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Abstract

Detecting the edges of objects within images is critical for quality image processing. We present an
edge-detection technique that uses morphological amoebas that adjust their shape based on variation
in image contours. We evaluate the method both quantitatively and qualitatively for edge detection of
images, and compare it to classic morphological methods. Our amoeba-based edge-detection system
performed better than the classic edge detectors.
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1 Introduction

An object edge is a boundary at which a significant change of gray level occurs in the image. Infor-
mation related to the position, shape, size, and surface design of a subject in an image can be obtained
using an edge-detection algorithm. Edges are generally detected using gradient techniques such as So-
bel, Prewitt, Roberts, Laplacian of Gaussian, and Canny operators [1, 2], but these are not suitable for
detecting edges in noisy images because both noise and edge have high optical frequency. The images
used in many practical applications (e.g., medical imaging) are usually corrupted by noise, and thus
separating edges from noise and other interference is difficult but necessary.

Statistical approaches, such as those proposed by Bovik et al. [3], Lim and Jang [4], and Lim [5], offer
an alternative to gradient techniques. The concept behind these statistical approaches is to examine the
distribution of intensity values in the neighborhood of a given pixel and determine if the pixel should
be classified as an edge.

Mathematical morphology provides yet another approach to image processing, one based on shape
concepts originating from set theory [6]. Images in mathematical morphology theory are treated as sets,
and morphological transformations derived from Minkowski addition and subtraction are defined to
extract features in images. Morphological edge detectors have been studied for use in applications
where the performance of classic edge detectors is reduced because of noise [7]. For example, Lee et al.
[8] proposed a blur-minimization (BM) edge detector, which minimizes erosion and dilation residues
of blurred images. Feehs and Arce [9] showed the importance of blurring an original image for mor-
phological edge detection. They introduced an α-trimmed morphological (ATM) edge detector that
incorporates opening and closing operations. They also proved statistically that the ATM edge detector
performs better than the BM edge detector. Yu-qian et al. [10] proposed the reduced noise morpholog-
ical (RNM) edge detector for edge detection in medical images. They demonstrated that it was more
efficient for de-noising and detecting edges than the more commonly used classic edge detectors such
as the Sobel and Laplacian of Gaussian operators, and general morphological edge detectors such as
the morphological gradient (MG) edge detector and dilation residue edge detector [11].
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Mathematical morphology develops elements with certain structures and features for measuring
and processing images. Conventional morphological edge detectors perform operations by applying a
fixed, space-invariant structuring element (SE) to all image pixels, although the size and shape of the
SE may have been selected arbitrarily. This can be problematic because the local properties of the input
pixels may not be identical throughout the image and thus the fixed SE may not accurately process all
areas of the image. The selection and optimization of the SE is a difficult challenge, and is a hot topic in
the field of mathematical morphology research. Does a SE that changes its shape according to image features
exist? If so, it would not matter what kind of SEs were used for edge detection and one would not have
to take the local properties of input image pixels into account. The answer to this question is, yes, such
a SE does exist: the amoeba. In fact, the term amoeba was first used by Lerallut et al. [12] who proposed
morphological operators with amoebas for noise reduction.

There have been several studies related to spatially-variant mathematical morphology, i.e. math-
ematical morphology with spatially-variant SEs. Theoretical basis of spatially-variant mathematical
morphology was studied in [13, 14], and several specific examples of this morphology were introduced
in [12, 15–18]. General adaptive neighborhood morphology [15], proposed using the concept of crite-
rion mapping and a tolerance, is one example of spatially-variant morphology. Mathematical morphol-
ogy with morphological amoebas is an another example of spatially-variant morphology. Although
spatially-variant morphology was applied to image filtering [12–16], denoising [12–14], segmentation
[13–15], enhancement [15], restoration [17], and feature extraction [18], there have been no works on
edge detection with spatially-variant morphology.

Here, we describe a new edge-detecting technique that uses amoebas that adapt their shape based
on variation in image contours. The proposed edge detector uses modified amoebas that are one pixel
larger than the original ones used for noise reduction applications.

The remainder of this paper is organized as follows. In Section 2, we review classic SEs and edge
detectors with classic SEs. In Section 3, we present original amoebas, which are dynamic SEs for noise
reduction, and introduce modified amoebas for edge detection. Furthermore, we describe edge detec-
tion using modified amoebas. Section 4 presents a number of experimental results to demonstrate the
performance of our edge detector using amoebas. We present our conclusions in Section 5.

2 Classic morphological edge detection

2.1 Classic structuring elements

Until now, the shapes and sizes of SEs have been determined by repeated trial-and-error experiments.
That is, one can determine the appropriate SEs for the particular geometric shapes in an image by test-
ing various elements with various shapes on many images. For example, circular SEs are commonly
applied in biological or medical images without sharp angles and straight lines, while square SEs are
often used in images with many straight lines, e.g., aerial photographs of cities. Large SEs preserve big
features in images and small SEs preserve fine features. Hence, big SEs are normally used to reduce
noise; if SEs are too small, noise will be recognized as image features. However, if SEs are too large, im-
age restoration performance is degraded because image details are removed. As previously mentioned,
there are no morphological algorithms with special SEs that perform well for all images; different SEs
are required for images with different features. That is, an algorithm that has excellent performance for
one image usually leads to poor results for another image.

2.2 Edge detection with classic structuring elements

In this subsection, we review four existing morphological edge detectors that use single symmetrical
SEs. Before doing so, however, we require some preliminary definitions of morphological operations.
The basic morphological operations are dilation, erosion, and combinations of these two operations.
The dilation and erosion of a function f by a spatially-invariant SE B are defined by:

dilation: (f ⊕B)(x) = max{f(z)|z ∈ B(x)},

erosion: (f ⊖B)(x) = min{f(z)|z ∈ B(x)}.
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Based on these, the opening f ◦B and closing f •B of a function f with respect to B are defined by:

opening: f ◦B = (f ⊖B)⊕B,

closing: f •B = (f ⊕B)⊖B.

2.2.1 MG edge detector

The MG edge detector, which was proposed by Beucher [11], is defined by

fo(z) = (f ⊕B)(z)− (f ⊖B)(z), (1)

where (f ⊕B)(z) and (f ⊖B)(z) are dilation and erosion, respectively, of the image f(z) with SE B, and
fo(z) is the output image.

2.2.2 BM edge detector

The BM edge detector, which was developed by Lee et al. [8], is defined by

fo(z) = min{fav(z)− (fav ⊖B)(z), (fav ⊕B)(z)− fav(z)}, (2)

where fav(z) is the input image blurred with a two-dimensional running mean filter, fo(z) is the output
image, and B is the SE, which is a square with sides of length 2n+1.

2.2.3 ATM edge detector

Feehs and Arce [9] proposed the ATM edge detector, which replaces the mean filter of Eq. (2) with the
α-trimmed mean filter [19]. The ATM edge detector is defined as

fo(z) = min{(fα ◦B)(z)− (fα ⊖B)(z), (fα ⊕B)(z)− (fα •B)(z)}, (3)

where fα(z) is the input image blurred with a two-dimensional running α-trimmed mean filter, (fα ◦
B)(z) and (fα •B)(z) are opening and closing, respectively, of the fα(z) with SE B.

2.2.4 RNM edge detector

Yu-qian et al. [10] first used the opening-closing operation in preprocessing to remove noise as

M(z) = ((f •B) ◦B)(z). (4)

They then smoothed the image by first closing and then dilating. The RNM edge detector is based
on the difference between the processed image using this process and the image before dilation, and
defined as

fo(z) = ((M •B)⊕B −M •B)(z). (5)

3 Proposed edge detection using amoebas

3.1 Amoebas for noise reduction

An amoeba is a type of protozoan without definite form. It consists of a mass of protoplasm containing
one or more nuclei surrounded by a flexible outer membrane. The term amoeba is sometimes used to
refer to something with an indefinite, changeable shape.

As mentioned above, morphological amoebas for noise reduction was introduced in [12]. The
amoeba was used as a dynamic SE that changes shape to adapt to variation in image contours. The
shape of the amoeba must be computed for each pixel around which it is centered. Figure 1(b) shows
the shape of an amoeba that depends on the position of its center. Note that in flat areas such as the cen-
ter of the disc or the background, the amoeba is maximally stretched, and is reluctant to cross contour
lines.
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(a) (b)

Figure 1: Shapes of amoebas at various positions on an image: (a) original image; (b) shapes of amoebas

The shape of the amoeba is calculated by the amoeba distance, which is defined as follows: Let
dpixel(x, y) be a difference of intensities between pixel x and y and σ = (x = x0, x1, . . . , xn = y) be a
path between x and y. Then, the length of path σ is defined as

Lλ(σ) =

n
∑

i=1

[1 + λ · dpixel(xi−1, xi)], where λ is a real number.

Thus, the amoeba distance dλ can be defined with parameter λ where

{

dλ(x, x) = 0
dλ(x, y) = minσ Lλ(σ).

The amoeba distance is based on both the geometric and pixel value distance. The parameter λ repre-
sents the degree of difference between two pixel values. We can thus define an amoeba at pixel x in the
following expression using the amoeba distance:

Amoebaλ,r(x) = {y|dλ(x, y) ≤ r}, (6)

where r is a real number that denotes the amoeba radius. The amoeba is square if λ = 0.

3.2 Amoebas for edge detection

Despite the amoeba defined above was successfully applied for noise reduction in [12], there must
be serious problems if we apply it for edge detection. Consider a simple image in Figure 2(a) with a
marked center pixel. The amoeba centered at the marked pixel would spread its shape out as Figure
2(b); when r = 3 with normal λ (at least 0.1), the shape of amoeba would be like Figure 2(c). It means
that the amoeba cannot cross over an edge in this Figure 2(c). However, with this amoebas, which
cannot cross edges, we cannot get ‘any’ edges in this image using even MG edge detector, the simplest
morphological edge detector. The reason is that the difference between dilation and erosion at each
pixel would be exactly zero because every amoeba includes only same-valued pixels. In other words,
to detect edges using morphological methods, SEs should contain pixels over edges.

There must be another problem if we set large r and small λ in order to make amoebas cross over
edges. In this case, to detect obvious edges like an edge between white and black region, we have to use
much bigger r and smaller λ. It causes amoebas to contain many dissimilar pixels such as noises; finally,
these amoebas would have no difference between normal spatially-invariant SEs, and morphological
edge detectors with these amoebas would be noise-sensitive.

To solve these problems, we propose a modified amoeba Amoeba+λ,r(x), one pixel larger than the
original one Amoebaλ,r(x) given in Eq. (6), as follows.

Amoeba+λ,r(x) =
{

y
∣

∣y ∈ Amoebaλ,r(x)⊕H and |x− y| ≤ r
}

, (7)

where H is a 3×3 diamond-shaped structuring element of 0’s. The modified amoeba is enforced to
be expanded one pixel from the original one in order to cross over edges. As a result, the amoeba
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Figure 2: Shapes of amoebas for noise reduction and edge detection (r = 3, λ ≥ 0.1): (a) original image;
(b) spreading out amoeba; (c) an amoeba for noise reduction; (d) a modified amoeba for edge detection

with appropriate r and λ could detect edges well while it mostly contains similar pixels. Figure 2(d)
shows the modified amoeba centered at the marked pixel. In the next subsection, edge detectors will be
proposed using the modified amoeba rather than the original one.

3.3 Edge detection with amoebas

Dilation, erosion, opening, and closing using our amoebas with some modification will be referred to
as amoeba dilation, amoeba erosion, amoeba opening, and amoeba closing, respectively. The amoeba dilation
and amoeba erosion of a function f by the modified amoeba A+

λ,r are defined respectively by

amoeba dilation: (f ⊕β A+

λ,r)(x) = k-th max{f(z)|z ∈ Amoeba+λ,r(x)},

amoeba erosion: (f ⊖β A+

λ,r)(x) = k-th min{f(z)|z ∈ Amoeba+λ,r(x)},

where Amoeba+λ,r(x) denotes an modified amoeba at pixel x in Eq. (7), β is a positive constant, and

k = ⌈β · |Amoeba+λ,r(x)|⌉. The expression ⌈x⌉ denotes the smallest integer not less than x, and |x| in
⌈ ⌉ denotes the number of pixels in x. Note that the amoeba dilation and amoeba erosion are defined
by k-th min and k-th max rather than min and max. The reason is that during performing dilation on
the original amoeba to get the modified amoeba, some noisy pixels could be included in the modified
amoeba, and the number of noisy pixels in the modified amoeba would be proportional to its size;
thus, we have to exclude those noisy pixels by taking k-th min and k-th max when calculating amoeba
dilation and amoeba erosion. Based on these, the amoeba opening and amoeba closing of a function f
by the modified amoeba A+

λ,r are also defined respectively by

amoeba opening: f ◦β A+

λ,r = (f ⊖β A+

λ,r)⊕β A+

λ,r,

amoeba closing: f •β A+

λ,r = (f ⊕β A+

λ,r)⊖β A+

λ,r.

Here we describe our proposed edge detectors by applying these amoeba operations to the edge
detectors discussed in Section 2.2. The amoeba-based edge detectors will use the pilot image, on which
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the shape of amoebas are computed, as in [12]. After computing the shape of amoebas on the pilot image,
we perform amoeba operations on the original image.

3.3.1 Amoeba MG edge detector

The amoeba MG edge detector corresponding to Eq. (1) is defined as

fo(z) = (f ⊕β A+

λ,r)(z)− (f ⊖β A+

λ,r)(z),

where the pilot image is a Gaussian blurred image of f .

3.3.2 Amoeba BM edge detector

The amoeba BM edge detector corresponding to Eq. (2) is defined as

fo(z) = min{fav(z)− (fav ⊖β A+

λ,r)(z), (fav ⊕β A+

λ,r)(z)− fav(z)},

where the pilot image is a Gaussian blurred image of fav .

3.3.3 Amoeba ATM edge detector

The amoeba ATM edge detector corresponding to Eq. (3) is defined as

fo(z) = min{(fα ◦β A+

λ,r)(z)− (fα ⊖β A+

λ,r)(z), (fα ⊕β A+

λ,r)(z)− (fα •β A+

λ,r)(z)},

where the pilot image is a Gaussian blurred image of fα.

3.3.4 Amoeba RNM edge detector

The amoeba RNM edge detector corresponding to Eq. (5) is defined as

fo(z) = ((M+ •β2
A+

λ,r)⊕β2
A+

λ,r −M+ •β2
A+

λ,r)(z),

where M+(z) = ((f •β1
A+

λ,r) ◦β1
A+

λ,r)(z) corresponding to Eq. (4), which represents the filtered im-
age from the amoeba-based opening-closing operation. In this case, the pilot image for each amoeba
operation is a Gaussian blurred image of the image to which each operation is applied.

4 Experimental results and discussion

In this section, we compare amoeba-based morphological edge detection with classic morphological
edge detection and the well-known Canny edge detector [2] when used on both artificial and real im-
ages. We use our amoebas with λ = 1/2 and β = 0.1 for MG, BM and ATM edge detectors, and
β1 = 0.3, β2 = 0.1 for RNM edge detector. Several edge detection experiments were conducted on
corrupted images using the two noise types, impulse noise and Gaussian noise [4, 5]. We conducted
following experiments on a laptop with 2.40GHz Intel Core i5 and 4GB memory.

The amoeba-based edge detectors were evaluated both quantitatively and qualitatively.

4.1 Quantitative evaluation

Pratt’s figure of merit (FOM) [20] and the received operating characteristic (ROC) curve [21, 22] were
used as performance measures for quantitative evaluation and comparison to the other edge detectors.
The FOM is defined as

FOM =
1

max{II , ID}

ID
∑

i=1

1

1 + α (di)
2
,

where II and ID are the number of ideal and detected edge points, respectively, and di is the distance
between ith detected edge point and an ideal edge. The scaling constant α(> 0) provides a relative
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Figure 3: Artificial image used for testing and comparison purposes

tradeoff among smearing, isolation, and the edge offset, and was set to α = 1/9. A FOM = 1 corresponds
to a perfect match between the ideal and detected edge point, and the FOM approaches zero as the
deviation of the detected points increases.

A ROC curve is the plot of the correct detection probability Pd against the false detection probability
Pf for the different possible thresholds of an edge detector. More specifically, if G represents the set of
ideal edge points and D represents the set of detected edge points, then Pd and Pf is given by

Pd =
n(D ∩G)

n(G)
, Pf =

n(D ∩Gc)

n(Gc)
,

where n represents the number of pixels of the corresponding set. The area under the ROC curve can
be used as an index to measure the performance of edge detectors, where a larger area under the curve
represents better detector performance.

An artificial image was created and used as a benchmark to assess the performance of our amoeba-
based edge-detection technique and compare it to other methods. We used a 256×256 image containing
a circle, in which the outer panel had a gray level of 100 and the inner panel had a gray level of 150, as
shown in Figure 3.

Figure 4 and 5 show the FOM results of amoeba-based edge detectors with respect to r values in
noisy images with Gaussian noise and impulse noise, respectively. In both figures, FOM value increases
as r value increases for all amoeba edge detectors. FOM values of amoeba MG edge detector is dropped
rapidly as noise ratio increases, for the original MG edge detector itself is extremely noise-sensitive.
For Gaussian noise, amoeba BM edge detector with r ≥ 7 keeps its maximum performance when
σ ≤ 25; amoeba ATM and RNM edge detectors with r ≥ 7 also keeps maximum FOM values when
σ ≤ 30 and σ ≤ 35, respectively. For impulse noise, amoeba ATM and RNM edge detectors with
r ≥ 7 nearly maintain its maximum FOM values when p ≤ 25% and p ≤ 30%, respectively. Although
the performance of amoeba-based edge detectors is improved as r grows, large r value makes these
methods have heavy computational time and ignore the details of an image. Therefore, we will use
r = 7 in the following experiments.

Figure 6 shows the measured values of FOM used to compare amoeba edge detection to classic edge
detection and Canny edge detector for Gaussian noise and impulse noise, respectively. All amoeba-
based edge detection have better performance than classic edge detection for both Gaussian and im-
pulse noise with entire noise ranges, 5 ≤ σ ≤ 50 and 5% ≤ p ≤ 50%. Moreover, as noise ratio increases,
the performance of Canny edge detector drops sharply, meaning that it is not much robust. The amoeba
MG edge detector is more robust than the classic MG edge detector, although the performance of both
MG detectors declines significantly as noise ratio increases since MG detector is highly sensitive to
noise. It is noteworthy that amoeba RNM detector is especially well performing for both noises than
the original one; amoeba RNM detector even has the best FOM values in most case while RNM de-
tector completely does not. Note that the ATM edge detector performs better than the BM detector, as
mentioned in Feehs and Arce [9].

Figure 7 compares the ROC curves for amoeba-based edge detection, classic edge detection and
Canny edge detector for σ = 25 and σ = 45. Amoeba MG detector performs as well as MG detector, and
amoeba BM detector shows slightly better performance than BM detector. Moreover, in ROC curves,
not only amoeba RNM detector but also amoeba ATM detector, the best one in ROC curves, have signif-
icantly improved performance compared to corresponding classic detectors and Canny detector. Canny
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Figure 4: FOM results of amoeba-based edge detectors with several r values in images with Gaussian
noise: (a) amoeba MG; (b) amoeba BM; (c) amoeba ATM; (d) amoeba RNM

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

F
O

M

Occurrence Probability (%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

F
O

M

Occurrence Probability (%)

(b)

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

F
O

M

Occurrence Probability (%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

F
O

M

Occurrence Probability (%)

(d)

r=1 r=3 r=5 r=7 r=9

Figure 5: FOM results of amoeba-based edge detectors with several r values in images with impulse
noise: (a) amoeba MG; (b) amoeba BM; (c) amoeba ATM; (d) amoeba RNM
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Figure 6: Measured values of FOM for (a) Gaussian noises and (b) impulse noises
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(a) (b) (c)

(d) (e) (f)

Figure 8: Images used in experiments: (a) Lena; (b) Cameraman; (c) Peppers; (d) Lena image corrupted
with Gaussian noise with σ = 10; (e) Cameraman image corrupted with Gaussian noise with σ = 30; and
(f) Peppers image corrupted with 20% impulse noise

edge detector shows almost constant Pd even when Pf varies, which is somewhat different pattern from
other edge detectors. This is probably due to the postprocessing stages of non-maxima suppression and
hysteresis thresholding.

4.2 Qualitative evaluation

We used the real 256×256 Lena, Cameraman, and pepper images shown in Figure 8(a)–8(c), and noisy
images corrupted with various degrees of Gaussian and impulse noise. Figure 8(d)–8(f) show some of
the noisy images used in this experiment.

Figure 9 compares the results of Canny edge detector, edge detection using fixed SEs and amoebas,
and Canny edge detector for the Lena image corrupted with σ = 9 Gaussian noise. The edge maps
of the MG and amoeba MG edge detectors, illustrated in Figure 9(a) and 9(b), show that amoeba MG
detector is more insensitive to noise than MG detector which made considerable noise speckling on the
whole edge map. The difference in performance between BM and amoeba BM edge detector is difficult
to distinguish in the maps, as shown in Figure 9(c) and 9(d). However, Figure 9(e) and 9(f) show that
amoeba ATM edge detector detects more details, such as the left pillar and the background curve on the
rightmost side, than ATM detector does. Similarly, Figure 9(g) and 9(h) also show that amoeba RNM
detector is more sensitive to details of an image than RNM detector; only amoeba RNM detector detects
edges of the left pillar, the pillar above the hat, and the background curve on the rightmost side. On
the other hand, Canny edge detector catches more details compared to other edge detectors as shown
in Figure 9(i).

Figure 10 shows the results of edge detection based on fixed SEs and amoebas, and Canny edge
detector for the Cameraman image corrupted with σ = 30 Gaussian noise. Neither the MG nor the
amoeba MG edge detectors could distinguish any meaningful edges due to the large amount of noise
(see Figure 10(a) and 10(b)). However, the amoeba BM, ATM, and RNM edge detectors suppress more
noise while preserving more details of the edges than their corresponding classic edge detectors (see
Figure 10(c)–10(h)). Furthermore, amoeba ATM edge detector detects the handle of the camera and the
building on the right side of a background more clearly than classic ATM detector does. Unlike 9(i),
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Edge detection result for Lena image in Fig. 8(d): (a) MG detector; (b) amoeba MG detector; (c)
BM detector; (d) amoeba BM detector; (e) ATM detector; (f) amoeba ATM detector; (g) RNM detector;
(h) amoeba RNM detector; (i) Canny detector

Figure 10(i) is highly corrupted by noise, indicating that Canny edge detector is sensitive to noise.
Figure 11 shows the results of edge detection based on fixed SEs and amoebas, and Canny edge

detector for the pepper image corrupted with 20% impulse noise. The results of MG, amoeba MG and
Canny edge detector, Figure 11(a), 11(b), and 11(i), are highly contaminated with noise like Figure 10(a),
10(b), and 10(i). Figure 11(c)–11(h), however, demonstrate that amoeba BM, ATM and, especially, RNM
are more robust to impulse noise than classic edge detectors. In addition, some edges, such as the bright
regions of Peppers, are detected more clearly by amoeba ATM detector than classic ATM detector.

4.3 Computational time

Figure 12 shows the computational time of amoeba edge detectors to process the corrupted Peppers
image in Figure 8(f), when r varies. The curves in Figure 12 is the results of polynomial fitting with order
2 with respect to r. Since the shape of amoeba can be computed by a Dijkstra’s region growing algorithm
[23] using a binary heap, the time complexity of amoeba edge detectors should be O(NM · r2 log r),
where N and M are the pixel number of image’s width and height, respectively. Figure 12 demonstrates
that theoretic time complexity is pretty consistent with the experimental results.
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(g) (h) (i)

Figure 10: Edge detection result for Cameraman image in Fig. 8(e): (a) MG detector; (b) amoeba MG
detector; (c) BM detector; (d) amoeba BM detector; (e) ATM detector; (f) amoeba ATM detector; (g)
RNM detector; (h) amoeba RNM detector; (i) Canny detector

Table 1 provides the computational times of amoeba edge detectors, classic edge detectors and
Canny edge detector for the three test images in Figure 8(d)–8(f). While classic edge detectors and
Canny edge detector run in less than 0.1s, amoeba edge detectors run in more than about 2s. Especially
amoeba ATM and RNM have much longer computational time than amoeba MG and BM in that they
use more amoeba operations. This computational heaviness of amoeba operations are consistent with
the results in [12].

5 Conclusion and future work

Edge detection is an important first step in many image-processing applications. As such, it is important
that the information derived from the edge-detection process should be as accurate as possible to ensure
that higher-level processing is not affected.

Conventional morphological edge detectors use a fixed SE on all image pixels, although the size and
shape of the SE may be arbitrary. This presents problems because the local properties of the input pixels
may not be identical throughout the image and thus the fixed SE may not be appropriate to accurately
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Figure 11: Edge detection result for Peppers image in Fig. 8(f): (a) MG detector; (b) amoeba MG de-
tector; (c) BM detector; (d) amoeba BM detector; (e) ATM detector; (f) amoeba ATM detector; (g) RNM
detector; (h) amoeba RNM detector; (i) Canny detector

process all areas of the image.
We presented a morphological edge-detection technique using spatially variant SEs, or modified

amoebas, which adapt their shape to variation in image contours. Although morphological amoeba was
already researched in noise reduction area, we proposed the modified amoeba, one pixel larger than the
original one, in that it is difficult to apply the original amoeba directly for edge detection. Moreover, we
proposed morphological amoeba-based operations, which use modified amoebas as spatially variant
SEs, by replacing min and max with k-th min and k-th max, for some noise pixels could be included in
modified amoeba during the expansion of the original amoeba. Several amoeba-based edge detectors
were finally proposed by using the amoeba operations.

We compared the performance of our proposed methods quantitatively and qualitatively to classic
morphological edge detectors and Canny edge detector on both artificial and real images. First, it was
found that the performance of amoeba-based edge detectors increased as r value increased; however,
we used r = 7 in the whole experiments to preserve details and make good trade-off between perfor-
mance and computation time. The experimental results showed that our amoeba-based edge detectors
performed better in terms of Pratt’s FOM and ROC than classic edge detectors for artificial images with
either Gaussian or impulse noise. The edge maps produced from real images indicated that our edge
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Figure 12: Computational times (in seconds) of amoeba edge detectors for the Peppers image in Figure 8(f).

Test images
Edge detectors Figure 8(d) Figure 8(e) Figure 8(f)

MG 0.014 0.015 0.014
Amoeba MG 2.190 1.828 1.747

BM 0.016 0.017 0.016
Amoeba BM 2.458 2.126 2.007

ATM 0.072 0.073 0.071
Amoeba ATM 7.203 6.259 6.613

RNM 0.058 0.062 0.060
Amoeba RNM 19.47 19.12 18.07

Canny 0.037 0.057 0.037

Table 1: Computational times (in seconds) of various edge detectors

detectors were more robust to noise while detecting more details of images clearly than classic edge
detectors. Especially, the performance of amoeba ATM and RNM detectors was significantly improved
both quantitatively and qualitatively, compared to the corresponding classic edge detectors.

We also compared the computational time of proposed methods and classic edge detectors. First,
the computational time of proposed methods was approximately proportional to O(r2 log r). Second,
proposed methods were much computationally heavier than classic edge detectors while their edge
detection performances were better.

We plan to conduct more research to reduce computational time of amoeba edge detectors by using
other techniques, such as the minimum spanning tree of an image, as in [24].
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