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Program Verification

• Proving properties of programs

• But not just that programs are well-typed
• Much deeper, almost arbitrary properties
• And often verifying full functional correctness

• Components
• A specification: What property the program is supposed to have
• A proof: Written mostly manually
• A proof assistant: Supports defining the concepts, managing the proof, checking the 

proof, some automation of easy parts of the proof

• Proof assistants are based on type theory
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Type Theory

• Pioneered by Bertrand Russell in the early 20th century
• And greatly extended in computer science

• Original goal: A basis for all mathematics
• An alternative to set theory

• Allows the formalization of
• Programs
• Propositions (types)
• Proofs that programs satisfy the propositions
• Uniformly in one system
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Caveats

• There are multiple versions of type theory

• We will look at one, and mostly by example
• At the level we consider, there aren’t significant differences with other 

approaches

• Type theory is a big topic
• Whole courses are devoted to it
• (But the same is true of other topics in this class!)
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Lambda Application and Abstraction Rules
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[App]

A d e1 : t → t’ 

A d e2 : t

A d e1 e2 : t’
[Abs]

A, x : t d e : t’

A d λx.e : t → t’ 

If e1 : t → t’ and e2 : t, 
then e1 e2 has type t’. 

If assuming x: t implies e : t’, 
then λx.e: t → t’. 

Function Type Elimination Function Type Introduction



Ignore the Programs for a Moment ...
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[App]

A d e1 : t → t’ 

A d e2 : t

A d e1 e2 : t’
[Abs]

A, x : t d e : t’

A d λx.e : t → t’ 

From a proof of t → t’ 
and and a proof of t, we 
can prove t’. 

If assuming t we can 
prove t’, then we can 
prove t → t’. 

Implication Elimination
(modus ponens)

Implication Introduction



Types As Propositions
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[App]

A d e1 : t → t’ 

A d e2 : t

A d e1 e2 : t’
[Abs]

A, x : t d e : t’

A d λx.e : t → t’ 

From a proof of t → t’ 
and and a proof of t, we 
can prove t’. 

If assuming t we can 
prove t’, then we can 
prove t → t’. 

Here we regard the types as propositions:  If we can prove certain propositions 
are true, then we can prove that other propositions are true.

But what are the proofs?



Programs as Proofs
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[App]

A d e1 : t → t’ 

A d e2 : t

A d e1 e2 : t’
[Abs]

A, x : t d e : t’

A d λx.e : t → t’ 

From a proof of t → t’ 
and and a proof of t, we 
can prove t’. 

If assuming t we can 
prove t’, then we can 
prove t → t’. 

Answer: The programs! e: t is a proof that there is a program of type t.



The Curry-Howard  Isomorphism

• There is a isomorphism between programs/types and 
proofs/propositions.

• Two interpretations of d e : t

• We have a proof that the program e has type t
• → is a constructor for function types

• e is a proof of t 
• → is logical implication
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Discussion

• This seems interesting ... but is it useful?

• Not so far

• If we use more expressive types, we can express more propositions.

• We need more than implication!
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Propositional Logic

• As an example, we show how to define the rest of propositional logic

• This is just one of many theories we could define
• But a particularly useful one

• We will define:
• And
• Or
• Not
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And
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[And-Intro]

A d e1 : t1 

A d e2 : t2

A d  ? : t1 ⋀ t2

[And-Elim-Left]
A d e : t1 ⋀ t2

A d  ? : t1 

[And-Elim-Right]
A d e : t1 ⋀ t2

A d  ? : t2 

What program is a proof of t1 ⋀ t2? 



Pairs
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[And-Intro]

A d e1 : t1 

A d e2 : t2

A d  (e1, e2)  : t1 ⋀ t2

[And-Elim-Left]
A d e : t1 ⋀ t2

A d e.left : t1 

[And-Elim-Right]
A d e : t1 ⋀ t2

A d e.right : t2 



Or
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[Or-Intro-Left]
A d e : t1 

A d e : t1 ⋁ t2

[Or-Elim]A d e : t1 ⋁ t2

A d  ? : ?  

[Or-Intro-Right]
A d e : t2

A d e : t1 ⋁ t2



Hmmmm ...

• The Or-Elim rule isn’t obvious

• We need to exhibit a program that works regardless of whether e is 
an element of  t1 or t2.

• Solution
• The elimination is done by another program that does a case analysis
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Or Elimination

Alex Aiken      CS 242     Lecture 14

[Or-Elim]
A d e0 : t1 ⋁ t2

A d (λx. case x of t1 -> e1; t2 -> e2) e0 : t0 

A, x: t1 d e1 : t0 A, x: t2 d e2 : t0



Discussion

• Using a case analysis makes sense to computer scientists
• Do one thing if the list is Nil / n  = 0
• Do something else if the list has at least one element/ n > 0

• But this is not the “or” of classical logic
• In constructive logic, we must construct evidence for everything we prove
• To use a disjunction, we must know which case we are in

• A dual explanation
• To create a disjunction, we must compute a value of one of the types

• Thus t	⋁¬t is not an axiom of this system!
• And this is the only classical axiom that must be excluded
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Negation

• ¬p	is defined as p → false 
• Proposition p implies a contradiction 

• False is the empty type – there is no evidence for false

• Thus ¬p either does not have any elements, or only non-terminating 
functions
• Depending on what else is included in the theory we are using
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What is Negation Good For?

• There can be uses for negation

• If we are just interested in proving things, proof by contradiction is an 
important technique
• Recall one goal is to formalize mathematics

• But there are also computational interpretations
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Type Theory for Continuations (Sketch)

Recall ¬p =	p → false 

In pure lambda calculus, a function of type ¬p can’t be called
• Because false has no elements in its type

• But in a language with continuations:
• Recall that a continuation has the form λv.e and does not return when called
• So it is sensible to give continuations a type p → false = ¬p
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Constructive vs. Classical Logic

• Constructive logic gives us programs we can run

• Type theory can also have classical axioms
• What axioms are used is not the distinguishing feature of type theory
• But if we use classical logic, we also lose the ability to use the proofs as 

programs, as they are no longer constructive

• In applications to software, we are generally interested in 
constructive proofs
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Summary

• We have shown how to define propositional logic in type theory
• Give sensible type rules for and, or and not
• Show how to construct programs that have the postulated types

• Example: We can prove  (a → b) → (a → c) → (a → b ⋀ c ) 
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Taking It to the Next Level

• We want to be able to define new kinds of theories within the system

• and, or, & not should definable within the system

• The type checking rules should also be definable
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Boolean Connectives Revisited

• What are and, or and not?

• They are functions that take types and construct new types

• Introduce a new type Type that contains all types 
• Type = { Int, Bool, Int → Int,  ... }

• and: Type → Type → Type
• or: Type → Type → Type
• not: Type → Type 
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Inference Rules Revisited

• An inference rule is a function that takes proofs of propositions as 
arguments and produces a proof of a proposition as a result

• Define a new type Proof

• And-Intro: Proof → Proof → Proof
• And-Elim-Left: Proof → Proof 
• And-Elim-Right: Proof → Proof 
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Review

So now we can:

• Define new types
• Define new type combinators (and, or, not ...)
• Define new inference rules  (and-intro, ...)

• All using a uniform system based on types
• Note the system also checks type functions and inference rules are 

correctly used
• E.g., we can only build valid proofs
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Are We Done?

• Not yet

• There are three more important features of type theories:
• Type stratification
• Inductively defined data types
• Pi types
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Type Stratification

• Recall we ``Introduce a new type Type that contains all types’’
• Type = { Int, Bool, Int → Int,  ... }

• So is Type ∈ Type ?
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And Now ... A Little Set Theory

• Recall in the early 20th century there was a systematic effort to 
understand the foundations of logic
• As part of the goal of formalizing mathematics

• Set theory was recognized as a potential foundation

Alex Aiken      CS 242     Lecture 14



Why Set Theory?

• A function f can be represented as a set of (input,output) pairs:

{(xi,yi) | f(xi) = yi}

• Natural numbers:
0 ≅ 	∅
Succ(n) ≅ 	n ∪ {n}

• And so on ...
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Russell’s Paradox
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Consider 𝑅 = 	𝑥	 𝑥	 ∉ 𝑥	}

Now we can easily show:	
𝑅 ∉ 𝑅 ⇒ 𝑅 ∈ 𝑅
𝑅 ∈ 𝑅 ⇒ 𝑅 ∉ 𝑅

So we conclude:
𝑅 ∈ 𝑅 ⇔ 𝑅 ∉ 𝑅



Implications

• Russell’s paradox shows that naïve set theory is inconsistent
• Can prove ``false is true’’ and so can prove anything
• Not a great foundation for mathematics!

• Led to a reconsideration of the foundations of set theory
• Over a couple of decades

• One conclusion: No set could be an element of itself
• Set theory should be well-founded
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What Does Well-Founded Mean?

• There is no set of all sets
• Instead, there is an infinite hierarchy of stratified sets

• We define ``small’’ sets at stratum 0
• The set of all level 0 sets is a stratum 1 set
• The set of all level 1 sets is a stratum 2 set
• ...

• In this way no set can be an element of itself
• Stratum n sets can only contain small sets of stratum n and sets of strata less than n

• Similar to the definition of ordinals
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Back To Types ...

• Recall that types are sets
• So Russell’s paradox applies to types as well

• Implies we will need a type hierarchy
• In a consistent type system
• The set of all types lives at a higher level in the hierarchy than ordinary types
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Ordinary Types

0 : Int
succ :  Int → Int
add: Int → Int → Int

true: Bool
false: Bool
and: Bool → Bool → Bool
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Next Level ...

• What are Int, Bool, 𝛼	→	𝛽, ...?

• They are types
• Int : Type
• Bool: Type
• Int → Int: Type

• Int, Bool, etc. are at level 0 of the type hierarchy
• Type is at level 1
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Next Level ...

• What are → and and?

• They are functions of types that produce types
•  →	: Type → Type → Type
• and: Type → Type → Type

• These are functions that operate on elements of type level 1
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Inductively Defined Data Types

• Dependent type theories generally include inductively defined data 
types as a primitive concept
• So users can define natural numbers, lists, trees, etc.
• With constructors of the appropriate types

• We have already talked about how to represent inductively defined 
data types as lambda terms in previous lectures.
• Nothing new here ...
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Pi Types

• What we have discussed so far is still missing an important feature

• We can’t express type functions that depend on their arguments

• Example cons: 𝛼	→ List(𝛼) → List(𝛼) 
• What is the type of cons?
• Explanation 1: cons has a family of types indexed by a parameter 𝛼
• Explanation 2: cons has many types, one for each 𝛼

•  a product or intersection of an infinite set of types
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Pi Types

Defining the List data type  : 

List: Type → Type 
Cons: Π	𝛼	: Type. 𝛼 → List(𝛼) → List(𝛼) 
Nil: Π	𝛼	: Type. List(𝛼) 
 
Polymorphic types are an example of dependent types: The type depends on 
a parameter.  Note how Π functions like ∀.

There is also a corresponding sum type  that functions like 
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Pi Types

The parameter in a Pi type doesn’t have to range over Type.  

A polymorphic array that includes its length in the type:

Array: Type → Int →	Type 
mkarray: Π	𝛼	: Type. Π	𝛽: Int. 𝛼 →	𝛽→ Array(𝛼, 𝛽) 

Here 𝛽 is an integer – which could be any expression of type Int!
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Discussion

• Without Pi types, type theory is very limited
• E.g., simply typed lambda calculus

• Pi types are extremely powerful
• The construct for creating infinite families of types
• The signature feature of dependent type theories
• Play a somewhat similar role to set comprehension in set theory

• Dependent type systems are often undecidable
• Performing computation as part of type checking is bound to quickly run into 

computability issues!
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Type Theory

• A foundation for all mathematics
• Especially constructive mathematics
• Sufficiently powerful to prove anything we can think of proving
• And thus also a foundation for verifying the correctness of software

• Key features
• Isomorphism of programs/types with proofs/propositions
• Type hierarchy allows uniform definition of types, type operations, proofs, ...
• Dependent types allow very expressive (even to the point of undecidability) 

types to be constructed
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Type Theory in the Real World

• Type theory has been used to verify the correctness of real systems

• CompCert
• A formally verified (subset of) C compiler

• Sel4
• A formally verified OS microkernel
• Has many but not all features of a real OS
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State of Practice

• Compcert and Sel4 show that formal verification of significant systems using type 
theory-based proof assistants is possible

• Compcert and Sel4 have very high levels of assurance
• Debugging is not an issue
• Guaranteed, for example, to be extremely secure

• But Compcert and Sel4 have shown the software engineering costs of full formal 
verification are still high
• Sel4 has over 1M lines of proofs
• Modifications may require much more reproving than recoding

• The biggest barrier for most systems, though, is having the specification
• To use a theorem prover, you first have to state a theorem to prove!
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