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Abstract—Influence maximization problem with applications
to viral marketing has gained much attention. Underlying
influence diffusion models affect influence maximizing nodes
because they focus on difference aspect of influence diffusion.
Nevertheless, existing diffusion models overlook two important
aspects of real-world marketing - continuous trials and time
restriction. This paper proposes a new realistic influence diffu-
sion model called Continously activated and Time-restricted IC
(CT-IC) model which generalizes the IC model by embedding
the above two aspects. We first prove that CT-IC model satisfies
two crucial properties – monotonicity and submodularity. We
then provide an efficient method for calculating exact influence
spread when a social network is restricted to a directed tree
and a simple path. Finally, we propose a scalable algorithm for
influence maximization under CT-IC model called CT-IPA. Our
experiments show that CT-IC model provides seeds of higher
influence spread than IC model and CT-IPA is four orders of
magnitude faster than the greedy algorithm while providing
similar influence spread to the greedy algorithm.

Keywords-influence maximization; viral marketing; social
networks; influence diffusion model;

I. INTRODUCTION

Due to the rapid growth of online social network sites

such as Facebook and Twitter, we now experience that

individuals’ information is spread to others extremely fast.

It enables us to use online social networks as a stage of

viral marketing. However, when applying viral marketing,

we face several important difficulties including influence
maximization problem. Given a graph representing a social

network, a parameter k denoting company’s budget, and a

stochastic process model of how influence is spread, the

influence maximization problem aims at finding k seeds
(initial nodes) which maximizes influence spread.

Kempe et al. [1] first propose the influence maximization

problem and suggested two basic influence diffusion models
– Independent Cascade (IC) model and Linear Threshold
(LT) model. In IC model, an active node tries to activate its

neighbors with a given probability and, in LT model, a node

is activated only if some portion of its neighbors are already
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active. Recently, in [2], IC model with negative opinions
(IC-N) is proposed, which considers the propagation of both

negative and positive opinions.

Although several diffusion models have been suggested,

they are too ideal to be applied to the real-world viral

marketing applications. First, when a node becomes active,

it can activate its neighbors only once. However, in real-

world marketing situations, people influence his or her

acquaintances continuously. Secondly, activation process is

continued until no more activation happens at all. However,

in the real world, we often have time restriction and thus

cannot wait until the influence is spread “completely”.

This paper proposes a more down-to-earth influence diffu-

sion model for viral marketing applications called Continu-
ously activated and Time-restricted IC (CT-IC) model. CT-IC

model is a generalization of IC model, and it differs in two

aspects: (a) every active node can activate its neighbors re-
peatedly, and (b) activations are processed until a given time
T . Thus, CT-IC model requires two controllable parameters

for the repeatable activations and the time constraint, and

IC model is a special case of CT-IC model with a single

activation and infinite time constraint.

After defining CT-IC model, we prove CT-IC model satis-

fies two crucial properties – monotonicity and submodularity

– for influence spread, which proves that a simple greedy

algorithm guarantees (1− 1/e)-approximation under CT-IC

model.

We then provide an efficient method for calculating exact
influence spread when a graph is restricted to a directed

tree. Because CT-IC model is a generalization of IC model,

the equations computing the exact influence spread are more

involved than those in IC model. We apply these equations

to the special case of a directed tree, a simple path, to get

a useful way to compute one node’s influence on another

node only through a path.

By using influence spread evaluation of a simple path,

we propose an algorithm CT-IPA for CT-IC model which

extends a scalable algorithm, independent path algorithm
(IPA), for IC model [3]. Since influence spread of a critical
path is computed by multiplying matrix weights of its edges,

CT-IPA seamlessly extends IPA with additional treatments

for merging multiple edges.
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Figure 1. Relationship between influence diffusion models.

Experiments are conducted on two networks to find char-

acteristic of CT-IC model and to compare CT-IPA with other

algorithms. For the same dataset, CT-IC model and IC model

produce seed sets of almost different nodes, and the nodes

shared by two models have different ranks. In addition, CT-
IPA shows over four orders of magnitude faster than greedy

algorithm without sacrificing influence spread.

This paper is organized as follows. After describing re-

lated work in Section II, we propose CT-IC model and show

its properties in Section III. Section IV presents efficient

methods to compute exact influence spread. Section V

proposes a scalable algorithm for influence maximization

problem under CT-IC model. Section VI illustrates the

experiment results, and Section VII concludes this paper.

Full version of this paper is available at [4].

II. RELATED WORK

Various influence diffusion models. Kempe et al. [1]

suggest General Cascade (GC) model and General Threshold

(GT) model which are generalized version of IC and LT

models, and show that two models are equivalent. A new

diffusion model called IC-N model, which considers the

propagation of negative opinions, is recently proposed by

Chen et al. [2]. However, all the above models restrict each

node to have a single activation chance to its neighbors and

do not consider time restriction of marketing.

The relationship between these diffusion models and CT-

IC model is shown in Figure 1. All three diffusion models

embed different aspects of influence propagation and have

IC model as a common special case.

Efficient algorithms for influence maximization prob-
lem. Although the influence maximization problem is NP-

Hard, Kempe et al. [1] show that the greedy algorithm

guarantees (1 − 1/e) approximation ratio under IC and LT

models. It is shown by proving two properties of IC and LT

models, monotonicity and submodularity. Mossel and Roch

[5] and Chen et al. [2] prove that GC, GT models and IC-N

model are also monotone and submodular, respectively.

However, the main drawback of the simple greedy algo-

rithm is that it computes the influence spread by Monte Carlo

simulation, which makes it too slow to be scalable. Thus,

there have been many studies to reduce the running time of

the original greedy algorithm. Several efficient algorithms

are proposed based on approximating diffusion models such

as Shortest Path Model [6], Prefix excluding Maximum

Influence Arborescence (PMIA) [7], Local DAG [7], MIA

with Negative opinions (MIA-N) [2], Community-based

Greedy Algorithm [8], SIMPATH [9], IPA [3]. Also, Cost-

Effective Lazy Forward (CELF) [10], CELF++ [11], and

NewGreedy [12] are suggested by optimizing or changing

the basic structure of greedy algorithm.

III. CT-IC MODEL

In this section, we describe the motivation of CT-IC model

with several examples (Section III-A). Then, we formally

define CT-IC model (Section III-B), and prove its important

properties (Section III-C).

A. Motivation
Although IC model is widely used in data mining area,

it is not realistic in two major aspects. Time limitation of

marketing is ignored, and every node has a single chance of

activation try. From now on, two motivational examples are

provided to illustrate the importance of these two aspects.

First, let us consider a new release of iPhone 4s. After

its release, most people will be interested in it and try to

purchase it for a while. However, when another cutting edge

iPhone 5 is released, most people will move their interest

from iPhone 4s to iPhone 5. As a result, the amount of newly

sold iPhone 4s would be very small compared to that before

the release of iPhone 5. From this example, it is important

to get maximum profit within a time limit.
Let us consider another example. Suppose you buy a new

product and write a positive post about it in your Facebook

wall. The post appears to your friends and persuades them to

have a positive opinion, which may lead them to buy it. The

important thing here is that when revisiting your wall later,

your friends may be persuaded to buy the product although

they were not persuaded before. In other words, your positive

post will have continuous influence on your friends.

These two features – time constraint and continuous

activation chances, which are not contained in IC model –

are embedded in our new influence diffusion model.

B. Model definition
Let G = (V,E) with a propagation probability pp0 : E →

(0, 1] be a directed graph representing a social network.

pp0(u, v) denotes the probability that a node u activates a

node v one time step after u is activated. Given a seed set

S ⊆ V and time restriction T , Continuously activated and
Time-restricted IC (CT-IC) model works as follows.

First, every seed node s ∈ S is activated at time 0, and

the activation is propagated through its neighbors at time

t = 1, 2, 3, · · · . Let At be the set of active nodes at time

t with A0 = S. At time t, every active node u ∈ At tries

to activate its out-neighbors v ∈ Nout(u) (v /∈ At) with

probability ppt−tu(u, v), where tu is the activation time of

u and ppt(u, v) is defined as

ppt(u, v) = pp0(u, v) · fuv(t).
Here, fuv : N0 → R

+
0 is non-increasing and fuv(0) = 1.
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The non-increasing property of fuv is based on the

observation that persuading friends is getting harder after

each trial to persuade them [13]. Accordingly, in this paper,

we use fuv(x) = exp(−αux) with a non-negative constant

αu which represents how fast u’s influence on its neighbors

decreases.
After all activation trials are finished at time t, newly

activated nodes St are included in the activated node set, so

we have At+1 = At ∪ St and a time step t+ 1 starts. This

activation process is repeated until we arrive at time step T .
The big difference between CT-IC and IC model is that

(a) every active node has multiple chances to activate its

neighbors (until its neighbor becomes active), not only right

after it is activated, and (b) all activation processes stop at

global time T , not at time ∞.
The influence spread of a given seed set S at time

t, σ(S, t), is the expected number of active nodes when

time step t starts. Then, given the number of seed

nodes k and time constraint T , the influence maximiza-

tion problem under CT-IC model is to find a set S∗ ∈
argmaxS⊆V,|S|=k σ(S, T ).

CT-IC model is a generalized version of IC model because

IC model is obtained by taking T = |V |, αv →∞, ∀v ∈ V .

C. Properties of CT-IC model
Monotonicity and submodularity. In order to ensure that

greedy algorithm produces (1−1/e)-approximation solution

for influence maximization problem under CT-IC model,

monotonicity and submodularity of CT-IC model should be

proven. Here, for a given function f : 2V → R, f is called

monotone if f(S) ≤ f(S′), ∀S ⊆ S′, and submodular if

f(S∪{v})−f(S) ≥ f(S′∪{v})−f(S′), ∀S ⊆ S′, v ∈ V .
To prove monotonicity and submodularity, we conceive an

easy-to-analyze process which is equivalent to CT-IC model.

Consider an edge (u, v) ∈ E. After u is newly activated at

tu, u tries to activate v continuously until v becomes active.

Then, the probability that v is activated exactly at tu + t by

u is ppt−1(u, v)
∏t−2

i=0(1− ppi(u, v)). Since the probability

that u activates v at tu + t for each (u, v) ∈ E is given as

above, we can decide t before activation process starts, and

it is an equivalent activation process to CT-IC model.
Suppose that we decide t for each (u, v) ∈ E before

activation process starts, and represent it as a function h :
E → N. Let G′ = (V,E, h) be a graph with weight h(u, v)
for (u, v) ∈ E. Then, it is easily shown that v ∈ V is active

at time t if and only if there exists u ∈ S and a path from u
to v in G′ whose length is equal to or less than t, where S is

a seed set. Based on this observation, after choosing h, we

can compute influence spread deterministically (Theorem 1).
Theorem 1: σ(·, t) is monotone and submodular, ∀t ≥ 0.

Proof: See [4].
As σ(·, t) under CT-IC model is monotone and sub-

modular by Theorem 1 and it is trivially non-negative,

Greedy algorithm (Algorithm 1) guarantees a (1 − 1/e)-
approximation solution by Theorem 2.1 in [1].

Algorithm 1 Greedy(G, k, T )
1: S = φ
2: for i = 1 to k do
3: u = argmaxv∈V \S σ(S ∪ {v}, T )− σ(S, T )
4: S = S ∪ {u}
5: end for
6: return S

Difference between IC and CT-IC models. To in-

vestigate how different CT-IC model is from IC model,

we now introduce a measure called difference ratio be-
tween IC and CT-IC model as follows. Assume that G =
(V,E), k, and T are given. Define the set of optimal

solutions for CT-IC model and that of IC model as

S∗I(G, k) = argmax{σI(S)|S ⊆ V, |S| = k}, S∗T (G, k) =
argmax{σ(S, T )| S ⊆ V, |S| = k}, respectively, where

σI(S) is the influence spread of seed set S in IC model.

Then, we define the difference ratio as

dr(G, k, T ) =
σ(S∗T , T )

max{σ(S∗I , T )|S∗I ∈ S∗I}
≥ 1,

where S∗T ∈ S∗T . dr tells that whether we can get good

solution for influence maximization under CT-IC model even

if we just treat CT-IC model as IC model. This ratio can be

used as a measure to quantify the difference between IC and

CT-IC models.

The following Lemma says that for small k, T , there exist

infinitely many graphs for which dr is sufficiently large.

Lemma 1: For any positive k, N , T such that k < N/4,

T < (N/4k) − 1 = O(N/k), there exists a graph G =
(V,E) such that |V | = N and dr(G, k, T ) = Ω(N/kT ).

Proof: See [4].

IV. EXACT COMPUTATION OF INFLUENCE SPREAD

Because computing influence spread under IC model is

#P-Hard [14] and IC model is a special case of CT-IC model,

computing influence spread under CT-IC model is also #P-

Hard. However, its computation is still tractable if we restrict

the whole graph to an arborescence (Section IV-A) or to a

simple path (Section IV-B).

A. Case of an arborescence
Consider an arborescence GA = (V,E) with a seed set

S ⊆ V and time restriction T . For any v ∈ V and 0 ≤
t ≤ T , let apS(v, t) be a probability that v is activated

exactly at time t, and apS,T (v) be a probability that v is

activated before activation process ends (i.e. apS,T (v) =
∑T

i=0 apS(v, i)). Then, it is obvious that

apS(v, t) =

⎧⎨
⎩
1 if v ∈ S and t = 0
0 if v /∈ S and t = 0
0 if v ∈ S and t > 0

.

However, when v /∈ S and 0 < t ≤ T , computing apS(v, t)
is not trivial. The following Lemma 2 tells that in this case,

apS(v, t) has a complex formula.
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Lemma 2: For any v ∈ V \S and 0 < t ≤ T ,

apS(v, t) =
∏

u∈Nin(v)

[
1−

t−2∑
i=0

apS(u, i)guv(t− 2− i)

]

−
∏

u∈Nin(v)

[
1−

t−1∑
i=0

apS(u, i)guv(t− 1− i)

]

holds, where guv(t) = 1−∏t
i=0 [1− ppi(u, v)] .

Proof: See [4].

We know that σ(S, T ) = apS,T (v) holds. Therefore,

when a given graph is an arborescence, we can compute the

exact value of σ(S, T ) in O(|V |T 2) time by using dynamic

programming.

B. Case of a simple path
Let us consider a general directed graph G = (V,E) with

seed set S ⊆ V and time restriction T . Let v ∈ V \S and u ∈
Nin(v). To find out an equation which evaluates influence
spread along a simple path, assume that v is activated only
by u. Then, by using Lemma 2, ap(v, t) is calculated as

ap(v, t) =

t−1∑
i=0

c
(t−i)
uv ap(u, i)

=

⎡
⎢⎢⎢⎣

ap(u, 0)
ap(u, 1)

.

.

.
ap(u, t− 1)

⎤
⎥⎥⎥⎦
Tr

⎡
⎢⎢⎢⎢⎣

c
(t)
uv

c
(t−1)
uv

.

.

.

c
(1)
uv

⎤
⎥⎥⎥⎥⎦ ,

where c
(t−i)
uv = ppt−i−1(u, v)

∏t−i−2
j=0 (1− ppj(u, v)). Ob-

vious subscript S in apS(v, t) is omitted. After putting
ap(v, i)’s for i = 0, · · · , T into a matrix, we have

⎡
⎢⎢⎢⎢⎢⎣

ap(v, 0)
ap(v, 1)
ap(v, 2)

.

.

.
ap(v, T )

⎤
⎥⎥⎥⎥⎥⎦

Tr

=

⎡
⎢⎢⎢⎢⎢⎣

ap(u, 0)
ap(u, 1)
ap(u, 2)

.

.

.
ap(u, T )

⎤
⎥⎥⎥⎥⎥⎦

Tr
⎡
⎢⎢⎢⎢⎢⎢⎣

0 c
(1)
uv · · · c

(T )
uv

0 0 · · · c
(T−1)
uv

0 0 · · · c
(T−2)
uv

.

.

.
. . .

.

.

.
0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

or AP(v) = AP(u)Cuv equivalently, where AP(v),
AP(u), and Cuv represent corresponding matrices.

Now, for any u ∈ S and v ∈ V \S, consider a simple path

p = (u = u0, u1, · · · , ul−1, ul = v) where ui ∈ V \S for all

i = 1, · · · , l, let us define infp(u, v) be the probability that

u activates v until time T only through a path p. By using the

above result, we have AP(v) = AP(u)Cu0u1
· · ·Cul−1ul

.

However, we know that AP(u) = [1 0 · · · 0] and

apS,T (v) =
∑T

i=0 apS(v, i) = AP(v)[1 · · · 1]Tr. Therefore,

we finally obtain the following formula.

infp(u, v) = [1 0 · · · 0]
(

l−1∏
i=0

Cuiui+1

)
[1 1 · · · 1]Tr, (1)

In IC and IC-N models, the property that all sub-paths

of any maximum probability path are also maximum prob-

ability paths holds, so we could make a reasonable local

tree structure, such as MIA [7] and MIA-N [2], for efficient

algorithms. However, CT-IC model does not have such

Table I
BASIC INFORMATION OF FOUR REAL DATASET.

Dataset Directedness |V | |E| θ for CT-IPA
HEP Undir 15K 59K 1/32

AMAZON DIR 262K 1235K 1/16

property. (See Lemma 4 in [4].) Therefore, obtaining similar

local arborescences of MIA or MIA-N for CT-IC model is

computationally intractable because shortest path algorithm

such as Dijkstra’s algorithm cannot be used for finding

maximum probability path.

V. INFLUENCE SPREAD PROCESSING ALGORITHM

In this section, we propose Continuously activated and
Time-restricted influence path algorithm (CT-IPA) for CT-

IC model by extending a highly scalable algorithm for IC

model – independent path algorithm (IPA) [3]. The two

assumptions IPA is based on are that influence is propagated

only through critical paths (paths whose influence spread is

greater than a threshold θ) and activation process through

each critical path is independent of each other.

The extension from IPA to CT-IPA is seamlessly done

by changing the influence spread definition of an influence

path. In CT-IC model, influence spread of an influence path

is infp(·, ·) of Equation 1 which involves matrix multiplica-

tion. Therefore, embedding infp(·, ·) into IPA, we get CT-
IPA algorithm for CT-IC model. For detailed description of

IPA and CT-IPA, please refer to [3] and [4].

VI. EXPERIMENTS

In this section, we conduct experiments to figure out char-

acteristic of CT-IC model and to compare the performance of

CT-IPA with other algorithms. See [4] for more experiment

results.

A. Experiment Setup

Datasets. Two real datasets are used in experiments.

HEP is a co-authorship graph obtained from “High Energy

Physics - Theory” section of arXiv site (http://arxiv.org)

where nodes and edges represent authors and coauthor re-

lationships. AMAZON is a co-purchasing graph of amazon.

com, in which a node u represents a product and an edge

(u, v) represents that v is usually bought with u. We get

HEP data from Wei Chen’s site1, and AMAZON from

Jure Leskovec’s site2. The basic statistics of each graph is

presented in Table I.

Propagation probabilities. WC (weighted cascade)

model [1] is used for generating edges’ probabilities. In WC

model, propagation probabilities are assigned as pp0(u, v)
= 1/ degin(v) for all edges (u, v) ∈ E, where degin(v)
denotes the in-degree of node u.

Algorithms.
• Random : A baseline algorithm which selects k nodes

uniformly at random from the overall |V | nodes.

1http://research.microsoft.com/en-us/people/weic/graphdata.zip
2http://snap.stanford.edu/data
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Figure 2. Comparison between IC and CT-IC models.

Table II
TOP-20 SEED NODES OF IC MODEL AND CT-IC MODEL SOLUTION.

(a) On HEP

639 131 100 124 287
IC model 562 606 15 382 196
solution 267 608 1162 66 274

307 4824 128 989 412

639 124 131 100 66
CT-IC model 274 287 606 412 236

solution 1162 608 221 1292 80
192 267 76 239 4824

(b) On AMAZON

17747 222839 25699 18076 168039
IC model 18337 232448 7266 11129 45391
solution 176067 9657 64815 183084 27562

59541 14461 238375 114241 1385

17747 176067 56415 51234 200657
CT-IC model 238375 18076 236670 259011 222839

solution 6290 205434 143531 199539 59541
25699 178335 82533 114241 95315

• MaxDegree : A simple heuristic which selects k nodes

in non-increasing order of node’s out-degree.

• Greedy : Algorithm 1 with lazy-forward optimization

[10]. We use 10, 000 times of Monte-Carlo simulations

to compute σ(S, T ).

• CT-IPA : Our proposed algorithm integrated with lazy-

forward greedy optimization. The last column of Table

I shows tuned θ values used on each dataset.3

We do not include any algorithms for IC model because

they are not extendable to CT-IC model as described in

Section IV-B.

In the experiment, we set αv = 0.1 for all v. Different

α values produced similar results. When we calculate the

influence spread of each seed set produced by each algo-

rithm, we do 10, 000 Monte-Carlo simulations and get the

average of the values. We conduct the following experiments

in a Linux machine with two Intel Xeon CPUs and 24GB

memory.

B. Characteristic of CT-IC model
Comparison between IC and CT-IC models. In order

to check whether CT-IC model is really different from IC

model, we compare the greedy algorithm for “IC model”

3We find that there is trade-off between processing time and influence
spread as θ changes. Thus, by varying θ = 1/8, 1/16/, · · · , 1/512, we
select the first θ at which an increment in influence spread becomes much
smaller than that in processing time.
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Figure 3. The change of influence spread with respect to T .

and the greedy algorithm for “CT-IC model” . After obtain-

ing solutions (seed sets) from two methods, we calculate

the influence spread of them under “CT-IC model” and

compare it. Since it is not feasible to get a solution by

greedy algorithms for AMAZON, we use IPA [3] and CT-
IPA instead of greedy algorithm for IC and CT-IC models,

respectively. We vary seed size k from 1 to 50, and set

T = 5.

Figure 2 shows the influence spread of two methods’

solutions on four datasets. On both datasets, the influence

spread of CT-IC model solution is always larger than that

of IC model solution, and moreover the gap between them

becomes larger as k increases. These results show that (1)

CT-IC model is a different model from IC model and (2)

time constraint and continuous activation trials of CT-IC

model are meaningful consideration for a realistic influence

diffusion model.

In addition to influence spread comparison, we compare

top-20 node solutions for IC and CT-IC models. The results

on HEP and AMAZON are listed in Table II. In the node

id list, the top-left node is top-1st node of solution and the

bottom-right node is the top-20th node, and node ids in bold

type are ones which are included in CT-IC model solution

but not in IC model solution.

Among top-20 nodes, only 13 and 6 nodes are in common

for both solutions on HEP and AMAZON, respectively.

Moreover, the ranking of top-20 nodes in CT-IC model

solution is largely different from that in IC model solution.

Thus, CT-IC model is a more different model from IC model

than it appears in Figure 2.

Change of influence spread when varying T . To find

out how influence spread changes as T increases, influence

spread is measured when T = 1, 3, · · · , 9. k is also varied

from 1 to 50. We select seed nodes by Greedy for HEP and

by CT-IPA for AMAZON.

Figure 3 illustrates the results of influence spread. On

every dataset, influence spread increases as T increases,

which is obvious. However, on HEP, as T increases, the

increment of influence spread increases at first, and then

starts to decrease at some point. The fact that the increment

of influence spread increases is not intuitive but can be

explained as follows.

Let Δ[σ](S, T ) = σ(S, T +1)−σ(S, T ) and Δ2[σ](S, T )
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= Δ[σ](S, T + 1) − Δ[σ](S, T ). The above observation is

almost equivalent to that “Δ2[σ](S, T ) is at first positive but

becomes negative at some point as T increases.” There are

two opposite effects on the sign of Δ2[σ] – the effects of

already active nodes and newly activated nodes. The nodes

that are already active at T activate less nodes as time goes

by because ppt keep decreasing, and try to make Δ2[σ]
negative. On the other hand, because the nodes that are

newly activated at T + 1 are not active before T + 1, their

activation tries only increase Δ[σ](S, T + 1) and make it

positive. By this argument, we can now explain the above

observation – Δ2[σ] < 0 (resp. > 0) because the first effect

(resp. the second one) is stronger than the other.

C. Comparison between algorithms
Influence spread. We measure the influence spread of

algorithms’ solutions by varying k from 1 to 50. We set T =
5. Greedy is only applied to HEP because of its excessive

processing time on AMAZON. The results are shown in

Figure 4.

On HEP, the influence spread of CT-IPA is quite close

to that of Greedy but there is a significant gap between

CT-IPA and MaxDegree. On AMAZON, CT-IPA is still

overwhelmingly the best, and the influence spread of CT-
IPA is almost linear to k, like in IC model [7].

In a nutshell, CT-IPA yields influence spread as high

as Greedy, and always shows better influence spread than

other algorithms. Additionally, MaxDegree is very unstable.

Though it performs well in few cases, it does not in other

cases and is sometimes worse than Random.

Processing time. We measure the processing time of

algorithms on two datasets up-to 10 hours when k = 50
and T = 5. The result is shown in Figure 5.

The processing time of Greedy is 5.0 hours on HEP, and

more than 10 hours on AMAZON. Thus, as in IC model,

Greedy is absolutely not scalable. On the other hand, CT-
IPA runs only in 7.0, and 14.3 seconds on each graph,

which is 4 orders of magnitude faster than Greedy. Since

MaxDegree and Random are very simple, they always take

less than one second. However, influence spread of their

solutions is unstable and much worse than CT-IPA.

VII. CONCLUSION

In this paper, we propose a realistic influence diffusion

model – the Continuously activated and Time-restricted
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Figure 4. Influence spread of various algorithms.
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Figure 5. Processing time of various algorithms.

independent cascade (CT-IC) model. Existing influence dif-

fusion models and their efficient processing algorithms lack

of two important aspects of influence propagation in real

world – time constraint and continuous activation trials.

CT-IC model embeds these two aspects into its activation

process. By proving monotonicity and submodularity, the

greedy algorithm which has 1−1/e approximation ratio can

be applied to CT-IC model. Moreover, exact influence spread

evaluation in CT-IC for a specific graph (e.g. arborescences

and simple paths) are derived. By plugging the exact influ-

ence spread evaluation of simple paths to IPA algorithm for

IC model, we have a highly scalable processing algorithm

CT-IPA for CT-IC model. Extensive experiments on real

datasets show that CT-IC model produces different results

from IC model, and CT-IPA produces seed sets several

orders of magnitude faster than the greedy algorithm without

sacrificing influence spread.
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