
Program Verification via
Type Theory

CS242
Lecture 14

Alex Aiken CS 242 Lecture 14

Program Verification

• Proving properties of programs

• But not just that programs are well-typed
• Much deeper, almost arbitrary properties
• And often verifying full functional correctness

• Components
• A specification: What property the program is supposed to have
• A proof: Written mostly manually
• A proof assistant: Supports defining the concepts, managing the proof, checking the

proof, some automation of easy parts of the proof

• Proof assistants are based on type theory

Alex Aiken CS 242 Lecture 14

Type Theory

• Pioneered by Bertrand Russell in the early 20th century
• And greatly extended in computer science

• Original goal: A basis for all mathematics
• An alternative to set theory

• Allows the formalization of
• Programs
• Propositions (types)
• Proofs that programs satisfy the propositions
• Uniformly in one system

Alex Aiken CS 242 Lecture 14

Caveats

• There are multiple versions of type theory

• We will look at one, and mostly by example
• At the level we consider, there aren’t significant differences with other

approaches

• Type theory is a big topic
• Whole courses are devoted to it
• (But the same is true of other topics in this class!)

Alex Aiken CS 242 Lecture 14

Lambda Application and Abstraction Rules

Alex Aiken CS 242 Lecture 14

[App]

A d e1 : t → t’

A d e2 : t

A d e1 e2 : t’
[Abs]

A, x : t d e : t’

A d λx.e : t → t’

If e1 : t → t’ and e2 : t,
then e1 e2 has type t’.

If assuming x: t implies e : t’,
then λx.e: t → t’.

Function Type Elimination Function Type Introduction

Ignore the Programs for a Moment ...

Alex Aiken CS 242 Lecture 14

[App]

A d e1 : t → t’

A d e2 : t

A d e1 e2 : t’
[Abs]

A, x : t d e : t’

A d λx.e : t → t’

From a proof of t → t’
and and a proof of t, we
can prove t’.

If assuming t we can
prove t’, then we can
prove t → t’.

Implication Elimination
(modus ponens)

Implication Introduction

Types As Propositions

Alex Aiken CS 242 Lecture 14

[App]

A d e1 : t → t’

A d e2 : t

A d e1 e2 : t’
[Abs]

A, x : t d e : t’

A d λx.e : t → t’

From a proof of t → t’
and and a proof of t, we
can prove t’.

If assuming t we can
prove t’, then we can
prove t → t’.

Here we regard the types as propositions: If we can prove certain propositions
are true, then we can prove that other propositions are true.

But what are the proofs?

Programs as Proofs

Alex Aiken CS 242 Lecture 14

[App]

A d e1 : t → t’

A d e2 : t

A d e1 e2 : t’
[Abs]

A, x : t d e : t’

A d λx.e : t → t’

From a proof of t → t’
and and a proof of t, we
can prove t’.

If assuming t we can
prove t’, then we can
prove t → t’.

Answer: The programs! e: t is a proof that there is a program of type t.

The Curry-Howard Isomorphism

• There is a isomorphism between programs/types and
proofs/propositions.

• Two interpretations of d e : t

• We have a proof that the program e has type t
• → is a constructor for function types

• e is a proof of t
• → is logical implication

Alex Aiken CS 242 Lecture 14

Discussion

• This seems interesting ... but is it useful?

• Not so far

• If we use more expressive types, we can express more propositions.

• We need more than implication!

Alex Aiken CS 242 Lecture 14

Propositional Logic

• As an example, we show how to define the rest of propositional logic

• This is just one of many theories we could define
• But a particularly useful one

• We will define:
• And
• Or
• Not

Alex Aiken CS 242 Lecture 14

And

Alex Aiken CS 242 Lecture 14

[And-Intro]

A d e1 : t1

A d e2 : t2

A d ? : t1 ⋀ t2

[And-Elim-Left]
A d e : t1 ⋀ t2

A d ? : t1

[And-Elim-Right]
A d e : t1 ⋀ t2

A d ? : t2

What program is a proof of t1 ⋀ t2?

Pairs

Alex Aiken CS 242 Lecture 14

[And-Intro]

A d e1 : t1

A d e2 : t2

A d (e1, e2) : t1 ⋀ t2

[And-Elim-Left]
A d e : t1 ⋀ t2

A d e.left : t1

[And-Elim-Right]
A d e : t1 ⋀ t2

A d e.right : t2

Or

Alex Aiken CS 242 Lecture 14

[Or-Intro-Left]
A d e : t1

A d e : t1 ⋁ t2

[Or-Elim]A d e : t1 ⋁ t2

A d ? : ?

[Or-Intro-Right]
A d e : t2

A d e : t1 ⋁ t2

Hmmmm ...

• The Or-Elim rule isn’t obvious

• We need to exhibit a program that works regardless of whether e is
an element of t1 or t2.

• Solution
• The elimination is done by another program that does a case analysis

Alex Aiken CS 242 Lecture 14

Or Elimination

Alex Aiken CS 242 Lecture 14

[Or-Elim]
A d e0 : t1 ⋁ t2

A d (λx. case x of t1 -> e1; t2 -> e2) e0 : t0

A, x: t1 d e1 : t0 A, x: t2 d e2 : t0

Discussion

• Using a case analysis makes sense to computer scientists
• Do one thing if the list is Nil / n = 0
• Do something else if the list has at least one element/ n > 0

• But this is not the “or” of classical logic
• In constructive logic, we must construct evidence for everything we prove
• To use a disjunction, we must know which case we are in

• A dual explanation
• To create a disjunction, we must compute a value of one of the types

• Thus t	⋁¬t is not an axiom of this system!
• And this is the only classical axiom that must be excluded

Alex Aiken CS 242 Lecture 14

Negation

• ¬p	is defined as p → false
• Proposition p implies a contradiction

• False is the empty type – there is no evidence for false

• Thus ¬p either does not have any elements, or only non-terminating
functions
• Depending on what else is included in the theory we are using

Alex Aiken CS 242 Lecture 14

What is Negation Good For?

• There can be uses for negation

• If we are just interested in proving things, proof by contradiction is an
important technique
• Recall one goal is to formalize mathematics

• But there are also computational interpretations

Alex Aiken CS 242 Lecture 14

Type Theory for Continuations (Sketch)

Recall ¬p =	p → false

In pure lambda calculus, a function of type ¬p can’t be called
• Because false has no elements in its type

• But in a language with continuations:
• Recall that a continuation has the form λv.e and does not return when called
• So it is sensible to give continuations a type p → false = ¬p

Alex Aiken CS 242 Lecture 14

Constructive vs. Classical Logic

• Constructive logic gives us programs we can run

• Type theory can also have classical axioms
• What axioms are used is not the distinguishing feature of type theory
• But if we use classical logic, we also lose the ability to use the proofs as

programs, as they are no longer constructive

• In applications to software, we are generally interested in
constructive proofs

Alex Aiken CS 242 Lecture 14

Summary

• We have shown how to define propositional logic in type theory
• Give sensible type rules for and, or and not
• Show how to construct programs that have the postulated types

• Example: We can prove (a → b) → (a → c) → (a → b ⋀ c)

Alex Aiken CS 242 Lecture 14

Taking It to the Next Level

• We want to be able to define new kinds of theories within the system

• and, or, & not should definable within the system

• The type checking rules should also be definable

Alex Aiken CS 242 Lecture 14

Boolean Connectives Revisited

• What are and, or and not?

• They are functions that take types and construct new types

• Introduce a new type Type that contains all types
• Type = { Int, Bool, Int → Int, ... }

• and: Type → Type → Type
• or: Type → Type → Type
• not: Type → Type

Alex Aiken CS 242 Lecture 14

Inference Rules Revisited

• An inference rule is a function that takes proofs of propositions as
arguments and produces a proof of a proposition as a result

• Define a new type Proof

• And-Intro: Proof → Proof → Proof
• And-Elim-Left: Proof → Proof
• And-Elim-Right: Proof → Proof

Alex Aiken CS 242 Lecture 14

Review

So now we can:

• Define new types
• Define new type combinators (and, or, not ...)
• Define new inference rules (and-intro, ...)

• All using a uniform system based on types
• Note the system also checks type functions and inference rules are

correctly used
• E.g., we can only build valid proofs

Alex Aiken CS 242 Lecture 14

Are We Done?

• Not yet

• There are three more important features of type theories:
• Type stratification
• Inductively defined data types
• Pi types

Alex Aiken CS 242 Lecture 14

Type Stratification

• Recall we ``Introduce a new type Type that contains all types’’
• Type = { Int, Bool, Int → Int, ... }

• So is Type ∈ Type ?

Alex Aiken CS 242 Lecture 14

And Now ... A Little Set Theory

• Recall in the early 20th century there was a systematic effort to
understand the foundations of logic
• As part of the goal of formalizing mathematics

• Set theory was recognized as a potential foundation

Alex Aiken CS 242 Lecture 14

Why Set Theory?

• A function f can be represented as a set of (input,output) pairs:

{(xi,yi) | f(xi) = yi}

• Natural numbers:
0 ≅ 	∅
Succ(n) ≅ 	n ∪ {n}

• And so on ...

Alex Aiken CS 242 Lecture 14

Russell’s Paradox

Alex Aiken CS 242 Lecture 14

Consider 𝑅 = 	𝑥	 𝑥	 ∉ 𝑥	}

Now we can easily show:	
𝑅 ∉ 𝑅 ⇒ 𝑅 ∈ 𝑅
𝑅 ∈ 𝑅 ⇒ 𝑅 ∉ 𝑅

So we conclude:
𝑅 ∈ 𝑅 ⇔ 𝑅 ∉ 𝑅

Implications

• Russell’s paradox shows that naïve set theory is inconsistent
• Can prove ``false is true’’ and so can prove anything
• Not a great foundation for mathematics!

• Led to a reconsideration of the foundations of set theory
• Over a couple of decades

• One conclusion: No set could be an element of itself
• Set theory should be well-founded

Alex Aiken CS 242 Lecture 14

What Does Well-Founded Mean?

• There is no set of all sets
• Instead, there is an infinite hierarchy of stratified sets

• We define ``small’’ sets at stratum 0
• The set of all level 0 sets is a stratum 1 set
• The set of all level 1 sets is a stratum 2 set
• ...

• In this way no set can be an element of itself
• Stratum n sets can only contain small sets of stratum n and sets of strata less than n

• Similar to the definition of ordinals

Alex Aiken CS 242 Lecture 14

Back To Types ...

• Recall that types are sets
• So Russell’s paradox applies to types as well

• Implies we will need a type hierarchy
• In a consistent type system
• The set of all types lives at a higher level in the hierarchy than ordinary types

Alex Aiken CS 242 Lecture 14

Ordinary Types

0 : Int
succ : Int → Int
add: Int → Int → Int

true: Bool
false: Bool
and: Bool → Bool → Bool

Alex Aiken CS 242 Lecture 14

Next Level ...

• What are Int, Bool, 𝛼	→	𝛽, ...?

• They are types
• Int : Type
• Bool: Type
• Int → Int: Type

• Int, Bool, etc. are at level 0 of the type hierarchy
• Type is at level 1

Alex Aiken CS 242 Lecture 14

Next Level ...

• What are → and and?

• They are functions of types that produce types
• →	: Type → Type → Type
• and: Type → Type → Type

• These are functions that operate on elements of type level 1

Alex Aiken CS 242 Lecture 14

Inductively Defined Data Types

• Dependent type theories generally include inductively defined data
types as a primitive concept
• So users can define natural numbers, lists, trees, etc.
• With constructors of the appropriate types

• We have already talked about how to represent inductively defined
data types as lambda terms in previous lectures.
• Nothing new here ...

Alex Aiken CS 242 Lecture 14

Pi Types

• What we have discussed so far is still missing an important feature

• We can’t express type functions that depend on their arguments

• Example cons: 𝛼	→ List(𝛼) → List(𝛼)
• What is the type of cons?
• Explanation 1: cons has a family of types indexed by a parameter 𝛼
• Explanation 2: cons has many types, one for each 𝛼

• a product or intersection of an infinite set of types

Alex Aiken CS 242 Lecture 14

Pi Types

Defining the List data type :

List: Type → Type
Cons: Π	𝛼	: Type. 𝛼 → List(𝛼) → List(𝛼)
Nil: Π	𝛼	: Type. List(𝛼)

Polymorphic types are an example of dependent types: The type depends on
a parameter. Note how Π functions like ∀.

There is also a corresponding sum type  that functions like 

Alex Aiken CS 242 Lecture 14

Pi Types

The parameter in a Pi type doesn’t have to range over Type.

A polymorphic array that includes its length in the type:

Array: Type → Int →	Type
mkarray: Π	𝛼	: Type. Π	𝛽: Int. 𝛼 →	𝛽→ Array(𝛼, 𝛽)

Here 𝛽 is an integer – which could be any expression of type Int!

Alex Aiken CS 242 Lecture 14

Discussion

• Without Pi types, type theory is very limited
• E.g., simply typed lambda calculus

• Pi types are extremely powerful
• The construct for creating infinite families of types
• The signature feature of dependent type theories
• Play a somewhat similar role to set comprehension in set theory

• Dependent type systems are often undecidable
• Performing computation as part of type checking is bound to quickly run into

computability issues!

Alex Aiken CS 242 Lecture 14

Type Theory

• A foundation for all mathematics
• Especially constructive mathematics
• Sufficiently powerful to prove anything we can think of proving
• And thus also a foundation for verifying the correctness of software

• Key features
• Isomorphism of programs/types with proofs/propositions
• Type hierarchy allows uniform definition of types, type operations, proofs, ...
• Dependent types allow very expressive (even to the point of undecidability)

types to be constructed

Alex Aiken CS 242 Lecture 14

Type Theory in the Real World

• Type theory has been used to verify the correctness of real systems

• CompCert
• A formally verified (subset of) C compiler

• Sel4
• A formally verified OS microkernel
• Has many but not all features of a real OS

Alex Aiken CS 242 Lecture 14

State of Practice

• Compcert and Sel4 show that formal verification of significant systems using type
theory-based proof assistants is possible

• Compcert and Sel4 have very high levels of assurance
• Debugging is not an issue
• Guaranteed, for example, to be extremely secure

• But Compcert and Sel4 have shown the software engineering costs of full formal
verification are still high
• Sel4 has over 1M lines of proofs
• Modifications may require much more reproving than recoding

• The biggest barrier for most systems, though, is having the specification
• To use a theorem prover, you first have to state a theorem to prove!

Alex Aiken CS 242 Lecture 14

