ea =" (A\r:A.€e) ey by Lemma
ex —* Uy by induction hypothesis on e; — v
(Az:A.€/) ea —=* (Az:A.€) vy by Lemma 9.5]
[va/x]e —* v by induction hypothesis on [vs/z]e’ — v
(Az:A.€) vy =" v (Az:A.€') vy — [vp/x]e! P [va/z]e’ =" v 7

(Az:A.e) vy —* v rans

el ey —* v from Lemma[.6|and e1 ez —* (Az:A.€’) e,

(Ax:A.e) eg —* (Ax:A.€) vy,

(Ax:A.e') vy =" .

O

The proof of Proposition [9.4] proceeds by rule induction on the judgment e —* v, but is not as

e—e emfu

i e—*v

tion hypothesis on ¢ —* v, we obtain ¢’ — v. Then we need to prove e — v using e — ¢’ and ¢’ — v,

which is not addressed by the proposition being proven. Thus we are led to prove the following lemma
before proving Proposition

straightforward as the proof of Proposition|9.3| Consider the case Trans . By induc-

Lemma 9.7. Ife > ¢ and €' — v, then e — v.
Proof. By rule induction on the judgment e — ¢’ (not on e’ — v). We show a representative case:

!
er — e , ,
Case ——————— Lam wheree=e; ez and e’ =¢] ea:
€1 €2 > €] €2

el = Ar:A.ef ex vy [va/z]ef — v

- App by the syntax-directedness of the evaluation rules
ey ey = v
e1 = Ax:A.ef by induction hypothesis on e; — €} with] — Az:A.ef
er = Ar:A.ef eg > vy [va/xlef —w
App O

€1 €2 — v

Proof of Proposition By rule induction on the judgment e —* v.

Case o5 ¢ B wheree = v:
e by the rule Lam, True, or False
! !/ *
e—~e —*u
— = Trans
Case P
e — v by induction hypothesis on e’ —* v
e v by Lemma[9.7jwith e — ¢’ and ¢/ — v

O

9.2 Environment semantics
The key idea behind the environment semantics is to postpone a substitution [v/z]e in the rule App by
storing a pair of v and z in an environment and then continuing to evaluate e without modifying it. When

we later encounter an occurrence of x within e and need to evaluate it, we look up the environment to
retrieve the actual value v for x. We use the following inductive definition of environment:

environment n u= -|nr=v

May 9, 2023 101

- denotes an empty environment, and x — v means that variable z is to be replaced by value v. As in
the definition of typing context, we assume that variables in an environment are all distinct.
We use an environment evaluation judgment of the formnte — v

nke—w & e evaluates to v under environment n

As an example, let us evaluate [true/x]if x then e; else e2 using the environment semantics. For the
sake of simplicity, we begin with an empty environment:

-k [true/z]if x then e; else ea — ?

Instead of applying the substitution right away, we evaluate if x then e; else e; under an augmented
environment x — true (which is an abbreviation of -, x < true):

x < true - if x then e else eg < 7
To evaluate the conditional expression x, we look up the environment to retrieve its value:

T <> true - x < true
x < true - if z then e else e3 — 7

Since the conditional expression evaluates to true, we take the if branch without changing the environ-

ment:
T — truek x < true = < trueke; — 7

T < true - if 2 then eq else e — 7

If we let e; = = and ey = z, we obtain the following derivation tree:

T <> true bz < true =z < trueb z < true
x < true b= if z then x else x < true

Note that the evaluation does not even look at expression z in the else branch (because it does not need
to), and thus accesses the environment only twice: one for x in the conditional expression and one for
z in the if branch. In contrast, an ordinary evaluation judgment if x then z else z < true would apply a
substitution [true/z]x three times, including the case for z in the else branch (which is unnecessary after
all).

Now let us develop the rules for the environment evaluation judgment. We begin with the following
(innocent-looking) set of rules:

Tr—ven
nkr—wv

Var, Lam,

nEAx:A.e— Ax:A.e

nker = Ax:A.e nkey—wve nr—uvke—w
nkepes — v

App,

€ False,

- ﬁ. -
7k true < true " n F false — false

nke—true nke —v nke—false nkey—wv
nhifethene elsees v =~ "™ pnkif ethene; else ey — v

Iffa Isee

The rule Var, accesses environment 1 to retrieve the value associated with variable . The third premise
of the rule App, augments environment n with # — v, before starting to evaluating expression e.

It turns out, however, that two of these rules are faulty! (Which ones?) In order to identify the source
of the problem, let us evaluate

(Az:bool. Ay:bool. if x then y else false) true

Note the use of the turnstile symbol I-. Like a typing judgment I' - e : A, an environment evaluation judgment is an example
of a hypothetical judgment in which & < v in 1 has exactly the same meaning as in an ordinary evaluation judgment x — v, but
is used as a hypothesis. Put another way, there is a good reason for using the syntax = < v for elements of environments.

102 May 9, 2023

using the environment semantics. The result must be the same closed A-abstraction that the following
evaluation judgment yields:

(Az:bool. Ay:bool.if x then y else false) true < Ay:bool. if true then y else false
To simplify the presentation, let us instead evaluate f true under the following environment:
n = f < Az:bool. \y:bool.if x then y else false
Then we expect that the following judgment holds:
1k f true < Ay:bool. if true then y else false

The judgment, however, does not hold because f true evaluates to a A-abstraction with a free variable
init:

nk f < Ax:bool. \y:bool.if = then y else false
n k- true < true
7, x < true F Ay :bool. if z then y else false < Ay :bool. if x then y else false

1t f true = Ay:bool. if x then y else false ApPe

Why does the resultant A-abstraction contain a free variable x in it? The reason is that the rule Lam,
(which is used by the third premise in the above derivation) fails to take into account the fact that values
for all free variables in Az : A. e are stored in a given environment. Thus the result of evaluating Az: A. e
under environment 7 should be not just Az:A.e, but Az: A. e together with additional information on
values for free variables in Axz:A.e, which is precisely the environment 7 itself! We write a pair of
Az:A.e and n as [n, Az: A. e], which is called a closure because the presence of 1 turns Az: A. e into a
closed expression. Accordingly we redefine the set of values and fix the rule Lam, as follows:

value v = [n,Az:A.e]|true | false

Lam,

nkEAx:A.e = [n,Ax: A €]

Now values are always closed. Note that e and v in 7 - e < v no longer belong to the same syntactic
category, since v may contain closures. That is, a value v as defined above is not necessarily an expres-
sion. In contrast, e and v in e < v belong to the same syntactic category, namely expressions, since
neither e nor v contains closures.

Now that its first premise yields a closure, the rule App, also needs to be fixed. Suppose that e,
evaluates to [/, A\x: A.e] and e to vy. Since 1’ contains values for all free variables in Az: A.e, we
augment 7’ with < v to obtain an environment containing values for all free variables in e. Thus we
evaluate e under 1/, z < vy:

nker =, \x:A.e] nhexa—=uvy n,x—>vkFe—=wv

A
nkepey—w PPe

Note that the environment 1 under which Az : A. e is obtained is not used in evaluating e.

With the new definition of the rules Lam, and App,, f true evaluates to a closure equivalent to
Ay :bool. if true then y else false. The following derivation uses an environment 7 defined as
f = [, Ax:bool. \y:bool.if z then y else false].

nk f <= [, Ax:bool. Ay:bool. if x then y else false]
n bk true < true
x <> true - Ay:bool. if x then y else false < [< true, A\y:bool. if z then y else false]

. . App,
nk f true — [z < true, \y:bool. if = then y else false]

May 9, 2023 103

In order to show the correctness of the environment semantics, we define two mutually recursive
mappings * and @:

[, Az:A.e]” = (Mz:A.e)@n c@. — o
true* = true a N B * /2] (e @ 1)
false* = false eEmrT o= /e =

* takes a value v to convert it into a corresponding closed value in the original simply typed A-calculus.
@ takes an expression e and an environment 7 to replace each free variable = in e by v* if z — visinn;
that is, it applies to e those postponed substitutions represented by 7.

The following propositions state the correctness of the environment semantics:

Proposition 9.8. If nt e — v, then e @ n — v*.
Proposition 9.9. If e < v, then - e — v/ and v'* = v.
In order to simplify their proofs, we introduce an equivalence relation =:
Definition 9.10.
v =c v if and only if v* = v'".
n =cn' ifand only if x — v € nmeans x — v’ € 1’ such that v =. v, and vice versa.

Intuitively v = v’ means that v and v’ (which may contain closures) represent the same value in the
simply typed A-calculus.

Lemma 9.11.
(ee)@n = (e@n) (e @n)
(M:A.e)@n = dx:A. (e@np)
(if ethenejelseey) @y = ife@mnthene; Qnelsees @1
Proof of Proposition By rule induction on the judgment n - e < v. O

Lemma9.12. Ifnke—vandn=cn, thenn' e — v and v = v'.
Lemma 9.13. Ifnt [v/z]le — v/, then n,x — v e — v and v’ = v".

Lemma9.14. IfnkFe@Qn' — v, thenn,n' Fe— v and v = v'.

Proof of Proposition By rule induction on the judgment e < v. O

9.3 Abstract machine E

The environment evaluation judgment 7 I e < v exploits environments and closures to dispense with
substitutions when evaluating expressions. Still, however, it is not suitable for a practical implementa-
tion of the operational semantics because a single judgment n - e < v accounts for the entire evaluation
of a given expression. This section develops an abstract machine E which, like the abstract machine C,
is based on a reduction judgment (derived from the environment evaluation judgment), and, unlike the
abstract machine C, makes no use of substitutions.

As in the abstract machine C, there are two kinds of states in the abstract machine E. The key
difference is that the state analyzing a given expression now requires an environment; the definition of
stack is also slightly different because of the use of environments:

e 0 » ¢ @7 means that the machine is currently analyzing e under the environment 7. In order to
evaluate a variable in e, we look up the environment 7.

e 0 <4 v means that the machine is currently returning v to the stack 0. We do not need an environ-
ment for v because the evaluation of v has been finished.

104 May 9, 2023

If an expression e evaluates to a value v, the initial state of the machine would be O » e @ - and the final
state O <« v where O denotes an empty stack.

The formal definition of the abstract machine E is given as follows:

value v u= [n,Ax:A. e]|true | false
environment n u= -|nr—=v
frame ¢ == OpelnAz:A el O]if O, then e else ey
stack o == 0O|o;¢
state s = oweQn|oav

An important difference from the abstract machine C is that a hole within a frame may now need an
environment:

e A frame O, e indicates that an application €’ e is being reduced and that the environment under
which to evaluate ¢’ e is . Hence, after finishing the reduction of ¢/, we reduce e under environ-
ment 7).

e A frame if O, then e; else ey indicates that a conditional construct if e then e; else ey is being
reduced and that the environment under which to evaluate if e then e; else e is . Hence, after
finishing the reduction of e, we reduce either e; or e; (depending on the result of reducing e)
under environment 7.

Then why do we not need an environment in a frame [, Az : A. e] O0? Recall from the rule App, that
after evaluating e; to [, Az: A.] and ez to v, we evaluate e under an environment 1, x < vs. Thus n
inside the closure [, Az: A. €] is the environment to be used after finishing the reduction of whatever
expression is to fill the hole 0O, and there is no need to annotate 0O with another environment.

With this intuition in mind, we are now ready to develop the reduction rules for the abstract machine
E. We use a reduction judgment s g s’ for a state transition; we write £ for the reflexive and
transitive closure of —g. Pay close attention to the use of an environment 7, < v in the rule Appg.

T —vE
" Varg Closureg
ocw»rQnisp o 4 op dr:Ae@Qnipo4anAz:A e
Lamg 7 7 Arge
o ereaQnpo;d,epe; Qn o;0, e 4, x:Ael =g o[, \z:A.ejOP e @Qn
A
o;mAz:Ael0qv—go»e@Qnr—v Pre
Fal
o » true Q n —g o 4 true UeE o » false @ n —g o « false aisee
- - I
o » if ethen ey else eg @ i =g o;if O, then eg elseex » e @ 7 Te
i IftrueE
o;if O, then e elsee; A true g o P> e Q7
- I
o;if O, then e else ex « false —g o B ey Q7 [tase

May 9, 2023 105

An example of a reduction sequence is shown below:

O » (Az:bool. Ay:bool.if x then y else false) true true Q - Lameg
—g O;0. true » (Az:bool. Ay:bool. if = then y else false) true @ - Lamg
—e O;0. true; O. true » Az :bool. Ay :bool. if x then y else false @ - Closureg
—g O; 0. true; O. true <€ [+, Az :bool. Ay:bool. if x then y else false] Arge
—e O;0. true; [, Az :bool. Ay :bool. if x then y else false] O » true @ - Trueg
—e O; 0. true; [, Az :bool. Ay:bool. if x then y else false] O « true Appe
—g O; 0. true » Ay:bool.if x then y else false @ z — true Closureg
—g O; 0. true « [x < true, Ay :bool. if = then y else false] Argg
—e O; [z < true, Ay:bool.if x then y else false] O » true @ - Trueg
—e O; [z <> true, Ay:bool. if = then y else false] O <« true Appe
—g O » if x then y else false @ x — true, y < true If e
—E 0 if Ozcstrue,ystrue then y else false » @ x — true,y — true Varg
—E D; |f Dm<—>true,y<—>true then Yy eIse false « true IftrueE
—e O»yQx < true,y — true Varg

—e O «true

The correctness of the abstract machine E is stated as follows:

Theorem 9.15. nFe = vifandonlyifoc » e @n—f o <.

9.4 Fixed point construct in the abstract machine E

In Section we have seen that a typical functional language based on the call-by-value strategy re-
quires that e in fix z: A. e be a A-abstraction. In extending the abstraction machine E with the fixed point
construct, it is mandatory that e in fix 2: A. e be a value (although values other than \-abstractions or
their pairs/tuples for e would not be particularly useful).

Recall the reduction rule for the fixed point construct:

fixz:A. e [fixz: A.e/xle
Since the abstract machine E does not use substitutions, a reduction of fix x: A. e must store x — fix x: A. e

in an environment. Thus we could consider the following reduction rule to incorporate the fixed point
construct:

owfixr:AeQnisgoweQnua—fixx:Ae e

Unfortunately the rule Fizg violates the invariant that an environment associates variables with values
rather than with general expressions. Since fix x: A. e is not a value, z — fix z: A. e cannot be a valid
element of an environment.

Thus we are led to restrict the fixed point construct to A-abstractions only. In other words, we
consider the fixed point construct of the form fix f: A— B. Az: A. e only. (We use the same idea to allow
pairs/tuples of A-abstractions in the fixed point construct.) Moreover we write fix f: A—B.Az:A.e as
fun f x: A. e and regard it as a value. Then fun f x: A. e may be interpreted as follows:

e fun f 2: A. e denotes a recursive function f with a formal argument « of type A and a body e.

Since fun f x: A. e denotes a recursive function, e may contain references to f.
The abstract syntax for the abstract machine E now allows fun f z: A. e as an expression and [, fun f x: A. €]
as a new form of closure:

expression e u= - |funfa:de
value v ou= - |[n,fun fa:A e
frame ¢ u= - |[nfun fz:A el O

106 May 9, 2023

A typing rule for fun f x: A. e may be obtained as an instance of the rule Fix, but it is also instructive
to directly derive the rule according to the interpretation of fun f x: A. e. Since e may contain references
to both f (because f is a recursive function) and x (because z is a formal argument), the typing context
for e contains type bindings for both f and z:

I'f:A—-B,x:A+e: B
I'tfun fz:Ae: A—B

Fun

The reduction rules for fun f z: A. e are similar to those for A-abstractions, except that the rule Appg
augments the environment with not only x < v but also f < [, fun f z: A. ¢] because f is a recursive
function:

R
owfun fo:A.e@Qn—go anfun fz:A e Closureg

7 / A?”gé{
o;0pex 4, fun fa:A el —go;[n,fun faz:AelOP e @n

R
oyn,fun fr:AelOqvimpow»e@n, f— [n,fun for:A e,z —v Appe

9.5 Exercises

Exercise 9.16. Why is it not a good idea to use an environment semantics based on reductions? That
is, what is the problem with using a judgment of the form n e — €'?

Exercise 9.17. Extend the abstract machine E for product types and sum types.

May 9, 2023 107

108 May 9, 2023

Chapter 10

Exceptions and continuations

In the simply typed A-calculus, a complete reduction of (Az:A.e) v to another value v’ consists of
a sequence of f-reductions. From the perspective of imperative languages, the complete reduction
consists of two local transfers of control: a function call and a return. We may think of a S-reduction
(Az:A.e) v — [v/z]e as initiating a call to Az: A. e with an argument v, and [v/z]e —* ¢’ as returning
from the call with the result v'.

This chapter investigates two extensions to the simply typed A-calculus for achieving non-local trans-
fers of control. By non-local transfers of control, we mean those reductions that cannot be justified by
B-reductions alone. First we briefly consider a primitive form of exception which in its mature form
enables us to cope with erroneous conditions such as division by zero, pattern match failure, and array
boundary error. Exceptions are also an excellent programming aid. For example, if the specification of
a program requires a function foo that is far from trivial to implement but known to be unused until
the late stage of development, we can complete its framework just by declaring foo such that its body
immediately raises an exceptionﬂ Then we consider continuations which may be thought of as a gen-
eralization of evaluation contexts in Chapter (8| The basic idea behind continuations is that evaluation
contexts are turned into first-class objects which can be passed as arguments to functions or return val-
ues of functions. More importantly, an evaluation context elevated to a first-class object may replace the
current evaluation context, thereby achieving a non-local transfer of control.

Continuations in the simply typed A-calculus are often compared to the goto construct of imperative
languages. Like the goto construct, continuations are a powerful control construct whose applications
range from a simple optimization of list multiplication (to be discussed in Section to an elegant
implementation of the machinery for concurrent computations. On the other side of the coin, continu-
ations are often detrimental to code readability and should be used with great care for the same reason
that the goto construct is avoided in favor of loop constructs in imperative languages.

Both exceptions and continuations are examples of computational effects, called control effects, in
that their presence destroys the equivalence between A-abstractions and mathematical functions. (In
comparison, mutable references are often called store effects.) As computational effects do not mix well
with the lazy reduction strategy, both kinds of control effects are usually built on top of the eager
reduction strategy.

10.1 Exceptions

In order to support exceptions in the simply typed A-calculus, we introduce two new constructs try e with e
and exn:
expression e u= .- |tryewithe|exn

Informally try e with ¢’ starts by evaluating e with an exception handler ¢’. If e successfully evaluates to
a value v, the whole expression also evaluates to the same value v. In this case, ¢’ is never visited and
is thus ignored. If the evaluation of e raises an exception by attempting to reduce exn, the exception

1 The exception Unimplemented in our programming assignments is a good example.
2Haskell uses a separate apparatus called monad to deal with computational effects.

109

/

handler ¢’ is activated. In this case, the result of evaluating ¢’ serves as the final result of evaluating
try e with ¢’. Note that ¢/ may raise another exception, in which case the new exception propagates to
the next try e,e.: with e/, ., such that e,..+ encloses try e with ¢’.

Formally the operational semantics is extended with the following reduction rules:

S Ezn'
exne s exn DT (\z:A.e)exn — exn

e1 — €} ,

try exn with e — e

"

Try Try

, - Try —————
try e; with eg > try e} with ey Y try v with e — v

The rules Ezn and Ezn’ say that whenever an attempt is made to reduce exn, the whole reduction is
canceled and exn starts to propagate. For example, the reduction of ((Az: A.e) exn) e’ eventually ends
up with exn:

((Az:A.e)exn) e’ — exne’ — exn

In the rule Try’, the reduction bypasses the exception handler e because no exception has been raised.
in the rule Try” the reduction activates the exception handler e because an exception has been raised.

Note that Ezn and Ezn’ are two rules specifically designed for propagating exceptions raised within
applications. This implies that for all other kinds of constructs, we have to provide separate rules for
propagating exceptions. For example, we need the following rule to handle exceptions raised within
conditional constructs:

- Exn”
if exn then ey else es — exn

Exercise 10.1. Assuming the eager reduction strategy, give rules for propagating exceptions raised
within those constructs for product types and sum types.

Exercise 10.2. Propose typing rules for the new constructs.

Exercise 10.3. Extend the definition of abstract machine E with exceptions.

10.2 A motivating example for continuations

A prime example for motivating the development of continuations is a recursive function for list mul-
tiplication, i.e., for multiplying all elements in a given list. Let us begin with an SML function imple-
menting list multiplication:

fun multiply 1 =

let
fun mult nil =1
| mult (n :: 1) = n % mult 1’
in
mult 1
end

We wish to optimize multiply by exploiting the property that in the presence of a zero in 1, the
return value of multiply is also a zero regardless of other elements in 1. Thus, once we encounter an
occurrence of a zero in 1, we do not have to multiply remaining elements in the list:

fun multiply’ 1 =

let
fun mult nil =1
| mult (0 :: 17) =0
| mult (n 17) = n * mult 1’
in
mult 1
end

110 May 9, 2023

multiply’ is definitely an improvement over multiply, although if 1 contains no zero, it runs slower
than multiply because of the cost of comparing each element in 1 with 0. multiply’, however, is
not a full optimization of multiply exploiting the property of multiplication: due to the recursive
nature of mult, it needs to return a zero as many times as the number of elements before the first zero
in 1. Thus an ideal solution would be to exit mult altogether after encountering a zero in 1, even without
returning a zero to previous calls to mult. What makes this possible is two constructs, callcc and throw,
for continuationsf]

fun multiply’’ 1 =
callcc (fn ret =>

let
fun mult nil = 1
| mult (O 1”) = throw ret 0
| mult (n 17) = n * mult 1’
in
mult 1
end)
Informally callcc (fn ret => ... declares a label ret, and throw ret 0 causes a non-local

transfer of control to the label ret where the evaluation resumes with a value 0. Hence there occurs no
return from mult once throw ret O isreached.
Below we give a formal definition of the two constructs callcc and throw.

10.3 Evaluation contexts as continuations

A continuation is a general concept for describing an “incomplete” computation which yields a “com-
plete” computation only when another computation is prepended (or preﬁxed) That is, by joining a
computation with a continuation, we obtain a complete computation. A A-abstraction Az: A. e may be
seen as a continuation, since it conceptually takes a computation producing a value v and returns a
computation corresponding to [v/z]e. Note that Az : A. e itself does not initiate a computation; it is only
when an argument v is supplied that it initiates a computation of [v/z]e. A better example of contin-
uation is an evaluation context x which, given an expression e, yields a computation corresponding to
xJeK. Note that like a A-abstraction, & itself does not describe a complete computation. In this chapter,
we study evaluation contexts as a means of realizing continuations.
Consider the rule Reds which decomposes a given expression into a unique evaluation context
and a unique subexpression e:
e—ge

———————— Redg
kJeK — kJe'K

Since the decomposition under the rule Redg is implicit and evaluation contexts are not expressions,
there is no way to store as an expression. Hence our first goal is to devise a new construct for seizing
the current evaluation context. For example, when a given expression is decomposed into « and e by
the rule Redg, the new construct would return a (new form of) value storing «. The second goal is to
involve such a value in a reduction sequence, as there is no point in creating such a value without using
it.

In order to utilize evaluation contexts as continuations in the simply typed A-calculus, we introduce
three new constructs: (k), callcc z. e, and throw e to €.

e (k) is an expression storing an evaluation context x; we use angle brackets () to distinguish it as
an expression not to be confused with an evaluation context. The only way to generate it is to
reduce callcc x. e. As a value, (k) is called a continuation.

e callcc z. e seizes the current evaluation context x and stores (k) in before proceeding to reduce e:

rJcallcc . eK — kJ[(k)/z]eK Callec

3 In SML/NJ, open the structure SMLofNJ.Cont to testmultiply’ ‘.
4Here “prepend” and “prefix” both mean “add to the beginning.”

May 9, 2023 111

In the case that the reduction of e does not use z at all, callcc z. e produces the same result as e.

e throw e to ¢’ expects a value v from e and a continuation (x’) from ¢’. Then it starts a reduction of
k' JuK regardless of the current evaluation context k:

kJthrow v to (kYK — x/JuK Throw

In general, x and «’ are unrelated with each other, which implies that the rule Throw allows us to
achieve a non-local transfer of control. We say that throw v to (k') throws a value v to a continuation

K.

The abstract syntax is extended as follows:

expression e == ---|callccz.e|throwetoe] (k)
value v ou= e [({K)
evaluation context Kk u= .- |throw k to e | throw v to Kk

The use of evaluation contexts throw x to e and throw v to x indicates that throw e to e’ reduces e before
reducing €’.

Exercise 10.4. What is the result of evaluating each expression below?

(1) fst callcc z. (true, false) —*
(2) fstcallcc . (true, throw (false, false) to) —*
(3) sndcallcc x. (throw (true, true) to x,false) +—* 7

In the case (1), x is not found in (true, false), so the expression is equivalent to fst (true, false). In the
case (2), the result of evaluating true is eventually ignored because the reduction of throw (false, false) to =
causes (false,false) to replace «callcc x.(true,throw (false, false) to z). Thus, in general,
fst callcc z. (e, throw (false, ¢’) to =) evaluates to false regardless of e and e’ (provided that the evalua-
tion terminates). In the case (3), false is not even evaluated: before reaching false, the reduction of
throw (true, true) to x causes (true, true) to replace callcc z. (throw (true, true) to z, false). Thus, in general,
snd callcc z. (throw (e, true) to z, ¢’) evaluates to true regardless of e and ¢/, where €’ is never evaluated:

(1) fst callcc z. (true, false) =" true
(2) fstcallcc z. (e, throw (false,e’) toz) —* false
(3) sndcallcc z. (throw (e, true) to z,e¢’) +—* true

Now that we have seen the reduction rules for the new constructs, let us turn our attention to their
types. Since (k) is a new form of value, we need a new form of type for it. (Otherwise how would we
represent its type?) We assign a type A cont to (k) if the hole in k expects a value of type A. That is, if
k1 A = C holds (see Section|8.2), (k) has type A cont:

type A = ...] Acont

k:A=C

'k (k) : Acont Context

It is important that a type A cont assigned to a continuation (k) specifies the type of an expression
e to fill the hole in &, but not the type of the resultant expression xJeK. For this reason, a continuation
is usually said to return an “answer” (of an unknown type) rather than a value of a specific type. For a
similar reason, a A-abstraction serves as a continuation only if it has a designated return type, e.g., Ans,
denoting “answers.”

The typing rules for the other two constructs respect their reduction rules:

I'z:Acontke: A I'keg: A T'kes: Acont

T'kecallccz.e: A Callee I't+throwe; toey : C Throw

The rule Callcc assigns type A cont to x and type A to e for the same type A, since if e has type A, then the
evaluation context when reducing callcc 2. e also expects a value of type A for the hole in it. callcc z. e

112 May 9, 2023

has the same type as e because, for example, z may not appear in e at all, in which case callcc z.¢e
produces the same result as e. In the rule Throw, it is safe to assign an arbitrary type C' to throw e; to ey
because its reduction never finishes: there is no value v such that throw e; to e; —* v. In other words,
an “answer” can be an arbitrary type.

An important consequence of the rule Callcc is that when evaluating callcc z. x, a continuation stored
in variable « cannot be part of the result of evaluating expression e. For example, callcc z. z fails to
typecheck because the rule Callcc assigns type A cont to the first z and type A to the second z, but there
is no way to unify A cont and A (i.e., A cont # A). Then how can we pass the continuation stored in
variable x to the outside of callcc x. €? Since there is no way to pass it by evaluating e, the only hope is
to throw it to another continuation! (We will see an example in the next section.)

To complete the definition of the three new constructs, we extend the definition of substitution as
follows:

[¢'/z]callccz.e = «callccx.e
[e'/z]callccy.e = «callccy.[e'/z]e if v #£y,y & FV(e)
[e'/z]throw e toea = throw [¢//x]e; to [e’/x]es

[e/al(r) = (x)
Type safety is stated in the same way as in Theorems[8.2]and

10.4 Composing two continuations
The goal of this section is to develop a function compose of the following type:
compose : (A— B)— B cont— A cont
Roughly speaking, compose f (k) joins an incomplete computation (or just a continuation) described by
f with to build a new continuation. To be precise, compose f (k) returns a continuation «’ such that

throwing a value v to " has the same effect as throwing f v to x.

Exercise 10.5. Give a definition of compose. You have to solve two problems: how to create a correct
continuation by placing callcc z. e at the right position and how to return the continuation as the return
value of compose.

The key observations are:
e throw v to (compose f (k)) is operationally equivalent to throw f v to (k).

e For any evaluation context «’, both throw f v to (k) and x'Jthrow f v to (k)K evaluate to the same
value. More generally, (throw f O to (k)) and (x'Jthrow f O to (k)K) are semantically no different.

Thus we define compose in such a way that compose f (k) returns (throw f O to (k)).
First we replace O in throw f O to (k) by callcc z. - - - to create a continuation (x’'Jthrow f O to (k)K)
(for a certain evaluation context x’) which is semantically no different from (throw f O to (k)):

compose = Af:A— B.Ak:B cont.throw f (calleccz.---) to k

Then x stores the very continuation that compose f k needs to return.
Now how do we return 2? Obviously callcc z. - - - cannot return = because x has type A cont while
- must have type A, which is strictly smaller than A cont. Therefore the only way to return z from - - -
is to throw it to the continuation starting from the hole in A\f: A— B. Ak: B cont. [0:

compose = Af:A— B.\k:DB cont.
callcc y. throw f (callcc x. throw x to y) to k

Note that y has type A cont cont. Since « has type A cont, compose ends up throwing « to a continuation
which expects another continuation!

May 9, 2023 113

10.5 Exercises

Exercise 10.6. Extend the abstract machine C with new rules for the reduction judgment s —¢ s’ so as
to support exceptions. Use a new state o <4<« exn to means that the machine is currently propagating an
exception.

114 May 9, 2023

Chapter 11
Subtyping

Subtyping is a fundamental concept in programming language theory. It is especially important in the
design of an object-oriented language in which the relation between a superclass and its subclasses may
be seen as a subtyping relation. This chapter develops the theory of subtyping by considering various
subtyping relations and discussing the semantics of subtyping.

11.1 Principle of subtyping

The principle of subtyping is a principle specifying when a type is a subtype of another type. It states
that A is a subtype of B if an expression of type A may be used wherever an expression of type B is
expected. Formally we write A < B if A is a subtype of B, or equivalently, if B is a supertype of A.

The principle of subtyping justifies two subtyping rules, i.e., inference rules for deducing subtyping
relations:

——— Refl

—ASB B=C Trans
A<A A<C =

The rules Refi< and Trans< express reflexivity and transitivity of the subtyping relation <, respectively.
The rule of subsumption is a typing rule which enables us to change the type of an expression to its
supertype:

I'te: A A<B
I'e:B

Sub

It is easy to justify the rule Sub using the principle of subtyping. Suppose I' -e: A and A < B. Since
e has type A (under typing context I'), the subtyping relation A < B allows us to use e wherever an
expression of type B is expected, which implies that e is effectively of type B.

There are two kinds of semantics for subtyping: subset semantics and coercion semantics. Under the
subset semantics, A < B holds if type A literally constitutes a “subset” of type B. That is, A < B holds
if a value of type A can also be viewed as a value of type B. The coercion semantics permits A < B if
there exists a unique method to convert values of type A to values of type B.

As an example, consider three base type nat for natural numbers, int for integers, and float for float-
ing point numbers:

base type P = nat|int]|float

If nat and int use the same representation, say, a 32-bit word, a value of type nat also represents an
integer of type int. Hence a natural number of type nat can be viewed as an integer of type int, which
means that nat < int holds under the subset semantics. If float uses a 64-bit word to represent a floating
point number, a value of type int is not a special value of type float because int uses a representation

115

incompatible with 64-bit floating point numbers. Thus int is not a subtype of float under the subset
semantics, even though integers are a subset of floating point numbers in mathematics. Under the coer-
cion semantics, however, int < float holds if there is a function, e.g., int2float, converting 32-bit integers
to 64-bit floating point numbers.

In the next section, we will assume the subset semantics which does not alter the operational se-
mantics and is simpler than the coercion semantics. We will discuss the coercion semantics in detail in

Section

11.2 Subtyping relations

To explain subtyping relations on various types, let us assume two base types nat and int, and a subtyp-
ing relation nat < int:

type A = P|A—A|AxA|A+A|ref A
base type P = nat|int

A subtyping relation on two product types tests the relation between corresponding components:

A<A" B<PB
Prod<
AxB<A xB =
For example, nat X nat is a subtype of int x int:
nat <int nat <int
Tod<

nat X nat <int X int

Intuitively a pair of natural numbers can be viewed as a pair of integers because a natural number is
a special form of integer. Similarly we can show that a subtyping relation on two sum types tests the
relation between corresponding components as follows:

A< A B<B
A+B < A+ B

Sum<

The subtyping rule for function types requires a bit of thinking. Consider two functions f : A— nat
and f': A—int. An application of f’ to an expression e of type A has type int (under a certain typing
context I):

' f e:int

If we replace f’ by f, we get an application of type nat, but by the rule of subsumption, the resultant
application can be assigned type int as well:

' fe:nat nat <int
'k fe:int

Su

Therefore, for the purpose of typechecking, it is always safe to use f wherever f’ is expected, which
implies that A— nat is a subtype of A—int. The converse, however, does not hold because there is no
assumption of int < nat. The result is generalized to the following subtyping rule:

B < B /

_°2=9 p
A—-B<A-—DB <

The rule Fun! says that subtyping on function types is covariant in return types in the sense that the
premise places the two return types in the same direction as in the conclusion (i.e., left B and right B’).
Then we can say that by the rules Prod< and Sum<, subtyping on product types and sum types is also
covariant in both components.

116 May 9, 2023

Now consider two functions ¢ : nat— A and ¢’ : int— A. Perhaps surprisingly, nat— A is not a sub-
type of int— A whereas int— A is a subtype of nat— A. To see why, let us consider an application of g
to an expression e of type nat (under a certain typing context I'):

I'Fg:nat—A T'Fe:nat
I'bge: A

—E

Since e can be assigned type int by the rule of subsumption, replacing g by ¢’ does not change the type
of the application:
I'e:nat nat <int
kg :int— A ke:int
I'kge: A

Sub

—E

Therefore int— A is a subtype of nat— A. To see why the converse does not hold, consider another
application of ¢’ to an expression e’ of type int:
kg :int—A ThEe :int
I'kg'e:A

—E

If we replace ¢’ by g, the resultant application does not even typecheck because ¢’ cannot be assigned
type nat:

CEe it o,
Pkg:nat—A Tte :nat E
I'kge : A -

We generalize the result to the following subtyping rule:

A< A 1
——=—— Funl
A—-B<A =B =

The rule Fun” says that subtyping on function types is contravariant in argument types in the sense that
the premise reverses the position of the two argument types from the conclusion (i.e., left A" and right
A).

We combine the rules Fun’ and Fun’ into the following subtyping rule:

A <A B<LPFB
A—-B<A—B

Fun<

The rule Fun< says that subtyping on function types is contravariant in argument types and covariant
in return types.

Subtyping on reference types is unusual in that it is neither covariant nor contravariant. Let us figure
out the relation between two types A and B when ref A < ref B holds:

277
ef A< ref B
Suppose that an expression e has type ref A and another expression ¢’ type ref B. By the principle of
subtyping, we should be able to use e wherever ¢’ is used. Since ¢’ has a reference type, there are two
ways of using ¢’: dereferencing it and assigning a new value to it.

As an example of the first case, consider a well-typed expression f (l¢’) where f has type B — C for
some type C. By the assumption ref A < ref B, expression f (le) is also well-typed. Since f has type
B—C and e has type A, the type of le changes from A to B, which implies A < B. As an example
of the second case, consider a well-typed expression ¢’ := v where v has type B. By the assumption
ref A < ref B, expression e := v is also well-typed. Since v has type B and e has type ref A, the type of
v changes from B to A, which implies B < A. These two observations lead to the following subtyping
rule for reference types:

May 9, 2023 117

A<B B<A

fA<refp <

Thus we say that subtyping on reference types is non-variant (i.e., neither covariant nor contravariant).

Another way of looking at the rule Ref< is to interpret ref A as an abbreviation of a function type.
We may think of ref A as ?— A for some unknown type ? because dereferencing an expression of
type ref A requires no additional argument (hence ?—) and returns an expression of type A (hence
— A). Therefore ref A < ref B implies 7 — A < 7— B, which in turn implies A < B by the rule Fun<.
We may also think ref A as A— unit because assigning a new value to an expression of type ref A re-
quires a value of type A (hence A—) and returns a unit (hence — unit). Therefore ref A < ref B implies
A— unit < B—unit, which in turn implies B < A by the rule Fun<.

While we have not investigated array types, subtyping on array types follows the same pattern as
subtyping on reference types, since an array, like a reference, allows both read and write operations on
it. If we use an array type array A for arrays of elements of type A, we obtain the following subtyping

rule:
A<B B<A

array A < array B

Array<

Interestingly the Java language adopts a subtyping rule in which subtyping on array rules is covari-
ant in element types:
A<B
array A < array B

Array<’

While it is controversial whether the rule Array<’ is a flaw in the design of the Java language, using
the rule Array<’ for subtyping on array types incurs a runtime overhead which would otherwise be
unnecessary. To be specific, lack of the condition B < A in the premise implies that whenever a value
of type B is written to an array of type array A, the runtime system must verify a subtyping relation
B < A, which incurs a runtime overhead of dynamic tag-checks.

11.3 Coercion semantics for subtyping

Under the coercion semantics, a subtyping relation A < B holds if there exists a unique method to
convert values of type A to values of type B. As a witness to the existence of such a method, we usually
use a A-abstraction, called a coercion function, of type A— B. We use a coercion subtyping judgment

A<B=f

to mean that A < B holds under the coercion semantics with a coercion function f of type A— B. For
example, a judgment int < float = int2float holds if a coercion function int2float converts integers of
type int to floating point number of type float.

The subtyping rules for the coercion subtyping judgment are given as follows:

A<B=f B<C=gyg
C T C
A< A= Az Refi A<C= X x:Ag(f) rans<

A<A'=f B<B =gy
AXxB<A XB = Xe:Ax B.(f (fstz),g (snd z))
A<A=f B<B =g
A4+B < A'+B" = Ax:A+B.casez of inl yy.inlg: (f y1) | inrys.inras (g y2)

Prodg

C
SumS

A<A=f B<B =g
A—-B<A—=B = :A-B.X\x:A'.g(h(fx))

C
F unz

118 May 9, 2023

Unlike the subset semantics which does not change the operational semantics, the coercion seman-
tics affects the way that expressions are evaluated. Suppose that we are evaluating a well-typed expres-
sion e with the following typing derivation which uses a coercion subtyping judgment:

'Fe:A A<B=Ff c
I'te:B Sub

Since the rule Sub® tacitly promotes the type of e from A to B, we do not have to insert an explicit call
to the coercion function f to make e typecheck. The result of evaluating e, however, is correct only if
an explicit call to f is made after evaluating e. For example, if e is an argument to another function g
of type B— C (for some type C), g e certainly typechecks but may go wrong at runtime. Therefore the
type system inserts an explicit call to a coercion function each time the rule Sub® is used. In the above
case, the type system replaces e by f e after typechecking e using the rule SubC.

A potential problem with the coercion semantics is that the same subtyping relation may have sev-
eral coercion functions which all have the same type but exhibit different behavior. As an example,
consider the following subtyping relations:

int < float = int2float int < string = int2string float < string = float2string

int < string and float < string imply that integers and floating point numbers are automatically con-
verted to strings in all contexts expecting strings. Then the same subtyping judgment int < string has
two coercions functions: int2string and Az : int. float2string (int2float). The two coercion functions, how-
ever, behave differently. For example, the first converts 0 to "0" whereas the second converts 0 to
"0.0".

We say that a type system for subtypes is coherent if all coercion functions for the same subtyping
relation exhibit the same behavior. In the example above, we can recover coherence by specifying
that float2string converts 0.0 to "0", instead of "0.0", and similarly for all other forms of floating
point numbers. We do not further discuss coherence which is difficult to prove for more complex type
systems.

May 9, 2023 119

120 May 9, 2023

Chapter 12

Recursive Types

In programming in a practical functional language, there often arises a need for recursive data structures
(or inductive data structures) whose components are data structures of the same kind but of smaller size.
For example, a tree is a recursive data structure because children of the root node are smaller trees of
the same kind. We may even think of natural numbers as a recursive data structure because a non-zero
natural number can be expressed as a successor of another natural number.

The type system developed so far, however, cannot account for recursive data structures. Intu-
itively types for recursive data structures require recursive definitions at the level of types, but the
previous type system does not provide such a language construct. (Recursive definitions at the level of
expressions can be expressed using the fixed point construct.) This chapter introduces a new language
construct for declaring recursive types which express recursive definitions at the level of types.

With recursive types, we can declare types for recursive data structures. For example, we declare
a recursive type ntree for binary trees of natural numbers (of type nat) with the following recursive
definition:

~

ntree 2= nat+(ntree X ntree)

The definition says that ntree is either a single natural number of type nat (corresponding to leaf nodes)
or two such binary trees of type ntree (corresponding to internal nodes).

There are two approaches to formalizing recursive types: equi-recursive and iso-recursive approaches
which differ in the interpretation of = in recursive definitions of types. Under the equi-recursive ap-
proach, = stands for an equality relation. For example, the recursive definition of ntree specifies that
ntree and nat+(ntree x ntree) are equal and thus interchangeable: ntree is automatically (i.e., without
the intervention of programmers) converted to nat+(ntree x ntree) and vice versa whenever necessary
to make a given expression typecheck. Under the iso-recursive approach, = stands for an isomorphic
relation: two types in a recursive definition cannot be identified, but can be converted to each other by
certain functions. For example, the recursive definition of ntree implicitly declares two functions for
converting between ntree and nat+ (ntree X ntree):

foldntree : nat-+(ntree X ntree) — ntree
unfoldptee : ntree— nat+(ntree X ntree)

To create a value of type ntree, we first create a value of type nat+(ntree x ntree) and then apply function
foldntree; to analyze a value of type ntree, we first apply function unfoldnie. and then analyze the resultant
value using a case expression.

Below we formalize recursive types under the iso-recursive approach. We will also see that SML
uses the iso-recursive approach to deal with datatype declarations.

12.1 Definition

Consider the recursive definition of ntree. We may think of ntree as the solution to the following equa-
tion where « is a type variable standing for “any type” as in SML:

~

a = nat+(a X a)

121

Since substituting ntree for « yields the original recursive definition of ntree, ntree is indeed the solution
to the above equation. We choose to write piov.nat+ (o x «) for the solution to the above equation where
«a is a fresh type variable. Then we can redefine ntree as follows:

ntree = pa.nat+(a x a)

Generalizing the example of ntree, we use a recursive type pa.A for the solution to the equation
a = A where A may contain occurrences of type variable a:

type A = o a|paA

The intuition is that C = pa.A means C' = [C'/a]A. For example, ntree = pa.nat+ (o X @) means
ntree = nat+(ntree X ntree). Since pa.A declares a fresh type variable oo which is valid only within A4,
not every recursive type qualifies as a valid type. For example, po.c+ 5 is not a valid recursive type
unless it is part of another recursive type declaring type variable 5. In order to be able to check the
validity of a given recursive type, we define a typing context as an ordered set of type bindings and
type declarations:

typing context ' == -|T,z:A|T,atype

We use a new judgment I' - A type, called a type judgment, to check that A is a valid type under typing
context I':

atype e T’ ', a type - A type

I'F atype yvar 'k pa. A type

Given a recursive type C' = pa.A, we need to be able to convert [C'//a]A to C and vice versa so as to
create or analyze a value of type C. Thus, under the iso-recursive approach, a declaration of a recursive
type C' = po. A implicitly introduces two primitive constructs foldc and unfold¢ specialized for type C.
Operationally we may think of foldc and unfoldc as behaving like functions of the following types:

folde : [C/a]A—C
unfolde : C—[C/a]A

As foldc and unfoldc are actually not functions but primitive constructs which always require an
additional expression as an argument (i.e., we cannot treat foldc as a first-class object), the abstract
syntax is extended as follows:

-+- | fold¢ e | unfolde e
-+« |foldg v

expression e
value v

The typing rules for foldc and unfoldc are derived from the operational interpretation of foldc and
unfoldc given above:

C=pa.A Trke:[C/a]JA T+ Ctype C=paA T'kFe:C

TF folde ¢ : C Fold T unfolde e < [C/a]A Unfold

The following reduction rules are based on the eager reduction strategy:

e e
foldg: € — foldg ¢ 10
e e
Unfold 2
unfoldc e — unfoldc €’ nfo unfolde folde v s 0 Unfold

Exercise 12.1. Propose reduction rules for the lazy reduction strategy.
Exercise 12.2. Why do we need no reduction rule for foldc unfoldc v?

122 May 9, 2023

12.2 Recursive data structures

This section presents a few examples of translating datatype declarations of SML to recursive types.
The key idea is two-fold: (1) each datatype declaration in SML implicitly introduces a recursive type;
(2) each data constructor belonging to datatype C' implicitly uses foldc and each pattern match for
datatype C implicitly uses unfoldc .

Let us begin with a non-recursive datatype which does not have to be translated to a recursive type:

datatype bool = True |False

Since a value of type bool is either True or False, we translate bool to a sum type unit+unit so as to
express the existence of two alternatives; the use of type unit indicates that data constructors True and
False require no argument:

bool = unit+unit
True = inlynit ()
False = inryni ()
if ethenej elsees = caseeofinl_.ep |inr_ ey

Thus data constructors, which are separated by | in a datatype declaration, become separated by +when
translated to a type in the simply typed A-calculus.
Now consider a recursive datatype for natural numbers:

datatype nat = Zero | Succ of nat

A recursive type for nat is the solution to the equation nat = unit+nat where the left unit corresponds
to Zero and the right nat corresponds to Succ:

nat = pa.unit+o

Then both data constructors Zero and Succ first prepare a value of type unit+nat and then “fold” it to
create a value of type nat:
Zero = foldyat inlpat ()
Succe = foldyat inrynit €

A pattern match for datatype nat works in the opposite way: it first “unfolds” a value of type nat to
obtain a value of type unit+nat which is then analyzed by a case expression:

case e of Zero = €1 |Succx = ea = case unfoldya: eof inl ey |inrz. ey

Similarly a recursive datatype for lists of natural numbers is translated as follows:

datatype nlist = Nil |Cons of nat x nlist
nlist = pa.unit+(nat x a)
Nil = f0|dnlist inlnat‘,xnlist ()
Cons e = foldgiist iNrynic €
caseeof Nil = e; |Cons z => es = case unfoldyiise € of inl _.eq | inrz. eq

As an example of a recursive type that does not use a sum type, let us consider a datatype for streams
of natural numbers:

datatype nstream = Nstream of unit—nat X nstream
nstream = pa.unit—nat X «a

When “unfolded,” a value of type nstream yields a function of type unit—nat x nstream which returns
anatural number and another stream. For example, the following A-abstraction has type nstream —nat x nstream:

As:nstream. unfoldystrean S ()

The following function, of type nat —nstream, returns a stream of natural numbers beginning with its
argument:

An:nat. (fix f:nat —nstream. Az :nat. foldystrean Ay :unit. (z, f (Succ z))) n

May 9, 2023 123

12.3 Typing the untyped)-calculus

A further application of recursive types is a translation of the untyped A-calculus to the simply typed
A-calculus augmented with recursive types. Specifically we wish to translate the untyped A-calculus to
the simply typed A-calculus with the following definition:

type A = A=AlalpaA
expression e x|Ax:A.e|ee]|foldse]unfoldy e

Note that unlike the pure simply typed A-calculus, the definition of types does not include base types.

We translate an expression e in the untyped A-calculus to an expression ¢° in the simply typed A-
calculus. We treat all expressions in the untyped A-calculus alike by assigning a unique type 2 (i.e., e°
is to have type). Then the key to the translation is to find such a unique type €.

It is not difficult to find such a type €2 when recursive types are available. If every expression is
assigned type 2, we may think that Az. e is assigned type 2 — 2 as well as type Q. Or, in order for e; ey
to be assigned type (2, e; must be assigned not only type €2 but also type 2 — Q because e; is assigned
type Q. Thus 2 must be identified with 2 — (i.e., Q = Q—Q) and is defined as follows:

Q = poa—a

Then expressions in the untyped A-calculus are translated as follows:

o

° = z
(Az.€)° = foldg Aw: 8. e°
(e1€2)° = (unfoldg e1°) e2°

Proposition 12.3. -+ ¢° : Q2 holds for any expression e in the untyped A-calculus.
Proposition 12.4. If e+ ¢/, then e° —* €'°.

In Proposition extra reduction steps in e® —* ¢’ are due to applications of the rule Unfold?.

An interesting consequence of the translation is that despite the absence of the fixed point construct,
the reduction of an expression in the simply typed A-calculus with recursive types may not terminate!
For example, the reduction of ((Az.z z) (Az.z x))° does not terminate because (\z.z z) (A\z.z z) re-
duces to itself. In fact, we can even write recursive functions — all we have to do is to translate the
fixed point combinator fix (see Section [3.5)!

12.4 Exercises

Exercise 12.5. Consider the simply typed A-calculus augmented with recursive types. We use a function
type A— B for non-recursive functions from type A to type B. Now let us introduce another function
type A= B for recursive functions from type A to type B. Define A = B in terms of ordinary function
types and recursive types.

124 May 9, 2023

Chapter 13

Polymorphism

In programming language theory, polymorphism (where poly means “many” and morph “shape”) refers
to the mechanism by which the same piece of code can be reused for different types of objects. C++
templates are a good example of a language construct for polymorphism: the same C++ template can
be instantiated to different classes which operate on different types of objects all in a uniform way. The
recent version of Java (J2SE 5.0) also supports generics which provides polymorphism in a similar way
to C++ templates.

There are two kinds of polymorphism: parametric polymorphism and ad hoc polymorphism. Para-
metric polymorphism enables us to write a piece of code that operates on all types of objects all in
a uniform way. Such a piece of code provides a high degree of generality by accepting all types of
objects, but cannot exploit specific properties of different types of objects|| Ad hoc polymorphism, in
contrast, allows a piece of code to exhibit different behavior depending on the type of objects it oper-
ates on. The operator + of SML is an example of ad hoc polymorphism: both int * int -> int and
real x real —-> real arevalid types for +, which manipulates integers and floating point numbers
differently. In this chapter, we restrict ourselves to parametric polymorphism.

We begin with System F, an extension of the untyped A-calculus with polymorphic types. Despite its
syntactic simplicity and rich expressivity, System F is not a good framework for practical functional
languages because the problem of assigning a polymorphic type (of System F) to an expression in
the untyped A-calculus is undecidable (i.e., there is no algorithm for solving the problem for all in-
put expressions). We will then take an excursion to the predicative polymorphic A-calculus, another ex-
tension of the untyped A-calculus with polymorphic types which is a sublanguage of System F and is
thus less expressive than System F. (Interestingly it uses slightly more complex syntax.) Our study of
polymorphism will culminate in the formulation of the polymorphic type system of SML, called let-
polymorphism, which is a variant of the type system of the predicative polymorphic A-calculus. Hence
the study of System F is our first step toward the polymorphic type system of SML!

13.1 System F

Consider a A-abstraction Az. x of the untyped A-calculus. We wish to extend the definition of the un-
typed A-calculus so that we can assign a type to Az.z. Assigning a type to Az.x involves two tasks:
binding variable x to a type and deciding the type of the resultant expression.

In the case of the simply typed A-calculus, we have to choose a specific type for variable z, say, bool.
Then the resultant M-abstraction Az :bool. z has type bool— bool. Ideally, however, we do not want to
stipulate a specific type for = because Az. z is an identity function that works for any type. For example,
Az. z is an identify function for an integer type int, but once the type of \z. x is fixed as bool — bool, we
cannot use it for integers. Hence a better answer would be to bind x to an “any type” a and assign type
a—ator:a. .

Now every variable in the untyped A-calculus is assigned an “any type,” and there arises a need to
distinguish between different “any types.” As an example, consider a A-abstraction Az. Ay. (x,y) where

1Generics in the Java language does not fully support parametric polymorphism: it accepts only Java objects (of class Object),
and does not accept primitive types such as int.

125

(z,y) denotes a pair of = and y. Since both z and y may assume an “any type,” we could assign the
same “any type” to « and y as follows:

A Ay (z,y) s a—a—a X

Although it is fine to assign the same “any type” to both x and y, it does not give the most general type
for A\z. A\y. (z,y) because = and y do not have to assume the same type in general. Instead we need to
assign a different “any type” 3 to y so that = and y remain independent of each other:

Az:ia Ay:B. (z,y) ca—=B—ax B

Since each variable in a given expression may need a fresh “any type,” we introduce a new construct
Aa. e, called a type abstraction, for declaring « as a fresh “any type,” or a fresh type variable. That is, a
type abstraction Aa. e declares a type variable o for use in expression e; we may rename « in a way
analogous to a-conversions on A-abstractions. If e has type A, then Aa. e is assigned a polymorphic
type Va.A which reads “for all a, A.” Note that A in Vo. A may use a (e.., A = a—). Then Az. \y. (z,y)
is converted to the following expression:

Aa. AB. Az a. Ay 8. (x,y) : VaVB.a—=B—a x

— has a higher operator precedence than V, so Va.A— B is equal to Va.(A— B), not (Va.A) — B. Hence
VaVp.a— B—a x Bisequal to Va.V5.(a— —a x B).

Back to the example of the identity function which is now written as Aa. Az : . x of type Va.aa— ¢,
let us apply it to a boolean truth true of type bool. First we need to convert Aa. Az:a. z to an identity
function Az :bool. z by instantiating « to a specific type bool. To this end, we introduce a new construct
e JAK, called a type application, such that (Ac.) JAK reduces to [A/a]e which substitutes A for a in e:

(Aa.e) JAK — [A/ale

(Thus the only difference of a type application e JAK from an ordinary application e; e is that a type
application substitutes a type for a type variable instead of an expression for an ordinary variable.)
Then (Aa. Az :a.) JboolK reduces to an identity function specialized for type bool, and an ordinary
application (Aa. Az: . x) JboolK true finishes the job.

System F is essentially an extension of the untyped A-calculus with type abstractions and type appli-
cations. Although variables in A-abstractions are always annotated with their types, we do not consider
System F as an extension of the simply typed A-calculus because System F does not have to assume base
types. The abstract syntax for System F is as follows:

type A = A= Ala|Va.A
expression e = z|ix:delee|Aa.e|eJAK
value v = dx:A.e|Aa.e

The reduction rules for type applications are analogous to those for ordinary applications except that
there is no reduction rule for types:

__eme g Tapp
eJAK — ¢’ JAK (Aa.e) JAK — [A/ale

[A/a]e substitutes A for « in e; we omit its pedantic definition here. For ordinary applications, we reuse
the reductions rules for the simply typed A-calculus.

There are two important observations to make about the abstract syntax. First the syntax for type
applications implies that type variables may be instantiated to all kinds of types, including even poly-
morphic types. For example, the identity function Aa. Az : «. z may be applied to its own type Vo.ae — !
Such flexibility in type applications is the source of rich expressivity of System F, but on the other hand,
it also makes System F a poor choice as a framework for practical functional languages. Second we
define a type abstraction A«. e as a value, even though it appears to be computationally equivalent to e.

126 May 9, 2023

As an example, let us write a function compose for composing two functions. One approach is to
require that all type variables in the type of compose be instantiated before producing a A-abstraction:

compose : Va.VEVy.(a—=pB)—=(8—7)—=(a—7)
compose = Aa.AB. Ay Af:a—B.Ag:B—v. Av:a.g(f x)

Alternatively we may require that only the first two type variables o and 3 be instantiated before pro-
ducing a A-abstraction which returns a type abstraction expecting the third type variable ~:

compose : VYaVB.(a—p)=Vy.(B—=7v)—=(a—7)
compose = Aa.AB.Af:a—=B.Ay.Ag:B—v. Ax:a.g(f x)

As for the type system, System F is not a straightforward extension of the simply typed A-calculus
because of the inclusion of type variables. In the simply typed A-calculus, = : A qualifies as a valid type
binding regardless of type A and the order of type bindings in a typing context does not matter by
Proposition 4.1} In System F, 2 : A may not qualify as a valid type binding if type A contains type vari-
ables. For example, without type abstractions declaring type variables « and /5, we may not use o — 3
as a type and hence = : a— 5 is not a valid type binding. This observation leads to the conclusion that
in System F, a typing context consists not only of type bindings but also of a new form of declarations
for indicating which type variables are valid and which are not; moreover the order of elements in a
typing context now does matter because of type variables.

We define a typing context as an ordered set of type bindings and type declarations; a type declaration
a type declares « as a type, or equivalently, « as a valid type variable:

typing context ' == -|T,z:A|T,atype

We simplify the presentation by assuming that variables and type variables in a typing context are
all distinct. We consider a type variable « as valid only if its type declaration appears to its left. For
example, I'1, o type, © : @« — ais a valid typing context because « in « : &« — « has been declared as a type
variable in « type (provided that I'; is also a valid typing context). I'1, : a«— «, « type is, however, not
a valid typing context because « is used in x : a— o before it is declared as a type variable in « type.

The type system of System F uses two forms of judgments: a typing judgment I' - e : A whose
meaning is the same as in the simply typed A-calculus, and a type judgment I' - A type which means that
A is a valid type with respect to typing context FEI We need type judgments because the definition of
syntactic category type in the abstract syntax is incapable of differentiating valid type variables from
invalid ones. We refer to an inference rule deducing a type judgment as a type rule.

The type system of System F uses the following rules:

'+ Atype TF Btype R atypeEFTV ', a type - A type
I' A— B type y ' atype yvar T'F Va.A type y

m:AEFV Ne:AkFe:B | T'Fe:A—-B THhHe: A
TrFaz:A4 ' TFx:Ade:A>B Thee:B

—E

INatypeke: A I'kFe:Va.B T Atype
TFAa.e:Vad "' ~TFelAK: [A/alB

A proof of a type judgment I' - A type does not use type bindings in I'. In the rule —I, the typing
context I', z : A assumes that A is a valid type with respect to I'. Hence the rule —I does not need
a separate premise I' - A type. The rule VI, called the V Introduction rule, introduces a polymorphic
type Va.A from the judgment in the premise. The rule VE, called the V Elimination rule, eliminates a
polymorphic type Va.B by substituting a valid type A for type variable .. Note that the typing rule VE
uses a substitution of a type into another type whereas the reduction rule Tapp uses a substitution of a
type into an expression.

2A type judgment I - A type is also an example of a hypothetical judgment which deduces a “judgment” A type using each
“judgment” A; type in I' as a hypothesis.

May 9, 2023 127

As an example of a typing derivation, let us find the type of an identity function specialized for type
bool; we assume that I" - bool type holds for any typing context I" (see the type rule TyBool below):

atype,x:alx:« Var

atypeF Aoz a—a v
Ao Aoz Va.a—a - bool type
‘F (Aa. Az . x) JboolK : [bool/a](a—)

TyBool

Since [bool/a](a—) is equal to bool — bool, the type application has type bool — bool.

The proof of type safety of System F needs three substitution lemmas as there are three kinds of
substitutions: [A/a]B for the rule VE, [A/a]e for the rule Tapp, and [¢'/x]e for the rule App. We write
[A/a]T for substituting A for a in all type bindings in I'.

Lemma 13.1 (Type substitution into types).
IfT'+ Atypeand T', o type, IV F B type, then T', [A/a]T" + [A/a] B type.

Lemma 13.2 (Type substitution into expressions).
IfT+ Atypeand T',a type,I" e : B, then T, [A/a]I" - [A/ale : [A/a]B.

Lemma 13.3 (Expression substitution).
IfTFe: AandT,z: A T'+¢e : C, thenT,I" +- [e/zx]e’ : C.

In Lemmas and we have to substitute A into I, which may contain types involving a.
In Lemma we have to substitute A into e and B, both of which may contain types involving a.
Lemma ects the fact that typing contexts are ordered sets.

The proof of type safety of System F is similar to the proof for the simply typed A-calculus. We need
to extend the canonical forms lemma (Lemma and the inversion lemma (Lemma 4.8):

Lemma 13.4 (Canonical forms).
If v is a value of type Vo A, then v is a type abstraction Aa. e.

Lemma 13.5 (Inversion). SupposeI'-e: C.
Ife=Aa.¢, then C =Va.Aand T, a type €' : A.

Theorem 13.6 (Progress). If - - e : A for some type A, then either e is a value or there exists ¢’ such that e — ¢’.

Theorem 13.7 (Type preservation). If'-e: Aand e — €/, thenT €’ : A.

13.2 Type reconstruction

The type systems of the simply typed A-calculus and System F require that all variables in A-abstractions
be annotated with their types. While it certainly simplifies the proof of type safety (and the study
of type-theoretic properties in general), such a requirement on variables is not a good idea when it
comes to designing practical functional languages. One reason is that annotating all variables with
their types does not always improve code readability. On the contrary, excessive type annotations
often reduce code readability! For example, one would write an SML function adding two integers as
fn x => fn y => x + y,whichisnolessreadable than a fully type-annotated function fn x : int => fn y :
A more important reason is that in many cases, types of variables can be inferred, or reconstructed, from
the context. For example, the presence of + in fn x => fn y => x + y gives enough information
to decide a unique type int for both x and y. Thus we wish to eliminate such a requirement on vari-
ables, so as to provide programmers with more flexibility in type annotations, by developing a type
reconstruction algorithm which automatically infers types for variables.

In the case of System F, the goal of type reconstruction is to convert an expression e in the untyped
A-calculus to a well-typed expression e’ in System F such that erasing type annotations (including type
abstractions and type applications) in €’ yields the original expression e. That is, by reconstructing

128 May 9, 2023

types for all variables in e, we obtain a new well-typed expression e’ in System F. Formally we define
an erasure function erase(-) which takes an expression in System F and erases all type annotations in it:

erase(x) = z

erase(A\x:A.e) = Mx.erase(e)
erase(ey e3) = erase(er) erase(es)
erase(Aa. e) = erase(e)

erase(e JAK) = erase(e)

The erasure function respects the reduction rules for System F in the following sense:
Proposition 13.8. If e — ¢’ holds in System F, then erase(e) —* erase(e’) holds in the untyped A-calculus.

The problem of type reconstruction is then to convert an expression e in the untyped A-calculus to a
well-typed expression ¢’ in System F such that erase(e’) = e. We say that an expression e in the untyped
A-calculus is typable in System F if there exists such a well-typed expression ¢’.

As an example, let us consider an untyped A-abstraction Az.x x. It is not typable in the simply
typed A-calculus because the first in « « must have a type strictly larger than the second z, which
is impossible. It is, however, typable in System F because we can replace the first x in = = by a type
application. Specifically A\z:Va.a— . 2 JVa.a—aK x is a well-typed expression in System F which
erases to Azx. x x:

z:Vaa—abkz:Vaa—a Var z:Va.a—aFYoa.a— o type

z:Va.a—alkzJVaa—aK: Va.a—a)— (Va.a—) z:Voa.a—alkz:Vaa—a

z:Vaoa—abtzJVaa—=aKz: Vaa—a
‘F A Va.a—a.x NVa.a—aK 2 (Va.a—a)— Va.a—a)

Var
—E

—l

The proof of z : Va.a — o = Var.a — o type is shown below:

atype € T : Va.a—a, a type atype € z : Va.a— o, a type

TyVar

z : Va.a—a, a type F « type y T Va.a—a, a type - a type Ty
y

T Va.a—a, a type F a— a type
r:Voa.a—a b Ya.a— a type

(The proof does not use the type binding z : Vo.aa— «.) Hence a type reconstruction algorithm for
System F, if any, would convert Az. z x to Az :Va.a —o. x IVa.ao— aK .

It turns out that not every expression in the untyped A-calculus is typable in System E. For example,
omega = (Az.z z) (Az.z) is not typable: there is no well-typed expression in System F that erases to
omega. The proof exploits the normalization property of System F which states that the reduction of a
well-typed expression in System F always terminates. Thus a type reconstruction algorithm for System
F first decides if a given expression e is typable or not in System F; if e is typable, the algorithm yields a
corresponding expression in System E.

Unfortunately the problem of type reconstruction in System F is undecidable: there is no algorithm
for deciding whether a given expression in the untyped A-calculus is typable or not in System F. Our
plan now is to find a compromise between rich expressivity and decidability of type reconstruction
— we wish to identify a sublanguage of System F that supports polymorphic types and also has a
decidable type construction algorithm. Section[13.4] presents such a sublanguage, called the predicative
polymorphic A-calculus, which is extended to the polymorphic type system of SML in Section[13.5]

13.3 Programming in System F
We have seen in Section 3.4/ how to encode common datatypes in the untyped A-calculus. While these
expressions correctly encode their respective datatypes, unavailability of a type system makes it difficult

to express the intuition behind the encoding of each datatype. Besides it is often tedious and even
unreliable to check the correctness of an encoding without recourse to a type system.

May 9, 2023 129

In this section, we rewrite these untyped expressions into well-typed expressions in System F. A
direct definition of a datatype in terms of types in System F provides the intuition behind its encoding,
and availability of type annotations within expressions makes it easy to check the correctness of the
encoding.

Let us begin with base types bool and nat for Church booleans and numerals, respectively. The
intuition behind Church booleans is that a boolean value chooses one of two different options. The
following definition of the base type bool is based on the decision to assign the same type « to both
options:

bool = Va.oa—a—a

Then boolean values true and false, both of type bool, are encoded as follows:

true = Aa.M:a.Mf:a.t
false = Aa.M:a.Mf:a.f

The intuition behind Church numerals is that a Church numeral 7 takes a function f and returns
another function f” which applies f exactly n times. In order for f" to be well-typed, its argument type
and return type must be identical. Hence we define the base type nat in System F as followsﬂ

nat = Va.(a—a)—=(a—a)
Then a zero zero of type nat and a successor function succ of type nat— nat are encoded as follows:

zero = Aa.Af:a—a.Az:a.x
succ = An:nat.Aa. Af:a—=a. dx:a. (nJaK f) (f)

The definition of a product type A x B in System F exploits the fact that in essence, a value of type
A x B contains a value of type A and another value of type B. If we think of A— B —« as a type for
a function taking two arguments of types A and B and returning a value of type «, a value of type
A x B contains everything necessary for applying such a function, which is expressed in the following
definition of A x B:
Ax B=Va.(A-B—a)—«a

Pairs and projections are encoded as follows; note that without type annotations, these expressions
degenerate to pairs and projections for the untyped A-calculus given in Section

pair : VaVB.a—pf—axpf = Aa. A dr:a.) y:B. Ay A\fa—=B8—v.fzy
fst : VaVB.axfB—a = Aa.AB.Ap:ax B.pJaK (Az:a. \y: 8. x)
snd : VaVB.axpB—p = Aa.AB.Ap:ax B.pJBK (A\z:a. \y:6.y)

The type unit is a general product type with no element and is thus defined as Vo.co— o which is ob-
tained by removing A and B from the definition of A x B. The encoding of a unit () is obtained by
removing z and y from the encoding of pair:

() & unit = AaAz:a.z

The definition of a sum type A+ B in System F reminds us of the typing rule +E for sum types: given
a function f of type A— « and another function g of type B — «, a value v of type A+ B applies the right
function (either f or g) to the value contained in v:

A+B =Va.(A—=a)—=(B—=a)—a
Injections and case expressions are translations of the typing rules +, +Hr, and +E:

inl : VaVf.a—a+p
inr : VaVB.8—a+p
case : Va.VB¥vy.a+B—(a—7)—=(8—7)—=y

Exercise 13.9. Encode inl, inr, and case in System F.

The type void is a general sum type with no element and is thus defined as Va.a which is obtained
by removing A and B from the definition of A+ B. Needless to say, there is no expression of type void
in System E. (Why?)

3 We may also interpret nat as nat = Va.(a— a)— a— a such that a Church numeral 7 takes a successor function succ of
type a— o and a zero zero of type « to return succ™ 0 of type a.

130 May 9, 2023

13.4 Predicative polymorphic A-calculus

This section presents the predicative polymorphic A-calculus which is a sublanguage of System F with
a decidable type construction algorithm. It is still not a good framework for practical functional lan-
guages because polymorphic types are virtually useless! Nevertheless it helps us a lot to motivate the
development of let-polymorphism, the most popular polymorphic type system found in modern func-
tional languages.

The key observation is that undecidability of type reconstruction in System F is traced back to the
self-referential nature of polymorphic types: we augment the set of types with new elements called
type variables and polymorphic types, but the syntax for type applications allows type variables to
range over not only existing types (such as function types) but also these new elements which include
polymorphic types themselves. That is, there is no restriction on type A in a type application e JAK
where type A, which is to be substituted for a type variable, can be not only a function type but also
another polymorphic type.

The predicative polymorphic A-calculus recovers decidability of type reconstruction by prohibiting
type variables from ranging over polymorphic types. We stratify types into two kinds: monotypes which
exclude polymorphic types and polytypes which include all kinds of types:

monotype A = A=Ala
polytype U == A|VaU
expression e == z|Xx:Aelee|Aa.e|eJAK
value v = Ax:A.e|Aa.e
typing context I == -|Iz:A|T atype

A polytype is always written as Va.Vf.- - -¥y.A— A" where A— A’ cannot contain polymorphic types.
For example, (Va.a — o) = (V. —) is not a polytype whereas Va.V5.(a — o) — (5 — () is. We say that
a polytype is written in prenex form because a type quantifier Yo may appear only as part of its prefix.

The main difference of the predicative polymorphic A-calculus from System F is that a type applica-
tion e JAK now accepts only a monotype A. (In System F, there is no distinction between monotypes
and polytypes, and a type application can accept polymorphic types.) A type application e JAK itself,
however, has a polytype if e has a polytype Va.U where U is another polytype (see the typing rule VE
below).

As in System F the type system of the predicative polymorphic A-calculus uses two forms of judg-
ments: a typing judgment I' - e : U and a type judgment I' - A type. The difference is that I' - A type
now checks if a given type is a valid monotype. That is, we do not use a type judgment I' - U type
(which is actually unnecessary because every polytype is written in prenex form anyway). Thus the
system system uses the following rules; note that the rule TyV from System F is gone:

' Atype TI'F Btype Ty atypee

' A— B type y ' atype Var
x:AGFV Ix:AFe: B | I'e: A—B FF@’:A_)E
TFaz:A4 ' TFxe:Ae:ASB I'Fee : B

Iatypetke: U I'ke:VYa.U TF Atype
'k Aa.e:Va.U I'keJAK : [A/a)U

Unfortunately the use of a monotype A in a M-abstraction Az : A. e defeats the purpose of introducing
polymorphic types into the type system: even though we can now write an expression of a polytype
U, we can never instantiate type variables in U more than once! Suppose, for example, that we wish to
apply a polymorphic identity function id = Aa. Az :a. z to two different types, say, bool and int. In the
untyped A-calculus, we would bind a variable f to an identity function and then apply f twice:

(Af.pair (f true) (f 0)) (Az.x)

In the predicative polymorphic A-calculus, it is impossible to reuse id more than once in this way, since
f must be given a monotype while id has a polytype:

May 9, 2023 131

(Af:Va.a— a. (f JboolK true, f JintK 0)) id (ill-typed)

(Here we use pairs for product types.) If we apply id to a monotype bool (or int), f O (or f true) in the
body fails to typecheck:

(Af :bool—bool. (f true, f 0)) (id JboolK) (ill-typed)

Thus the only interesting way to use a polymorphic function (of a polytype) is to use it “monomorphi-
cally” by converting it to a function of a certain monotype!

Let-polymorphism extends the predicative polymorphic A-calculus with a new construct that en-
ables us to use a polymorphic expression polymorphically in the sense that type variables in it can be
instantiated more than once. The new construct preserves decidability of type reconstruction, so let-
polymorphism is a good compromise between expressivity and decidability of type reconstruction.

13.5 Let-polymorphism

Let-polymorphism extends the predicative polymorphic A-calculus with a new construct, called a let-binding,
for declaring variables of polytypes. A let-binding let z:U = e in ¢’ binds z to a polymorphic expression

e of type U and allows multiple occurrences of z in ¢’. With a let-binding, we can apply a polymorphic
identity function to two different (mono)types bool and int as follows:

let f:Va.a—a = Aa. Az a.zin (f JboolK true, f JintK 0))

Since variables can now assume polytypes, we use type bindings of the form x : U instead of = : A.
We require that let-bindings themselves be of monotypes:

expression e u= - |letz:U=¢eine
typing context I' == |Iz:U|Tatype
x:UeTl 'ke:U F,x:U}—e':AL
PFx:U Var TFletz:U—cine : A

The reduction of a let-binding let z:U = e in ¢’ proceeds by substituting e for z in €’
letz:U =eine s [e/x]e

Depending on the reduction strategy, we may choose to fully evaluate e before performing the substi-
tution.

Although let z:U = e in ¢’ reduces to the same expression that an application (Az: A.e’) e reduces
to, it is not syntactic sugar for (Az:A.e’) e: when e has a polytype U, let z:U = e in ¢ may typecheck
by the rule Let, but in general, (Az: A.e’) e does not typecheck because monotype A does not match
the type of e. Therefore, in order to use a polymorphic expression polymorphically, we must bind it to a
variable using a let-binding instead of a A-abstraction.

Then why do we not just allow a A-abstraction Az :U. e binding z to a polytype (which would de-
generate let 2:U = e in €’ into syntactic sugar)? The reason is that with an additional assumption that e
may have a polytype (e.g., Ax:U.), such a A-abstraction collapses the distinction between monotypes
and polytypes. That is, polytypes constitute types of System F:

monotype A 1= U—=U|«

polytype U :u= A|Va.U <~ type U u= U—-U|a|Va.U

We may construe a let-binding as a restricted use of a A-abstraction Az : U. e (binding « to a polytype)
such that it never stands alone as a first-class object and must be applied to a polymorphic expression
immediately. At the cost of flexibility in applying such A-abstractions, let-polymorphism retains de-
cidability of type reconstruction without destroying the distinction between monotypes and polytypes
and also without sacrificing too much expressivity. After all, we can still enjoy both polymorphism and
decidability of type reconstruction, which is the reason why let-polymorphism is so popular among
mainstream functional languages.

132 May 9, 2023

13.6 Implicit polymorphism

The polymorphic type systems considered so far are all “explicit” in that polymorphic types are in-
troduced explicitly by type abstractions and that type variables are instantiated explicitly by type ap-
plications. An explicit polymorphic type system has the property that every well-typed polymorphic
expression has a unique polymorphic type.

The type system of SML uses a different approach to polymorphism: it makes no use of type ab-
stractions and type applications, but allows an expression to have multiple types by requiring no type
annotations in A-abstractions. That is, polymorphic types arise “implicitly” from lack of type annota-
tions in A-abstractions.

As an example, consider an identity function Az.z. It can be assigned such types as bool — bool,
int—int, (int—int) — (int—int), and so on. These types are all distinct, but are subsumed by the same
polytype Va.a — o in the sense that they are results of instantiating « in Vo..co — «. We refer to Va.ao— o
as the principal type of Ax.x, which may be thought of as the most general type for Az.z, as opposed
to specific types such as bool —bool and int—int. The type reconstruction algorithm of SML infers a
unique principal type for every well-typed expression. Below we discuss the type system of SML and
defer details of the type reconstruction algorithm to Section[13.8]

In essence, the type system of SML uses let-polymorphism without type annotations (in A-abstractions
and let-bindings), type abstractions, and type applications:

monotype A = A—=Ala
polytype U == A|VaU
expression e == z|Xx.e|leel|letz=cine
value v o= Az.e
typing context ' == |Tz:U| atype

We use a new typing judgment I'> e : U to express that untyped expression e is typable with a
polytype U. The intuition (which will be made clear in Theorem [I3.11) is that if ' > e : U holds where
e is untyped, there exists a typed expression €’ such that '€’ : U and e’ erases to e by the following
erasure function:

erase(x) =

erase(Az: A. e) = Az.erase(e)

erase(ey 62) = erase(ey) erase(es)
erase(Aa. e) = erase(e)

erase(e JAK) = erase(e)

erase(letz:U =eine’) = letx = erase(e) in erase(e’)

That is, if I' > e : U holds, e has its counterpart in let-polymorphism in Section The rules for the
typing judgment I' > e : U are given as follows:

v:Uel, =~ Lw:Ave:B Tee:AdsB Toe:A o
Toz:U ' Toite:A>B F'vee : B
've:U Tyz:Upe: A Iatypere: U I'be:Va.U TI'F Atype
— Let en Spec
Fbletx=eine’ : A I've:VaU IF've:[A/a)U

Note that unlike in the predicative polymorphic A-calculus, the rule —| allows us to assign any mono-
type A to variable z as long as expression e is assigned a valid monotype B. Hence, for example,
the same A-abstraction Az.x can now be assigned different monotypes such as bool— bool, int— int,
and a—«a. The rules Gen and Spec correspond to the rules VI and VE in the predicative polymorphic
A-calculus (but not in System F because A in the rule Spec is required to be a monotype).

In the rule Gen (for generalizing a type), expression e in the conclusion plays the role of a type
abstraction. That is, we can think of e in the conclusion as erase(Aa.). As an example, let us assign a
polytype to the polymorphic identity function Az. z:

' Ae.x:?

May 9, 2023 133

Intuitively Az.x has type a—« for an “any type” «, so we first assign a monotype o — o under the
assumption that « is a valid type variable:

Var

I'atype,z:avz: a
—l

I'atype> Ar.z: a—a

Note that Az. x has not been assigned a polytype yet. Also note that I' > Az. « : @« — o cannot be a valid
typing derivation because « is a fresh type variable which is not declared in I'. Assigning a polytype
Va.a— o to Az. x is accomplished by the rule Gen:

Iatype,z:abzx:a Var

T atyper dr.x:a—a
' Az.x:Va.a—«

Gen

As an example of using two type variables, we assign a polytype Vo.V5.a— — (o x) to Az. \y. (2, y)
as follows (where we assume that product types are available):

Var

I atype, B type,x : a,y: B x: « I, atype, B type,x : a,y: B>y : B Var
[, atype, S type,z : o,y : B> (z,y) : (a x) x|
I, a type, B type,x : a> Ay. (z,y) : B—(a X)
T, « type, § type > Az. Ay. (z,y) : a— S — (a x 8)
T, atype> Ax. \y. (z,y) : VB.a— B— (a x)
Lo Az Ay. (z,y) : VaVB.a— —(a x)

—l
—l

Gen

en

Generalizing the example, we can assign a polytype to an expression e in two steps. First we introduce
as many fresh type variables as necessary to assign a monotype A to e. Then we keep applying the rule
Gen to convert, or generalize, A to a polytype U. If A uses fresh type variables o, g, - - -, vy, then U is
given as Vo .Vag. - - - Vay, At

I, a; type, as type, - -+ ,a, type>e: A
I, a; type, as type, - - - >e: Va,. A

en

en

Gen
Gen
Gen

T, aq type, as typeb e : ---Va,,.A
T a1 type>e: Vas. - -Va,. A
I'>e: Vo Vas.---Va,.A

In the rule Spec (for specializing a type), expression e in the conclusion plays the role of a type
application. That is, we can think of e in the conclusion as erase(e JAK). Thus, by applying the rule
Spec repeatedly, we can convert, or specialize, any polytype into a monotype.

A typical use of the rule Spec is to specialize the polytype of a variable introduced in a let-binding
(in which case expression e in the rule Spec is a variable). Specifically a let-binding let x = e in ¢’
binds variable x to a polymorphic expression e and uses z monomorphically within e’ after special-
izing the type of « to monotypes by the rule Spec. For example, the following typing derivation for
let f = Az.z in (f true, f 0) applies the rule Spec to variable f twice, where we abbreviate T, f : Va.a —«
asI":

e f:Vaa—a Var I'> f:Vaa—a Var
I’ > f : bool — bool PEC 7% true : bool True > f:int—int Spec I">0:int Int
: & f true : bool —E "5 0 int —E
v Ax.z:Vaa—a I > (f true, f 0) : bool x int <

Ilet f = Ax.zin (f true, f 0) : bool x int Let

Note that in typechecking (f true, f 0), itis mandatory to specialize the type of f to a monotype bool — bool
or int — int, since an application f e typechecks by the rule —E only if f is assigned a monotype.

134 May 9, 2023

If expression e in the rule Spec is not a variable, the typing derivation of the premise I' > e : Vo.U
must end with an application of the rule Gen or another application of the rule Spec. In such a case, we
can eventually locate an application of the rule Gen that is immediately followed by an application of
the rule Spec:

T'atypere: U
Toe: Vo C T Atype
I've:[A/a)U

Here we introduce a type variable « only to instantiate it to a concrete monotype A immediately, which
implies that such a typing derivation is redundant and can be removed. For example, when typecheck-
ing (Az.z) true, there is no need to take a detour by first assigning a polytype Va.a— a to Az. x and
then instantiating o to bool. Instead it suffices to assign a monotype bool — bool directly because \z.
is eventually applied to an argument of type bool:

Iatype,z:abzx:a Var
—l

Tatyper Az.z: a—a G vV
To .z Vaa—a o TF bool type s T,z :bool>x : bool 2"
I'> Az.x : bool— bool pec — T Az :boolsbool

Spec

This observation suggests that it is unnecessary to specialize the type of an expression that is not a
variable — we only need to apply the rule Spec to polymorphic variables introduced in let-bindings.

The implicit polymorphic type system of SML is connected with let-polymorphism in Section [13.5]
via the following theorems:

Theorem 13.10. IfT'F e : U, then T' > erase(e) : U.
Theorem 13.11. IfT' > e : U, then there exists a typed expression €’ such that T' - ¢’ : U and erase(e’) = e.

13.7 Value restriction

The type system presented in the previous section is sound only if it does not interact with computa-
tional effects such as mutable references and input/output. To see the problem, consider the following
expression where we assume constructs for integers, booleans, and mutable references:

let z = ref (Ay.y) in
let _=x:=Ay.y+1in
(lz) true

We can assign a polytype Va.ref (a—) to ref (Ay. y) as follows (where we ignore store typing contexts):

Iatype,y:a>y: a Var

—l
T atype> Ay.y:a—a Ref
T, atype > ref (Ay.y) : ref (a—«) Ge
en

I ref (Ay.y) : Va.ref (a—a)

By the rule Spec, then, we can assign either ref (int—int) or ref (bool — bool) to variable z. Now both
expressions x := Ay.y + 1 and (!x) true are well-typed, but the reduction of (!x) true must not succeed
because it ends up adding a boolean truth true and an integer 1!

In order to avoid the problem arising from the interaction between polymorphism and computa-
tional effects, the type system of SML imposes a requirement, called value restriction, that expression e
in the rule Gen be a syntactic value:

I'Natyperv: U
F'vwv:Va.U
The idea is to exploit the fact that computational effects cannot interfere with (polymorphic) values,

whose evaluation terminates immediately. Now, for example, ref (Ay. y) cannot be assigned a polytype
because ref (A\y.y) is not a value and thus its type cannot be generalized by the rule Gen.

en

May 9, 2023 135

As a consequence of value restriction, variable z in a let-binding let z = e in €’ can be assigned a
polytype only if expression e is a value. If e is not a value, # must be used monomorphically within
expression €', even if e itself does not specify a unique monotype. This means that we may have to analyze ¢’
in order to decide the monotype to be assigned to z. As an example, consider the following expression:

let x = (A\y.y) (A\z.z) in x true

As (M\y.y) (Az. z) is not a value, variable = must be assigned a monotype. (Ay.y) (Az. z), however, does
not specify a unique monotype for z; it only specifies that the type of must be of the form A — A for
some monotype A. Fortunately the application z true fixes such a monotype A as bool and z is assigned
a unique monotype bool — bool. The following expression, in contrast, is ill-typed because variable z is
used polymorphically:

let z = (Ay.y) (Az. 2) in (x true,z 1)

The problem here is that = needs to be assigned two monotypes bool — bool and int — int simultaneously,
which is clearly out of the question.

13.8 Type reconstruction algorithm

This section presents a type reconstruction algorithm for the type system with implicit polymorphism
in Section[13.6] Given an untyped expression e, the goal is to infer a polytype U such that - > e : U holds.
In addition to being a valid type for e, U also needs to be the most general type for e in the sense that
every valid type for e can be obtained as a special case of U by instantiating some type variables in U.
Given A\z. z as input, for example, the algorithm returns the most general polytype Vo.cc — o instead of
a specific monotype such as bool — bool.

Typically the algorithm creates (perhaps a lot of) temporary type variables before finding the most
general type of a given expression. We design the algorithm in such a way that all these temporary type
variables are valid (simply because there is no reason to create invalid ones). As a result, we no longer
need a type declaration « type in the rule Gen (because « is assumed to be a valid type variable) and a
type judgment I' = A type in the rule Spec (because A is a valid type if all type variables in it are valid).
Accordingly a typing context now consists only of type bindings:

typing context r o= -|T,z:U

With the assumption that all type variables are valid, the rules Gen and Spec are revised as follows:

I've:U agftv(F)G I'be:Va.U
Ioe:Va.U " Tbe:[A/o)U

Spec

Here ftv(I") denotes the set of free type variables in I'; ftv(U) denotes the set of free type variables in U:

o ftu(A—=B) = ftv(A)U ftv(B)

fto(a) = {a}
feo(T) U feo(U) fro(Va.U) fro(U) = {a}

feo(-)
fto(T,z : V)

In the rule Gen, the condition o ¢ ftv(I") checks that « is a fresh type variable. If I' contains a type
binding « : U where « is already in use as a free type variable in U, o cannot be regarded as a fresh type
variable and generalizing U to Va.U is not justified. In the following example, « — « may generalize to
Va.oo— «, assigning the desired polytype to the polymorphic identity function Az. z, because « is not in
use in the empty typing context -:

Var
—l

Gen

T:abT:x
DAL a— o
> A2 Va.a—«

136 May 9, 2023

If v is already in use as a free type variable, however, such a generalization results in assigning a wrong
type to Ax. z:

Var
—l

Gen

Tioyiabra

TIab AT o=«

Tz:abA\y.x:Voa.a—a«

Here variable y is unrelated to variable z, yet is assigned the same type in the premise of the rule —I. A
correct typing derivation assigns a fresh type variable to y to reflect the fact that = and y are unrelated:

Var
—l
Gen

Tiay: BT
TiabAy.x: -
r:ab\y.x: V80—

As an example of applying the rule Spec, here is a typing derivation assigning a monotype bool — bool
to Az. z by instantiating a type variable:

> Ar. 2 Va.a— o
-> Az.x : bool—bool

Spec

For the above example, the rule Spec is unnecessary because we can directly assign bool to variable x:

Var

x : bool > x : bool
—l

-> Az.x : bool—bool

As we have seen in Section[I3.6) however, the rule Spec is indispensable for specializing the type of a
variable introduced in a let-binding. In the following example, the same type variable « in Va.ao— « is
instantiated to two different types 8 — 3 and 3 by the rule Spec:

- - Var - - Var
TTasi a V;LI f Vaa—ar f:Vaa—a Spec f i VYa.a—ar f:Vaa—a Spec
DAL T a— c f:Vaa—=ar f: (B—=08)—=(B8—=5) [Ya.a—a>f: -0 £
AT Vona—a o fiYaa—a>ff: =0 Let —
e

plet f=MXz.zinff:8-8

Exercise 13.12. What is wrong with the following typing derivation?

Var
z:Va.a—ad>z:Va.o—a

z:Vaa—arz: Vaa—a)— (Va.a—a)
z:Ya.a—=arzz: Vo.o—a
pAr.zx: (Va.a—a)—= (Va.a—a)

Spec Var

—E

r:Va.a—abzx: Vaa—«

—l

The type reconstruction algorithm, called W, takes a typing context I' and an expression e as input,
and returns a pair of a type substitution S and a monotype A as output:

W(T,e) = (S, A)

A type substitution is a mapping from type variables to monotypes. Note that it is not a mapping to
polytypes because type variables range only over monotypes:

type substitution S u= id|{A/a}|SoS

id is an identity type substitution which changes no type variable. { A/a} is a singleton type substitution
which maps o to A. S; 0 S; is a composition of S; and S» which applies first S; and then S;. id is the
identity for the composition operator o, i.e.,idoS = Soid = S. As o is associative, we write S1 0.53 0 S
for Sl o (52 o Sg) = (51 o SQ) o Sg.

An application of a type substitution to a polytype U is formally defined as follows:

May 9, 2023 137

id-U = U
{AJa}-a = A

{A/a}-p = P where o # 3
{A/OZ}'Bl—>BQ = {A/a}B1—>{A/a}B2
{A/a} -Ya.U = VaU
{4/a} V.U = VB{A/a}-U where o # f and § ¢ ftv(A)

510S2'U = Sl(SQU)

Note that if § is a free type variable in A, the case { A/} -V3.U needs to rename the bound type variable
B in order to avoid type variable captures. When applied to a typing context, a type substitution is
applied to the type in each type binding:

S-T,z:U) = S-T,x:(S-U)

The specification of the algorithm W is concisely stated in its soundness theorem:
Theorem 13.13 (Soundness of W). IfW(T',e) = (S, A), then S -T' e : A.

Given a typing context I' and an expression e, the algorithm analyzes e to build a type substitution S
mapping free type variables in I' so that e typechecks with a monotype A. An invariant is that S has no
effecton A, i.e., S-A = A, since Ais obtained after applying S to free type variables in I'. Here are a few
examples:

e W(z:a,z+0) = ({int/a},int) where we assume a base type int.
When the algorithm starts, « has been assigned a yet unknown monotype a. In the course of
analyzing z + 0, the algorithm discovers that + must be assigned type int, in which case x + 0 is
also assigned type int. Thus the algorithm returns a type substitution {int/a} along with int as the
type of z + 0.

e W(,Ax.2+0) = ({int/a},int—int) where we assume a base type int.
When it starts to analyze the A-abstraction, the algorithm creates a fresh type variable, say «, for
variable x because nothing is known about x yet. In the course of analyzing the body « + 0, the
algorithm discovers that o must be identified with int, in which case the type of the A-abstraction
becomes int— int. Hence the algorithm returns a type substitution {int/a} (which is not used
afterwards) with int—int as the type of Az.z + 0.

e Wi, x.z) = (id,a—«)
When it starts to analyze the A-abstraction, the algorithm creates a fresh type variable, say «, for
variable x because nothing is known about = yet. The body x, however, provides no information
on the type of z, either, and the algorithm ends up returning o — « as a possible type of Az. .

Exercise 13.14. What is the result of W(y : 3, (Az. z) y) if the algorithm W creates a temporary type
variable « for variable z? Is the result unique?

Figure shows the pseudocode of the algorithm W. We write & for a sequence of distinct type

variables a1, ao, - - - , a,. Then Va. A stands for Vaq Vas. - - - Vo, . A, and {ﬁ/&} stands for {8, /an}o -+ o
{Ba/az}to{B1/ar}. Wewrite'+z:UforT' —{z:U'},z:Uifx: U’ €T, and for ',z : U if T contains
no type binding for variable .

The first case W(I', x) summarizes the result of applying the rule Spec to V&. A as many times as the

138 May 9, 2023

W(,z) = (id,{f/a}- A) 2 :Va.A e T and fresh §

W x.e) = let(S,A)=W({I +2z:a,e)in fresh «
(S (S a)—A)

W(F, €1 62) = let (Sl,Al) = W(F, 61) in
let (527142) = W(Sl . F7 62) in
let S3 = Unify(Sy - A} = As—a) in fresh o
(53 o SQ o 51,53 . Oé)

W, letx =ejines) = let(S1,41)=W({T,e1)in

let (SQ,AQ) = W(Sl D+ z: Gensl.p(Al),eg) in
(SQ o Sl, Ag)

Figure 13.1: Algorithm W

Unify(:) = id
Unify(E,a = A) = Unify(F,A=«a) = if a = A then Unify(E)
else if o € ftv(A) then fail
else Unify({A/a} - E) o {A/a}
Unlfy(E,Al —>A2 =B —)Bg) = Unlfy(E7A1 = B]_, AQ = By

Figure 13.2: Algorithm Unify

length of &. Note that [A/a|U is written as {A/a} - U in the following typing derivation.

r: Vo Vas. - -Va, AecT
I'>x: Vo Vas. - -Va,,.A
F'vaz:{fi/a1} Vas. - -Va,.A

I'>x:{Ba/as}o{f1/a1} - Va,.A

Spec

l'bz: -0 {52/a2} o{fi/aa} - Va,.A
Foa:{By/an}o---o{Ba/as}to{f1/ar}-A

Spec

The second case W(I', Az. e) creates a fresh type variable « to be assigned to variable x.
The case W(T', e; e2) uses an auxiliary function Unify(E) where E is a set of type equations between
monotypes:
type equations E = - |E/A=A

Unify(E) attempts to calculate a type substitution that unifies two types A and A’ in each type equation
A = A’ in E. If no such type substitution exists, Unify(E) fails. Figure shows the definition of
Unify(E). We write S - E for the result of applying type substitution S to every type in E:

S-(E,A=4") = S-E,S-A=5-A
The specification of the function Unify is stated as follows:
Proposition 13.15. If Unify(A; = A}, - A, = A}) =S, then S-A; =S - Al fori=1,--- ,n
Here are a few examples of Unify(E) where we assume a base type int:

) Unify(a = int—a«) = fail

) Unify(a = a—a) = fail

) Unify(a —a =int—int) = {int/a}

) Unify(a— B8 = a—int) = {int/F}

) Unify(a— 5 = B—a) = {B/a}or{a/A}
) Unify(a— 8 = f—a,a=int) = {int/B}o {int/a}

May 9, 2023 139

In cases (1) and (2), the unification fails because both int — o and av— « contain « as a free type variable,
but are strictly larger than «. In case (5), either {3/a} or {«/5} successfully unifies « — 3 and 8 —«a.
Case (6) uses an additional assumption Unify(E, int = int) = Unify(E):

Unify(a— 8 =B—a,a=int) = Unify({int/a} - (a—8 = 8—a))o{int/a}
= Unify(int—f = B—int) o {int/a}
Unifygint = 3,8 =int) o {int/a}
(

Unify({int/8} - int = 3) o {int/B} o {int/a}
Unify(int = int) o {int/8} o {int/a}
Unify(-) o {int/B} o {int/a}

id o {int/8} o {int/a}

= {int/B} o {int/a}

The case W(T', let = e; in ez) uses another auxiliary function Genr(A) which generalizes monotype
A to a polytype after taking into account free type variables in typing context I':

Genp(A) = VaiVas.---Va,.Awhere o; ¢ fto(T') and o; € ftv(A) fori=1,--- ,n.

That is, if a € ftv(A) is in ftv(T'), @ € A is not interpreted as “any type” with respect to I'. Note that
Genp(A) = Yoy Vag. - - - Vau,. A is equivalent to applying the rule Gen exactly n times as follows:

've: A a, ¢ fto(I")

I'>e:Va,.A en n—1 &€ ftv(T)
I'be:Va,_1.4 Gen
: Gen
I'be:Va Vas. - Va,.A
Here are a few examples of Genp(A):

Gen.(a—a) = Vaa—a
Gengo(la—a) = a—a

Geng.o(a—p) = VYB.a—p
Geng.q y,@(aﬁﬂ) = a—f

Given an expression e, the algorithm WV returns a monotype A which may contain free type vari-
ables. If we wish to obtain the most general polytype for e, it suffices to generalize A with respect to the
given typing context. Specifically, if W(I", e) = (.S, A) holds, Theorem justifies S - I'> e : A, which
in turn justifies S - I'> e : Geng.r(A). Hence we may take Geng.r(A) as the most general type for e under
typing context I, although we do not formally prove this property (called the completeness of W) here.

140 May 9, 2023

	Introduction to Functional Programming
	Functional programming paradigm
	Expressions and values
	Variables
	Functions
	Types
	Recursion
	Polymorphic types
	Datatypes
	Pattern matching
	Higher-order functions
	Exceptions
	Modules

	Inductive Definitions
	Inductive definitions of syntactic categories
	Inductive definitions of judgments
	Derivable rules and admissible rules
	Inductive proofs
	Structural induction
	Rule induction

	Techniques for inductive proofs
	Using a lemma
	Generalizing a theorem
	Proof by the principle of inversion

	Exercises

	-Calculus
	Abstract syntax for the -calculus
	Operational semantics of the -calculus
	Substitution
	Programming in the -calculus
	Church booleans
	Pairs
	Church numerals

	Fixed point combinator
	Deriving the fixed point combinator
	De Bruijn indexes
	Substitution
	Shifting

	Exercises

	Simply typed -calculus
	Abstract syntax
	Operational semantics
	Type system
	Type safety
	Proof of progress
	Proof of type preservation

	Exercises

	Extensions to the simply typed -calculus
	Product types
	General product types and unit type
	Sum types
	Fixed point construct
	Type inhabitation
	Type safety

	Mutable References
	Abstract syntax and type system
	Operational semantics
	Type safety

	Typechecking
	Purely synthetic typechecking
	Bidirectional typechecking
	Exercises

	Evaluation contexts
	Evaluation contexts
	Type safety
	Abstract machine C
	Correctness of the abstract machine C
	Safety of the abstract machine C
	Exercises

	Environments and Closures
	Evaluation judgment
	Environment semantics
	Abstract machine E
	Fixed point construct in the abstract machine E
	Exercises

	Exceptions and continuations
	Exceptions
	A motivating example for continuations
	Evaluation contexts as continuations
	Composing two continuations
	Exercises

	Subtyping
	Principle of subtyping
	Subtyping relations
	Coercion semantics for subtyping

	Recursive Types
	Definition
	Recursive data structures
	Typing the untyped -calculus
	Exercises

	Polymorphism
	System F
	Type reconstruction
	Programming in System F
	Predicative polymorphic -calculus
	Let-polymorphism
	Implicit polymorphism
	Value restriction
	Type reconstruction algorithm

