Program Verification via
Type Theory

CS242
Lecture 14

Program Verification

* Proving properties of programs

e But not just that programs are well-typed
* Much deeper, almost arbitrary properties
* And often verifying full functional correctness

* Components
* A specification: What property the program is supposed to have
* A proof: Written mostly manually

* A proof assistant: Supports defining the concepts, managing the proof, checking the
proof, some automation of easy parts of the proof

* Proof assistants are based on type theory

Type Theory

* Pioneered by Bertrand Russell in the early 20th century
* And greatly extended in computer science

* Original goal: A basis for all mathematics
* An alternative to set theory

e Allows the formalization of
* Programs
* Propositions (types)
* Proofs that programs satisfy the propositions
e Uniformly in one system

Alex Aiken CS242 Lecture 14

Caveats

* There are multiple versions of type theory

* We will look at one, and mostly by example

* At the level we consider, there aren’t significant differences with other
approaches

* Type theory is a big topic
* Whole courses are devoted to it
* (But the same is true of other topics in this class!)

Lambda Application and Abstraction Rules

If and , If assuming implies
then has type t'. then Ax.

Function Type Elimination Function Type Introduction

lgnore the Programs for a Moment ...

From a proof of If assuming t we can
and and a proof of t, we prove t’, then we can
can prove t'. prove

Implication Elimination Implication Introduction

(modus ponens)

Types As Propositions

From a proof of If assuming t we can
and and a proof of t, we prove t’, then we can
can prove t’. prove

Here we regard the types as propositions: If we can prove certain propositions
are true, then we can prove that other propositions are true.

But what are the proofs?

Programs as Proofs

From a proof of If assuming t we can
and and a proof of t, we prove t’, then we can

can prove t. prove

Answer: The programs! is a proof that there is a program of type t.

The Curry-Howard Isomorphism

* There is a isomorphism between programs/types and
proofs/propositions.

* Two interpretations of

* We have a proof that the program e has type
is a constructor for function types

is a proof of
is logical implication

Discussion

* This seems interesting ... but is it useful?

 Not so far

* If we use more expressive types, we can express more propositions.

* We need more than implication!

Propositional Logic

* As an example, we show how to define the rest of propositional logic

* This is just one of many theories we could define
e But a particularly useful one

* We will define:
* And
* Or
* Not

And

Ar-e:t At
[And-Elim-Left]
AF7?:t
Ar-e;:ty
Are,:t, :
[And-Intro] Arertint [And-Elim-Right]
A ?:tl/\tz AI—?:tz

What program is a proof of t; A ©,?

Alex Aiken CS242 Lecture 14

Pairs

Ar-e:t At
[And-Elim-Left]
Are.left:t;
Ar-e;:ty
Are,:t, :
[And-Intro] Areitag [And-Elim-Right]
Ak (e, e) :tnt, A+ e.right:t,

Alex Aiken CS242 Lecture 14

Or

Are:ty

Are:tjvi,

Ar-e:t,

Are:tjvi,

[Or-Intro-Left]

Are:tjvi,

[Or-Intro-Right]

Alex Aiken CS242 Lecture 14

AR 7?:7

[Or-Elim]

Hmmmm ...

* The rule isn’t obvious

* We need to exhibit a program that works regardless of whether e is
an element of t, or

 Solution
* The elimination is done by another program that does a case analysis

Or Elimination

Areg:tyvi, A x:tiHeity Axite ity
[Or-Elim]

A (Ax.casex oft;->e;; t,->e,5) ep: tg

Alex Aiken CS242 Lecture 14

Discussion

Using a case analysis makes sense to computer scientists
* Do one thingif the listis Nil /n =0
* Do something else if the list has at least one element/ n >0

But this is not the “or” of classical logic
* In constructive logic, we must construct evidence for everything we prove
* To use a disjunction, we must know which case we are in

A dual explanation
* To create a disjunction, we must compute a value of one of the types

Thus is not an axiom of this system!
* And this is the only classical axiom that must be excluded

Negation

is defined as
* Proposition p implies a contradiction

is the empty type — there is no evidence for

* Thus either does not have any elements, or only non-terminating
functions

* Depending on what else is included in the theory we are using

What is Negation Good For?

* There can be uses for negation

* If we are just interested in proving things, proof by contradiction is an
important technique
* Recall one goal is to formalize mathematics

e But there are also computational interpretations

Type Theory for Continuations (Sketch)

Recall

In pure lambda calculus, a function of type can’t be called
* Because false has no elements in its type

e But in a language with continuations:

e Recall that a continuation has the form and does not return when called
* Soitis sensible to give continuations a type

Constructive vs. Classical Logic

* Constructive logic gives us programs we can run

* Type theory can also have classical axioms
* What axioms are used is not the distinguishing feature of type theory

* But if we use classical logic, we also lose the ability to use the proofs as
programs, as they are no longer constructive

* In applications to software, we are generally interested in
constructive proofs

Summary

* We have shown how to define propositional logic in type theory
* Give sensible type rules for and, or and not
e Show how to construct programs that have the postulated types

* Example: We can prove

Taking It to the Next Level

* We want to be able to define new kinds of theories within the system
,or, & should definable within the system

* The type checking rules should also be definable

Boolean Connectives Revisited

* What are , or and ?

* They are functions that take types and construct new types

* Introduce a new type that contains all types

Inference Rules Revisited

* An inference rule is a function that takes proofs of propositions as
arguments and produces a proof of a proposition as a result

* Define a new type

Review

So now we can:

* Define new types

* Define new type combinators (and, or, not ...)
* Define new inference rules (and-intro, ...)

e All using a uniform system based on types

* Note the system also checks type functions and inference rules are
correctly used

* E.g., we can only build valid proofs

Are We Done?

* Not yet

* There are three more important features of type theories:
* Type stratification
* Inductively defined data types
* Pitypes

Type Stratification

* Recall we "'Introduce a new type that contains all types”

* S0 is ?

And Now ... A Little Set Theory

e Recall in the early 20" century there was a systematic effort to
understand the foundations of logic
* As part of the goal of formalizing mathematics

» Set theory was recognized as a potential foundation

Why Set Theory?

* A function f can be represented as a set of (input,output) pairs:

 Natural numbers:

* And soon...

Russell’s Paradox
Consider R = { x | x & x|}

Now we can easily show:
RE€R=>RER
RER=>RE&R

So we conclude:
RERSRER

Alex Aiken CS242 Lecture 14

Implications

* Russell’s paradox shows that naive set theory is inconsistent
* Can prove false is true’’ and so can prove anything
* Not a great foundation for mathematics!

* Led to a reconsideration of the foundations of set theory
e Over a couple of decades

* One conclusion: No set could be an element of itself
» Set theory should be well-founded

What Does Well-Founded Mean?

 There is no set of all sets

* Instead, there is an infinite hierarchy of stratified sets
e We define ‘small”’ sets at stratum O
 The set of all level O sets is a stratum 1 set
* The set of all level 1 sets is a stratum 2 set

* In this way no set can be an element of itself
* Stratum n sets can only contain small sets of stratum n and sets of strata less than n

e Similar to the definition of ordinals

Back To Types ...

» Recall that types are sets
* So Russell’s paradox applies to types as well

* Implies we will need a type hierarchy
* In a consistent type system
* The set of all types lives at a higher level in the hierarchy than ordinary types

Ordinary Types

0:Int
succ: Int = Int
add: Int = Int = Int

true: Bool

false: Bool
and: Bool - Bool - Bool

Alex Aiken CS242 Lecture 14

Next Level ...

* What are Int, , R

* They are types

) , etc. are at level O of the type hierarchy

is at level 1

Next Level ...

e What are — and ?

* They are functions of types that produce types

* These are functions that operate on elements of type level 1

Inductively Defined Data Types

* Dependent type theories generally include inductively defined data
types as a primitive concept

* So users can define natural numbers, lists, trees, etc.
* With constructors of the appropriate types

* We have already talked about how to represent inductively defined
data types as lambda terms in previous lectures.

* Nothing new here ...

Pi Types
* What we have discussed so far is still missing an important feature

* We can’t express type functions that depend on their arguments

* Example
* What is the type of cons?
* Explanation 1: cons has a family of types indexed by a parameter

e Explanation 2: cons has many types, one for each
e aproduct or intersection of an infinite set of types

Pi Types

Defining the List data type :

Polymorphic types are an example of dependent types: The type depends on
a parameter. Note how [functions like

There is also a corresponding sum type > that functions like

Pi Types
The parameter in a Pi type doesn’t have to range over

A polymorphic array that includes its length in the type:

Here [is an integer — which could be any expression of type Int!

Discussion

* Without Pi types, type theory is very limited
e E.g., simply typed lambda calculus

* Pi types are extremely powerful
* The construct for creating infinite families of types
* The signature feature of dependent type theories
e Play a somewhat similar role to set comprehension in set theory

* Dependent type systems are often undecidable

* Performing computation as part of type checking is bound to quickly run into
computability issues!

Type Theory

* A foundation for all mathematics
* Especially constructive mathematics
 Sufficiently powerful to prove anything we can think of proving
* And thus also a foundation for verifying the correctness of software

» Key features
* Isomorphism of programs/types with proofs/propositions
* Type hierarchy allows uniform definition of types, type operations, proofs, ...

* Dependent types allow very expressive (even to the point of undecidability)
types to be constructed

Type Theory in the Real World

* Type theory has been used to verify the correctness of real systems

* CompCert
* A formally verified (subset of) C compiler

* Sel4

* A formally verified OS microkernel
* Has many but not all features of a real OS

State of Practice

Compcert and Seld4 show that formal verification of significant systems using type
theory-based proof assistants is possible

Compcert and Seld have very high levels of assurance
* Debugging is not an issue
* Guaranteed, for example, to be extremely secure

But Compcert and Sel4 have shown the software engineering costs of full formal
verification are still high

* Seld has over 1M lines of proofs

* Modifications may require much more reproving than recoding

The biggest barrier for most systems, though, is having the specification
* To use a theorem prover, you first have to state a theorem to prove!

