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Influence maximization problem has gained much attention, which is to find the most influential people.
Efficient algorithms have been proposed to solve influence maximization problem according to the
proposed diffusion models. Existing diffusion models assume that a node influences its neighbors once,
and there is no time constraint in activation process. However, in real-world marketing situations, people
influence his/her acquaintances repeatedly, and there are often time restrictions for a marketing. This
paper proposes a new realistic influence diffusion model Continuously activated and Time-restricted IC
(CT-IC) model which generalizes the IC model. In CT-IC model, every active node activate its neighbors
repeatedly, and activation continues until a given time. We first prove CT-IC model satisfies monotonicity
and submodularity for influence spread. We then provide an efficient method for calculating exact influ-
ence spread for a directed tree. Finally, we propose a scalable influence evaluation algorithm under CT-IC
model CT-IPA. Our experiments show CT-IC model finds seeds of higher influence spread than IC model,
and CT-IPA is four orders of magnitude faster than the greedy algorithm while providing similar influence
spread.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Due to the rapid growth of online social network sites such as
Facebook or Twitter, we now experience that individuals’ informa-
tion and ideas are spread to others extremely fast via online social
networks. It enables us to use online social networks as a stage of
viral marketing which exploits word-of-mouth effect. However,
when applying viral marketing, we face several important difficul-
ties including influence maximization problem which aims to find
the most influential people. Let us look at the classic example of
influence maximization problem. Suppose that a company
develops a new product and wants to sell it to the general as many
as possible. In the viral marketing, the company gives the new
product to the ‘‘initial’’ people for free, and expects them to use
it as well as to persuade their friends to use it together. Moreover,
there is a chance that their friends may also recommend their
friends’ friends to use it and so on. In this situation, the company
could think of the following question: ‘‘who should be the initial
people to make the largest profit?’’. This question is so called influ-
ence maximization problem. Given a graph representing a social
network, a parameter k denoting company’s budget, and a stochas-
tic process model of how influence is spread through people, the
influence maximization problem aims at finding k seeds (initial
nodes) which maximizes influence spread (the number of people
who use the new product at the final state).

Kempe et al. [1] first proposed the influence maximization
problem and suggested two basic influence diffusion models – Inde-
pendent Cascade (IC) model and Linear Threshold (LT) model. In IC
model, an active node tries to activate its neighbors with a given
probability and, in LT model, a node is activated only if some
portion of its neighbors are already active. Along with IC and LT
diffusion models, novel influence diffusion models which reflect
different aspects of influence diffusion. Chen et al. [2] proposed
IC model with negative opinions (IC-N) which extends IC model
by considering the propagation of both negative and positive opin-
ions. He et al. [3] and Borodin et al. [4] proposed competitive LT
(CLT) model in which two competing opinions are spread in a LT
model manner. Li et al. [5] proposed voter model in a signed
network.

Although several novel diffusion models have been suggested,
they miss two important aspects of influence diffusion in the
real-world viral marketing applications. First, in IC and IC-N
models, when a node becomes active, it can activate its neighbors
only once. However, in real-world marketing situations, people
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influence his or her acquaintances repeatedly. For example, when
you write a post about a new product on Facebook wall, your
friends will see it not only right after you write but also few days
later. Secondly, in IC, IC-N and LT models, activation process is
continued until no more activation happens at all. However, in
the real world, we often have time restriction and thus cannot wait
until the influence is spread ‘‘completely’’. For example, a
cellphone company, which releases a new product every only six
months, does not expect much profit from the existing product
after six months later because the company will move the focus
of its marketing on the new product.

This paper proposes a more down-to-earth influence diffusion
model for viral marketing applications called Continuously
activated and Time-restricted IC (CT-IC) model. CT-IC model is a gen-
eralization of IC model, and it differs in two aspects: (a) every
active node can activate its neighbors repeatedly and (b) activations
are processed until a given time T. Thus, CT-IC model provides two
controllable parameters for the repeatable activation and the time
constraint, and IC model becomes a special case of CT-IC model
with a single activation and infinite time constraint.

After defining CT-IC model, we prove CT-IC model satisfies two
crucial properties – monotonicity and submodularity – for influ-
ence spread, which leads to guaranteeing ð1� 1=eÞ-approximation
solution of the influence maximization problem under CT-IC model
when a simple greedy algorithm is applied. Our proof exploits an
alternative activation process which is equivalent to activation
process of CT-IC model. In CT-IC model, we flip a coin to decide
the success of an activation trial whenever decision is required.
However, in the alternative model, we decide the number of
activation trials by flipping all coins before influence propagation
process starts. When flipping coins, we replace each edge’s weight
of propagation probability with a natural number which represents
how many trials are required for a node to activate its neighbors. In
this modified graph, a node is activated if and only if the distance
between seed nodes and non-seed nodes is no more than T. By
using the alternative model, we can easily prove the two important
properties.

We then provide an efficient method for calculating exact influ-
ence spread when a graph is restricted to a directed tree. Because
CT-IC model is a generalization of IC model, the equations comput-
ing the exact influence spread are more involved than those in IC
model. We apply these equations to a special case of a directed
tree, a simple path, to get a useful way to compute one node’s
influence on another node only through a path. Influence spread
of a path is calculated as follows. A matrix weight which is related
to propagation probability is assigned to each edge. Then, the sum
of the first row of the matrix, which is obtained by multiplying ma-
trix weights along the path, is the influence spread of the path.
Using this result, we also show that it is hard to define a local tree
structure, such as MIA and MIA-N (for IC and IC-N models) [2,6].

By using influence spread evaluation of a simple path, we pro-
pose an influence evaluation algorithm CT-IPA for CT-IC model
which extends a scalable algorithm, independent path algorithm
(IPA), for IC model [7]. IPA is based on two simple assumptions.
Influence is propagated only through critical paths, and activation
process through each critical path is independent of each other.
More precisely, critical paths are defined by the simple paths
whose influence spread is no less than a threshold h. Since influ-
ence spread of a critical path is computed by multiplying matrix
weights of its edges under CT-IC model, CT-IPA seamlessly extends
IPA with additional treatments for merging multiple edges.

Extensive experiments are conducted on four real networks to
find characteristic of CT-IC model and to compare CT-IPA with
other algorithms. For the same dataset, CT-IC model and IC model
produce seed sets of quite different nodes, and the nodes shared by
two models have different ranks. Also, when seed sets produced by
the two models are applied to CT-IC model, CT-IC seed set always
shows higher influence spread than IC seed set. This result
supports that CT-IC model always produces better results than IC
model in more realistic viral marketing situations which allows
continuous activation and time constraint. In addition, CT-IPA

shows over four orders of magnitude faster than greedy algorithm
without sacrificing influence spread.

This paper is organized as follows. After describing related
work in Section 2, we propose CT-IC model and show its proper-
ties in Section 3. Section 4 presents efficient methods to compute
exact influence spread. Section 5 proposes a scalable algorithm
for influence maximization problem under CT-IC model. Section 6
illustrates the experiment results, and Section 7 concludes this
paper.
2. Related work

Various influence diffusion models. Three representative
influence diffusion models are studied in the early study of the
influence diffusion model. Kempe et al. [1] suggested General
Cascade (GC) model and General Threshold (GT) model which are
generalized version of IC and LT models, and show that two models
are equivalent. In GC model, the propagation probability of a node
depends on the history of activation trials while in IC model it is
constant. In GT model, threshold function, which determines
whether each node becomes active or not, is a general function
of active neighbors’ weights while in LT model it is a summation
of active neighbors’ weights. Different from IC and LT model in
which active nodes try to influence inactive nodes, voter model
[8] deals with the situation that every node has one of two differ-
ent opinions and two opinions compete for occupying more nodes.

Along with the traditional influence diffusion models, various
extensions of those models were proposed recently. IC-N model
[2] considers the propagation of negative opinion. In IC-N model,
a successful activation trial of an positively active node to its
inactive neighbor results in either positive activation or negative
activation. On the contrary, a successful activation trial of an
negatively active node result in only negative activation. CLT mod-
el [3] extends LT model by considering two competing opinions in
networks. In CLT models, seed nodes are activated and have one of
two competing opinions. An active nodes tries to persuade inactive
neighbors to have its supporting opinion. Signed voter model [5]
extends voter model by allowing negative influence of a node. In
signed voter model, when two nodes of an edge have friend rela-
tionship, one node’s successful trial to influence the other node
results in having the same opinion of the other node. Otherwise,
the other node has the opposite opinion. The characteristic embed-
ded in IC-N and CLT model is similar in that the successful
influence trial results in the negative influence – having the
opposite opinion.

Although all the above influence diffusion models reflect vari-
ous aspects of influence propagation in real world, none of them
consider the crucial characteristics in real influence propagation
– repeated activation trials and time restriction. Our proposing
CT-IC model embraces these two essential characteristics.

The relationship between the existing influence diffusion mod-
els and CT-IC model is shown in Fig. 1. The models located in upper
rows are basic model and their extensions are located in lower
rows and are connected by directed edges. Each edge label indi-
cates the characteristics additionally embedded in the extended
model.

Learning parameters of influence diffusion models. Along
with designing diffusion models described above, learning the
propagation probability is also important. Goyal et al. [9] and Saito
et al. [10] study how to learn such probability from the past action



Fig. 1. Relationship between influence diffusion models.

1 Actually, iPhone4 was sold out over 2 weeks after its release. http://gizmodo.com/
5564420/att-iphone-4-pre+orders-sold-out.
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logs. However, they stick to an instance of GC model which has
different behavior from CT-IC model.

For learning parameters of CT-IC model including the propaga-
tion probability, Dynamic Bayesian Networks (DBNs) and its infer-
ence techniques are useful. DBNs [11] are widely used in learning
generative models of sequence data such as bio-sequence [12],
voice [13], office activity [14]. CT-IC model is an instance of DBNs
in that the state of a node in the current time step depends on the
state of its adjacent nodes in the previous time step. Accordingly,
various inference techniques [11–15] can learn parameters of CT-
IC model from observed data. However, since our goal is proposing
a novel influence diffusion model and its efficient influence maxi-
mization processing, learning parameters is out of scope in this
paper.

Influence maximization problem and its efficient processing
methods. When an influence diffusion model is given, the influ-
ence maximization problem aims to find the most k influential
nodes in a directed graph. Let GðV ; EÞ a directed graph and rðSÞ
the quantified influence of a node set S # V . The influence maximi-
zation problem is formalized as follows.

arg max
S # V ;jSj¼k

rðSÞ ð1Þ

The influence maximization processing confronts two major
challenges. The first one is the combinatorial optimization of Eq.
(1) is NP-Hard. To detour the NP-Hardness of the influence maxi-
mization problem, Kempe et al. [1] show that the greedy algorithm
guarantees ð1� 1=eÞ approximation ratio. To apply the greedy
algorithm, it is required to prove that the underlying influence dif-
fusion model satisfies three properties – non-negativity, monotonic-
ity and submodularity. Various influence diffusion models hold
these three properties and are applicable to the greedy algorithm
– IC and LT model in [1], GC and CT models in Mossel and Roch
[16], IC-N model in Chen et al. [2], CLT model in [3], and the signed
voter model in [5]. As a further optimization for the greedy algo-
rithm, CELF-greedy [17], CELF++ [18], NewGreedy [19], and com-
munity-based greedy algorithm are suggested.

The second challenge of the influence maximization processing
is that the exact influence evaluation cannot be achieved in a poly-
nomial time. Because most of the influence diffusion models does
not have closed form of rðSÞ, the influence evaluation exploits
time-consuming Monte Carlo simulation, which repeats the actual
influence diffusion simulation until a stable influence is acquired.
Thus, there have been many studies to reduce the running time
of the original greedy algorithm. Several efficient algorithms are
proposed based on approximating diffusion models. For IC model,
Shortest Path Model [20], PMIA [6] and IPA [7] are proposed. For
LT model, LDAG [6] is proposed. For IC-N model, MIA-N [2] is pro-
posed. For CLT model, CLDAG [3] is proposed. For signed voter
model, SVIM [5] is proposed.
3. CT-IC model

In this section, we describe the motivation of CT-IC model with
several examples (Section 3.1). Then, we formally define CT-IC
model (Section 3.2), and prove its important properties
(Section 3.3).
3.1. Motivation

Although various existing models are proposed to reflect the
real influence diffusion dynamics, they omits two major aspects.
Specifically, in IC model which is the most widely used influence
diffusion model [1,6,17,19,21], time limitation of marketing is
ignored and every node has only single chance to activate it out-
neighbors. From now on, several examples are provided to illus-
trate the importance of these two aspects in the real world which
are not considered in IC model and other existing models.

First, every viral marketing campaign has time limit or con-
straint. Let us take an example of Apple’s iPhone marketing. After
iPhone 4 was release, Apple’s marketing focus was promoting the
sale of iPhone 4. With the active marketing support, most people
were interested in iPhone 4 and started to purchase it. Conse-
quently, a number of iPhone 4 were sold out for a while.1 However,
Apple does not expect that iPhone 4 lead the cellular phone market
forever. Apple definitely developed another cutting edge phone,
iPhone 4S. When Apple launched iPhone 4S, Apple obviously moved
its advertising focus to iPhone 4S and the public also moves their
interest to the new product. Apple has never advertised their old
products after the new product’s release. Even though Apple sold
iPhone 4 after iPhone 4S release, the position of iPhone 4 was just
for emerging markets.

From this particular example, it is important to get maximum
profit within a time limit. In other words, when planning marketing,
we have to set a time limit by considering the lifetime of the prod-
uct as a market competitor. Since the above situation is applied to
most marketing situations, time restriction should be considered in
a realistic influence diffusion model.

Second, there exists repeated chances to influence friends or
acquaintances in the real-world situations. Let us consider another
example. Suppose you buy a new product and write a positive post
about it in your Facebook wall. Then, the post appears to your
friends and persuades them to have a positive opinion about the
new product, which may lead them to buy it. The important thing
here is that when revisiting your wall later, your friends may be
persuaded to buy the product although they are not persuaded at
the posting moment. In other words, your positive post will have
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continuous influence on your friends. From this example, we
observe that people typically have multiple chances to affect oth-
ers on the same item. This observation is supported by the group
joining behavior of Flickr network [9]. Hence, we should take the
possibility of continuous activation chances into a new influence
diffusion model.

Time constraint and continuous activation chances in influence
diffusion process have not been contained in the existing models
and our proposing CT-IC model’s main contribution is to embrace
these two crucial aspects in the influence diffusion model.

3.2. Model definition

CT-IC model is modeled on an abstracted directed graph. Let
GðV ; EÞ of its vertex set V and its edge set E with a propagation
probability pp0 : E! ½0;1� be a directed graph representing a social
network. pp0ðu;vÞ denotes the probability that a node u activates a
node v one time step after u is activated. Given a seed set S # V and
time restriction T, Continuously activated and Time-restricted IC (CT-
IC) model works as follows.

Every seed node s 2 S is activated at time step t ¼ 0 and the
activation is propagated through its neighbors at time
t ¼ 1;2;3; . . .. Let At be the set of active nodes at time t with
A0 ¼ S. At time t, every active node u 2 At tries to activate its inac-
tive out-neighbors v 2 fw 2 NoutðuÞ and w R Atg with probability
ppt�tu

ðu;vÞ, where tu is the activation time of u and pptðu;vÞ is
defined as

pptðu;vÞ ¼ pp0ðu;vÞ � fuvðtÞ: ð2Þ

Here, fuv : N0 ! Rþ0 is monotonically decreasing function and
fuvð0Þ ¼ 1.

The monotonically decreasing property of fuv is based on the
observation that persuading friends is getting harder after each
trial to persuade them. Suppose that your buy a new iPad and
you friends do not have it yet. When you first show it to your
friends, some of them probably have a strong impression on it
and decide to buy it. After some days, when you show your friends
it again, some of them who does not buy it probably purchase it
due to the multiple exposure to it. but the number of influenced
friends are not as many as compared to the first time. In sum, as
time goes by the number of persuaded people decreases. This
phenomena is supported by the group joining behavior of Flickr
network and the shape of this decrease follows the exponential
function [9]. Accordingly, in this paper, we use fuv ðxÞ ¼ expð�auxÞ
with a non-negative constant au > 0 which represents how fast
u’s influence on its neighbors decreases.

After all activation trials are finished at time t, newly activated
nodes St are included in the activated node set, so we have
Atþ1 ¼ At [ St and a time step t þ 1 starts. This activation process
is repeated until we arrive at time step T.

The big difference between CT-IC and IC model is that (a) all
activation processes stop at global time limit T, not at time 1
and (b) every active node has multiple chances to activate its neigh-
bors until its neighbor becomes active or T is reached.

CT-IC model is a generalized version of IC model. This is because
IC model is obtained by taking av !1 for all v 2 V (or fuv ðxÞ ¼ dðxÞ
for all ðu;vÞ 2 E, where d denotes Kronecker delta function) and
T ¼ jV j.

One might guess that CT-IC model can be reduced to the
modified IC model by setting ðu;vÞ’s propagation probability toPT�1

t¼0 pptðu;vÞ and giving time restriction. However, the modified
IC model is not the same as CT-IC model. The reason is that this
modified IC model ignores how long it takes for each node to
activate others, which is an important factor in the reality. For
example, suppose tu ¼ 0; u takes 3 time steps to activate v, and v
takes 5 time steps to activate w (i.e. tv ¼ 3; tw ¼ 8). This event is
converted into the event in the modified IC model that u; v ; w
are activated at time 0, 1, 2, respectively. Thus, when T ¼ 5; w is
not activated in CT-IC model while w is activated in the modified
IC model, and such difference results in completely different conse-
quence because each active node could produce large cascading ef-
fect. Hence, IC model cannot simulate CT-IC model without loss of
CT-IC model’s key features.

3.3. Properties of CT-IC model

To apply CT-IC model to the real viral marketing, the greedy
algorithm should be applicable to the influence maximization
problem under CT-IC model. The satisfactory conditions for the
greedy algorithm are non-negativity, monotonicity, and submodu-
larity of the influence spread under CT-IC model. The influence
spread of a given seed set S at time t; rðS; tÞ, is the expected num-
ber of active nodes when time step t starts. Then, given the number
of seed nodes k and time constraint T, the influence maximization
problem under CT-IC model is to find a set S� 2 arg maxS # V ;

jSj ¼ krðS; TÞ. In the following, monotonic and submodular prop-
erties of CT-IC model are proven. The non-negativity property
holds trivially by the definition of influence spread under CT-IC
model.

Monotonicity and submodularity. In order to ensure that
greedy algorithm produces ð1� 1=eÞ-approximation solution for
influence maximization problem under CT-IC model, monotonicity
and submodularity of CT-IC model should be proven. Here, for a
given function f : 2V ! R; f is called monotone if
f ðSÞ 6 f ðS0Þ; 8S # S0, and submodular if f ðS [ fvgÞ � f ðSÞP
f ðS0 [ fvgÞ � f ðS0Þ; 8S # S0; v 2 V .

To prove monotonicity and submodularity, we conceive an
easy-to-analyze process which is equivalent to CT-IC model.
Consider a specific edge ðu;vÞ 2 E. After u is newly activated at
tu; u tries to activate its inactive out-neighbors v R At repeatedly
until v becomes active. For easy demonstration, assume that u is
the only in-neighbor node of v. Then, the probability that v is
activated exactly at tu þ t by u is equal to
ppt�1ðu;vÞ

Qt�2
i¼0 ð1� ppiðu; vÞÞ. In order to decide when v becomes

active, we only need to determine t for the above probability
expression. Since probability function of t for each ðu;vÞ 2 E is
given as above in advance, we can decide t before activation pro-
cess starts, and we have an equivalent activation process to CT-IC
model.

Suppose that we decide t for each ðu;vÞ 2 E before activation
process starts, have a function h : E! N that decides t for each
edge. Let G0 ¼ ðV ; E;hÞ be a graph with weight hðu;vÞ for
ðu;vÞ 2 E. Then, v 2 V is active at time t if and only if there exists
u 2 S and a path from u to v in G0 whose length is equal to or less
than t, where S is a seed set. This fact also holds when
jNinðvÞj > 1 because every activation trial is independent of each
other. Based on this observation, after choosing h, we can compute
influence spread deterministically. Theorem 1 proves monotonic
and submodular properties of influence spread under CT-IC model
based on the above observation.

Theorem 1. The influence spread function rð�; tÞ under CT-IC model is
monotone and submodular for all t P 0.
Proof. Let h : E! N be a function of ðu;vÞ 2 E which returns the
number of time steps (influence trials) taken by u to activate v.
We choose a specific h from H ¼ fh j h : E! Ng which follows
Pr½hðu;vÞ ¼ t� ¼ ppt�1ðu; vÞ

Qt�2
i¼0 ð1� ppiðu;vÞÞ. For any S # V , let

RhðS; tÞ be the set of active nodes at time t when seed nodes are S
and the successful influence trials follow h. Then, RhðS; tÞ is
computed as
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RhðS; tÞ ¼ fv 2 V j 9u 2 S such that dðu;vÞ 6 tg;

where dðu;vÞ is the length of the shortest path from u to v
under given h. Then, rhðS; tÞ, which is the influence spread at
time t with seed set S under h, becomes rhðS; tÞ ¼ jRhðS; tÞj. In
this context, influence spread on G under CT-IC model can be
computed as

rðS; tÞ ¼
X
h2H

Pr½h� � rhðS; tÞ:

RhðS; tÞ is monotone because adding a new node to S always
results in more reachable nodes and rhðS; tÞ is monotone because
RhðS; tÞ is monotone. rðS; tÞ is also monotone because linear combi-
nation of monotone function is also monotone.

Since rhðS[fvg;tÞ�rhðS;tÞ¼jRhðS[fvg;tÞnRhðS;tÞj¼jRhðfvg;tÞn
RhðS;tÞj holds and Rhð�;tÞ is monotone, we have Rhðfvg;tÞn
RhðS;tÞ� Rhðfvg;tÞnRhðS0;tÞ for any S0 �S. So, rhð�;tÞ is submodular
for all tP0 and thus rð�;tÞ is also submodular for all tP0 since
rðS;tÞ is the linear combination of non-negative submodular
functions.

In sum, rð�; tÞ is monotone and submodular for all t P 0. h
Algorithm 1. Greedy (G; k; T).

1: S ¼ /
2: for i ¼ 1 to k do
3: u ¼ arg maxv2VnSrðS [ fvg; TÞ � rðS; TÞ
4: S ¼ S [ fug
5: end for
6: return S

Because rð�; �Þ under CT-IC model is monotone and submodular
by Theorem 1 and it is trivially non-negative, Greedy algorithm
(Algorithm 1) guarantees a ð1� 1=eÞ-approximation solution for
influence maximization problem by Theorem 2.1 in [1]. Its time
complexity is OðknRmTÞ where n; m; R are the number of nodes,
the number of edges, and the number of iterations of Monte Carlo
simulation to get the approximation value of r.

Difference between IC and CT-IC models. To investigate how
different CT-IC model is from IC model in a specific situation, we
now introduce a measure called difference ratio between IC and
CT-IC model as follows.

Assume that G ¼ ðV ; EÞ; k, and T are given. Define the set of
optimal solutions for CT-IC model and that of IC model as
S�I ðG;kÞ¼argmaxfrIðSÞjS#V ; jSj¼kg;S�TðG;kÞ¼argmaxfrðS;TÞjS#V ;
jSj ¼ kg, respectively, where rIðSÞ is the influence spread of seed set
S in IC model. Then, we define the difference ratio as

drðG; k; TÞ ¼ rðS�T ; TÞ
max r S�I ; T

� �
jS�I 2 S�I

� �P 1;

where S�T 2 S�T . dr tells that whether we can get good solution for
influence maximization under CT-IC model even if we just treat
CT-IC model as IC model. This ratio can be used as a measure to
quantify the difference between IC and CT-IC models. If CT-IC model
is not much different from IC model, dr would be close to 1,
otherwise, it might be greater than 1.

The following Lemma says that for small k; T , there exist infi-
nitely many graphs for which dr is sufficiently large.

Lemma 1. For any positive k; N; T such that k < N=4; T <
ðN=4kÞ � 1 ¼ OðN=kÞ, there exists a graph G ¼ ðV ; EÞ such that
jV j ¼ N and drðG; k; TÞ ¼ XðN=kTÞ.
Proof. For a given k; N and T, construct a graph G ¼
Sk

i¼1 G1
i [ G2

i

� �
,

where G1
i ¼ V1

i ; E
1
i

� �
is a star graph with ðN=2kÞ � 1 nodes,

G2
i ¼ V2

i ; E
2
i

� �
is a simple path with ðN=2kÞ þ 1 nodes. Set

pp0ðu;vÞ ¼ 1 for every ðu;vÞ 2 E.
Then, S�I ¼ fv1; . . . ;vkgjv i 2 V2

i

n o
as rIðfvgÞ ¼ ðN=2kÞ þ 1 >

ðN=2kÞ � 1 ¼ rIðfv 0gÞ for any v 2 V2
i ; v 0 2 V1

j . However,

S�T ¼ fv1; . . . ;vkgjv i 2 V1
i

n o
as rðfvg; TÞ ¼ ðN=2kÞ � 1 > 2T þ 1 P

rðfv 0g; TÞ for any v 2 V1
i ;v 0 2 V2

j . Therefore, drðG; k; TÞ ¼
k½ðN=2kÞ�1�

kð2Tþ1Þ ¼ XðN=kTÞ. h
4. Exact computation of influence spread

In this section, we provide an exact influence evaluation under
CT-IC model when a graph has special topology, arborescence or
simple path. Because computing influence spread under IC model
is #P-Hard [22] and IC model is a special case of CT-IC model, com-
puting influence spread under CT-IC model is also #P-Hard. How-
ever, its computation is still tractable if we restrict the whole
graph to an arborescence, a directed graph in which there exists
a unique path from every node to a root node. We first present
equations for computing influence spread in an arborescence
(Section 4.1), and then by using these equations, give a useful
way to evaluate influence spread for a simple path which is a
special case of an arborescence (Section 4.2).

4.1. Case of an arborescence

Consider an arborescence GA ¼ ðV ; EÞ with a seed set S # V and
time restriction T. For any v 2 V and 0 6 t 6 T , let apSðv ; tÞ be a
probability that v is activated exactly at time t, and apS;TðvÞ be a
probability that v is activated before activation process ends (i.e.
apS;TðvÞ ¼

PT
i¼0apSðv ; iÞ). Then, it is obvious that

apSðv; tÞ ¼
1 if v 2 S and t ¼ 0
0 if v R S and t ¼ 0
0 if v 2 S and t > 0

8><>: :

However, when v R S and 0 < t 6 T , computing apSðv ; tÞ is not
trivial. The following Lemma 2 tells that in this case, apSðv; tÞ has
a complex formula.

Lemma 2. For any v 2 V n S and 0 < t 6 T,

apSðv ; tÞ ¼
Y

u2NinðvÞ
1�

Xt�2

i¼0

apSðu; iÞguvðt � 2� iÞ
" #

�
Y

u2NinðvÞ
1�

Xt�1

i¼0

apSðu; iÞguvðt � 1� iÞ
" #

holds, where guvðtÞ ¼ 1�
Qt

i¼0½1� ppiðu; vÞ�.
Proof. Consider a node v 2 V . For 0 < t 6 T , let Atðv ;uÞ be an event
that v is activated by u 2 NinðvÞ exactly at time t, and NAtðvÞ be an
event that v is not activated until time t. Then, NAtðvÞ ¼T

u2NinðvÞ
Tt

i¼1Aiðv ;uÞ
� �

¼
T

u2NinðvÞ
St

i¼1Aiðv ;uÞ
� �

.
St

i¼1Aiðv ;uÞ andSt
i¼1Aiðv ;u0Þ are independent for any u – u0 because every activa-

tion trial is independent of each other. Thus, we have

Pr½NAtðvÞ� ¼
Q

u2NinðvÞPr
St

i¼1Aiðv;uÞ
h i

.

Let KtðvÞ be an event that v is activated exactly at time t, and
euv ði; jÞ be an event that given KiðuÞ, edge ðu;vÞ 2 E is activated
exactly at time j (so v must be active at time jþ 1), for any 0 6 i 6 j.
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Then, Aiðv ;uÞ ¼ [i�1
j¼0 KjðuÞ \ euvðj; i� 1Þ
� �

. We compute PrSt
i¼1Aiðv ;uÞ

h i
by using the fact that KjðuÞ and Kj0 ðuÞ are mutually

exclusive for any j – j0, and Pr½euvði; jÞ� ¼ ppj�iðu; vÞ as follows.

Pr
[t

i¼1

Aiðv;uÞ
" #

¼ Pr
[t

i¼1

[i�1

j¼0

KjðuÞ \ euvðj; i� 1Þ
� �" #

¼
Xt�1

j¼0

Pr KjðuÞ \
[t

i¼jþ1

euvðj; i� 1Þ
 !" #

¼
Xt�1

j¼0

Pr½KjðuÞ� 1� Pr
[t

i¼jþ1

euvðj; i� 1Þ
" # !

¼
Xt�1

j¼0

apSðu; jÞ 1�
Yt�1�j

i¼0

½1� ppiðu; vÞ�
 !

So, Pr½NAtðvÞ� ¼
Q

u2NinðvÞ 1�
Pt�1

i¼0 apSðu; iÞguvðt � 1� iÞ
h i

and

apSðv; tÞ ¼ Pr½NAt�1ðvÞ� � Pr½NAtðvÞ� hold. h

We know that rðS; TÞ ¼
P

v2V

PT
i¼0apSðv; iÞ holds. Therefore,

when a given graph is an arborescence, we can compute the exact
value of rðS; TÞ in a polynomial time. In fact, by using simple
dynamic programming, rðS; TÞ is computed in OðjV jT2Þ time since
computing Pr½NAiðvÞ� for all v 2 V takes OðjV jTÞ time for each
i ¼ 0; . . . ; T.

4.2. Case of a simple path

Let us consider the influence spread of a simple path p which is
a sequence of nodes. For an edge ðu;vÞ of p, by Lemma 2, the
activation probability of v at time t, apðv ; tÞ is the sum of the prod-
uct of (1) the probability that u is activated at ið0 6 i < tÞ and (2)
the probability that u activate v at the ðt � iÞth activation trial.
Accordingly, apðv; tÞ is derived as follows.

apðv ; tÞ ¼
Xt�1

i¼0

cðt�iÞ
uv apðu; iÞ ¼

apðu; 0Þ
apðu;1Þ

..

.

apðu; t � 1Þ

266664
377775

Tr
cðtÞuv

cðt�1Þ
uv

..

.

cð1Þuv

2666664

3777775;
where cðt�iÞ

uv ¼ ppt�i�1ðu;vÞ
Qt�i�2

j¼0 ð1� ppjðu; vÞÞ which is the
probability that u activates v at the ðt � iÞth trial. Obvious subscript
S in apSðv ; tÞ is omitted. After putting apðv ; iÞ’s for i ¼ 0; . . . ; T into a
matrix, we have

apðv;0Þ
apðv ;1Þ
apðv ;2Þ

..

.

apðv ; TÞ

266666664

377777775

Tr

¼

apðu;0Þ
apðu;1Þ
apðu;2Þ

..

.

apðu; TÞ

266666664

377777775

Tr
0 cð1Þuv � � � cðTÞuv

0 0 � � � cðT�1Þ
uv

0 0 � � � cðT�2Þ
uv

..

. . .
. ..

.

0 0 � � � 0

266666664

377777775;

or APðvÞ ¼ APðuÞCuv equivalently, where APðvÞ; APðuÞ, and Cuv

represent corresponding matrices.
Now, for any u 2 S and v 2 V n S, consider a simple path

p ¼ ðu ¼ u0;u1; . . . ;ul�1;ul ¼ vÞ where ui 2 V n S for all i ¼ 1; . . . ; l.
Suppose that influence is spread only through p (i.e. each uiþ1 is
activated only by ui for all i ¼ 0; . . . ; l� 1). In this situation, define
inf pðu;vÞ be the probability that u activates v in time T, i.e. apS;TðvÞ.
By using the above result, we have APðvÞ ¼ APðuÞCu0u1 � � �Cul�1ul

.
However, we know that APðuÞ ¼ ½1 0 � � � 0� and apS;TðvÞ ¼PT

i¼0apSðv; iÞ ¼ APðvÞ½1 � � � 1�Tr. Therefore, we finally obtain the
following Lemma.

Lemma 3. The probability that u 2 S activates v 2 V n S only through
a path p ¼ ðu ¼ u0; u1; . . . ;ul�1;ul ¼ vÞ is
inf pðu; vÞ ¼ ½1 0 � � � 0�
Yl�1

i¼0

Cuiuiþ1

 !
½1 1 � � � 1�Tr

; ð3Þ

where ui 2 V n S for all i ¼ 1; . . . ; l, and the order of matrix multiplica-
tion is from i ¼ 0 to l� 1.

Let us consider the relationship between the above equation
and the corresponding equation in IC model. In IC model, each edge
has a real weight which represents propagation probability, and
the probability that one node activates the other node only
through a path is computed by multiplying each edge’s real weight
along the path. However, in CT-IC model, each edge has a
ðT þ 1Þ � ðT þ 1Þ matrix weight, and the same probability is
calculated by summing the first row of the matrix obtained by
multiplying each edge’s matrix weight along the path. Thus, we
can think of the above Lemma as the generalized version of equa-
tion for IC model.

However, the existing influence approximation methods, which
depends on the shortest path, such as MIA [6] for IC model and
MIA-N [2] for IC-N model cannot be extended to CT-IC model. IC
and IC-N models, the principle of optimality [23], which says that
all sub-paths of any maximum probability path are also maximum
probability paths, holds. Thus, we could make a reasonable local
tree structure, such as MIA [6] and MIA-N [2], for efficient algo-
rithms. However, as the below Lemma tells us, CT-IC model does
not have such property. Therefore, obtaining similar local arbores-
cences of MIA or MIA-N for CT-IC model is computationally intrac-
table because shortest path algorithm such as Dijkstra’s algorithm
cannot be used for finding maximum probability path.

For any u; v 2 V , define p� be a maximum probability path from
u to v if p� 2 arg maxpfinf pðu;vÞjp : a simple path from u to vg.
By using this definition and Lemma 3, we give one more property
of CT-IC model, described in the following lemma.

Lemma 4. In CT-IC model, the principle of optimality does not hold.
Proof. Let us prove the lemma using a counter example in which
the principle of optimality is violated.

An example graph is given as Fig. 2. Assume pp0ðe0Þ ¼
pp0ðe1Þ ¼ 0:6; pp0ðe2Þ ¼ pp0ðe3Þ ¼ 0:3; aui ¼ 1 ði ¼ 0; . . . ;3Þ; S ¼
fu0g, and T ¼ 3. Then, ðu0;u1;u2;u3Þ is the maximum probability
path from u0 to u3. However, one of its sub-paths, ðu0;u1;u2Þ, is not
the maximum probability path form u0 to u2. In fact, ðu0;u2Þ is the
maximum probability path from u0 to u2. h
5. Influence spread processing algorithm

From the existing works [6,17–21], we know that the greedy
algorithm for IC model is very slow in practice due to the heavy
calculation of rðSÞ. So, it is obvious that Greedy algorithm for CT-
IC model is absolutely not scalable. We need a new scalable
algorithm for CT-IC model. Although PMIA algorithm [6] is one of
state-of-the-art algorithms for IC model, it is hard to generalize it
to CT-IC model as described in Section 4.2.

In this section, we propose Continuously activated and Time-re-
stricted influence path algorithm (CT-IPA) for CT-IC model by
extending a highly scalable algorithm for IC model – independent
path algorithm (IPA) [7]. We first describe how IPA works briefly
and then demonstrate several treatments for extending IPA into
CT-IPA.

IPA evaluates influence spread of seed nodes by considering an
independent influence path as a basic unit of influence spread eval-
uation. The #P-hardness of influence spread evaluation is based on
the fact that we cannot find all paths between any two nodes in a
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tractable time. Thus, IPA scales up influence spread evaluation by
controlling the number of influence paths which amounts to drop-
ping out negligible influence paths which have propagation proba-
bility less than a pre-defined threshold h. In addition, for scalable
evaluation of influence spread, IPA assumes influence paths are
independent of each other.

he extension from IPA to CT-IPA is seamlessly done by changing
the influence spread definition of an influence path. In IPA for IC
model, influence spread of an influence path is obtained by multi-
plying real-valued propagation probability of each edge in the
path. In CT-IC model, influence spread of an influence path is
inf pð�; �Þ of Eq. (3) which involves matrix multiplication. Therefore,
embedding inf pð�; �Þ into IPA, we get CT-IPA algorithm for CT-IC
model.

Let us define critical paths starting from node u as Pu ¼
fp 2 SPujp ¼ ðu; . . . ;vÞ; v 2 V n fug; inf pðu;vÞP hg, where SPu ¼
fsimple paths starting from ug. Then, critical path set from node
u to v is defined by Pu!v ¼ fp 2 Pujp ¼ ðu; . . . ;vÞg. Pu!v means that
u activates v through one of the paths in Pu!v . Finally, influenced
area of node u is defined by Ou ¼ fv jðu; . . . ;vÞ 2 Pug. By using these
definitions and the above assumptions, influence spread is approx-
imated in CT-IPA as follows.

capfug;TðvÞ ¼ 1�
Y

p2Pu!v

ð1� inf pðu; vÞÞ ð4Þ

r̂ðfug; TÞ ¼ 1þ
X
v2Ou

capfug;TðvÞ ð5Þ

Note that by considering critical paths as influence spread evalua-
tion units, only paths in Pu!v are considered in Eq. (4), and by inde-
pendence between critical paths, capfug;TðvÞ has an explicit and
simple formula Eq. (4).

To compute the influence spread of a seed set, we define critical
paths from a seed set S as PS ¼ fpjp 2 Pu;u 2 S; p \ S ¼ fugg , and
critical paths from a seed set S to a specific node v as
PS!v ¼ fp 2 PSjp ¼ ðu; . . . ;vÞg. Finally, define influenced area of a
Fig. 2. A counter example that violates the principle of optimality.

Table 1
Basic information of four real dataset.

Dataset HEP PHY EPINION AMAZON

Directedness Undir Undir Dir Dir
# of Nodes 15 K 37 K 76 K 262 K
# of Edges 59 K 232 K 509 K 1235 K
# of Connected components 1781 3883 2 1
Average size of components 8.6 9.6 38 K 262 K
h for CT-IPA 1=32 1=64 1=64 1=16
seed set S as OS ¼ fvjðu; . . . ;vÞ 2 PSg. Then, the influence spread
of S is computed as follows.capS;TðvÞ ¼ 1�

Y
p2PS!v

ð1� inf pðu; vÞÞ ð6Þ

r̂ðS; TÞ ¼ jSj þ
X
v2OS

capS;TðvÞ ð7Þ

Algorithm 2. CT-IPAðG; k; T; hÞ.

Input: G: a graph, k: a required size of a seed set, T: time
restriction, h : a threshold controlling the size of a local
structure

Output: seed set of size k
1 /� Initialize �/
2 for u; v 2 V do Pu!v ¼ Ou ¼ /
3 for u 2 V do
4 compute Pu with T and h
5 for p ¼ ðu; . . . ;vÞ 2 Pu do
6 Pu!v ¼ Pu!v [ fpg
7 Ou ¼ Ou [ fvg
8 end
9 compute Du ¼ r̂ðfug; TÞ /� by using Eqs. (3)–(5) �/
10 end
11 /� Greedy Loop �/
12 S ¼ /
13 for i ¼ 1 to k do
14 v ¼ arg maxu2V�SDu

15 S ¼ S [ fvg
16 for u 2 V � S do Du ¼ Calc� DðS; uÞ
17 end
18 return S

Putting the above equations together, we get CT-IPA (Algorithm
2). While the basic structure of CT-IPA is greedy algorithm,
influence spread is computed more efficiently by the above equa-
tions. Line 4 is easily done by BFS (breath-first search) starting
from node u. Line 9 is computed by Eqs. (3)–(5) with Ou; Pu!v ,
which are obtained in lines 5–8. Lines 13–17 are the loop of greedy
algorithm.
Algorithm 3. Calc-DðS;uÞ.

Input: S: selected seed nodes until now, u: a node
Output: r̂ðS [ fug; TÞ � r̂ðS; TÞ
1 Du ¼ 1
2 for v 2 Ou do
3 new ap ¼ cur ap ¼ 1
4 for p 2 Pu!v with p \ S ¼ / do
5 new ap � ¼ ð1� inf pðu;vÞÞ
6 end
7 for s 2 S do
8 for p 2 Ps!v with p \ S # fs;ug do
9 old ap � ¼ ð1� inf pðs;vÞÞ
10 if p \ S ¼ fsg then
11 new ap � ¼ ð1� inf pðs;vÞÞ
12 end
13 end
14 Duþ ¼ ð1� new apÞ � ð1� old apÞ
15 end
16 return Du



Table 2
Top-20 seed nodes of IC model and CT-IC model solution.

On PHY
IC model solution

4840 1568 5192 5120 7387
12,081 2356 10,653 4115 23,571

3460 3808 969 809 5567
2443 3566 5312 6342 3673

CT-IC model solution
4840 5192 5120 1568 809
4115 2356 3460 23,571 12,081
7132 3842 10,653 4109 3673
6342 3712 2928 3982 2289

On AMAZON
IC model solution

17,747 222,839 25,699 18,076 168,039
18,337 232,448 7266 11,129 45,391

176,067 9657 64,815 183,084 27,562
59,541 14,461 238,375 114,241 1385

CT-IC model solution
17,747 176,067 56,415 51,234 200,657

238,375 18,076 236,670 259,011 222,839
6290 205,434 143,531 199,539 59,541

25,699 178,335 82,533 114,241 95,315
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Fig. 3. Comparison between IC and CT-IC models.
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Calc-D (Algorithm 3) outlines how to compute
r̂ðS [ fug; TÞ � r̂ðS; TÞ which is used in line 16 of Algorithm 2. In
Calc-D, (1�new ap) and (1�old ap) finally equal to capS[fug;TðvÞ andcapS;TðvÞ in line 14, respectively. Line 5 is the case that a path from
u to v is not blocked by nodes in S. Similarly, line 9 is the case that a
path p from a seed node s to v is not blocked by other seed nodes,
and line 11 is the case that the path p is also not blocked by u.

Merging multiple edges. To reduce the processing time of CT-

IPA, merging multiple edges into a single edge is required as a pre-
processing task. However, unlike IC model, this task is not obvious.

Suppose that we have multiple edges e1; . . . ; el from node u to v.
In IC model, these multiple edges are equivalent to a single edge e0

with propagation probability 1�
Ql

i¼1ð1� pp0ðeiÞÞ. However, in CT-
IC model, this is not the case. Let e0 be an equivalent edge to these
multiple edges in CT-IC model. Then, we have
pptðe0Þ ¼ 1�

Ql
i¼1ð1� pptðeiÞÞ, and it is not the form of c � fuv ðtÞ of

Eq. (2) with constant c. It means that we cannot merge multiple
edges into a single one e0 with a constant weight pp0ðe0Þ. Fortu-
nately, CT-IPA only requires Cuv instead of pp0ðe0Þ being constant,
and Cuv can be computed by using pptðe0Þ. Thus, we can merge mul-
tiple edges into a single edge having a matrix weight Cuv , which is
quite different from IC model.

Time complexity. First, computing the multiplication of two
matrix weights, CuvCvw, takes only OðT2Þ time because both matri-
ces are upper triangular and the elements of each diagonal of each
matrix has the same value. Therefore, computing Pu and Pu!v for all
possible u;v takes OðnnpT2Þ time, where n ¼ jV j; np is the average
number of critical paths starting from each node. Next, it takes
OðjOSjnpÞ time to calculate r̂ðS; TÞ. This is because, we have to look
up jOSj nodes u 2 OS (Eqs. (5) and (7)), and for each u, we have to
look up jPS!uj paths (Eqs. (4) and (6)). Thus, calculating
r̂ðS [ fvg; TÞ � r̂ðS; TÞ for all v 2 V n S (line 3 in Algorithm 1) takes
OðnnonpÞ time, where no is the average number of influenced nodes
of each node. To sum up, the time complexity of the CT-IPA inte-
grated greedy algorithm is OðnnpT2 þ knnonpÞ ¼ Oðnnpðkno þ T2ÞÞ.
6. Experiments

In this section, we conduct experiments to figure out character-
istic of CT-IC model and to compare the performance of CT-IPA

with other algorithms. Specifically, the goal of our experiments is
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Fig. 4. The change of influence spread with respect to T.
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twofold: (a) to check how much CT-IC model is different from IC
model, we compare seed set and its influence spread of CT-IC mod-
el with those of IC model, and measure the change of influence
spread of CT-IC model solution with respect to T (Section 6.2)
and (b) to compare CT-IPA with other algorithm, processing time
and influence spread are measured (Section 6.3).

6.1. Experiment setup

Datasets. We chose four widely used real datasets in influence
maximization problem. HEP and PHY are co-authorship graphs ob-
tained from ‘‘High Energy Physics - Theory’’ and ‘‘Physics’’ section
of arXiv site (http://arxiv.org) where nodes and edges represent
authors and coauthor relationships, respectively. EPINION is a
who-trust-whom graph of epinions.com, where a node u repre-
sents a user of the site and an edge ðu;vÞ represents that v trusts
u, so there is chance for u to influences v. AMAZON is a co-purchas-
ing graph of amazon.com on March 2, 2003, in which a node u rep-
resents a product and an edge ðu; vÞ represents that v is usually
bought with u; u may influence v. We get HEP, PHY data from
Wei Chen’s site,2 and EPINION, AMAZON from Stanford’s SNAP site.3

The basic statistics of each graph is presented in Table 1 where EPIN-
ION and AMAZON are considered as undirected graphs.

Propagation probabilities. Since propagation probabilities are
not available on our data set, we use WC (weighted cascade) model
[1] for generating edges’ probabilities. In WC model, propagation
probabilities are assigned as pp0ðu;vÞ ¼ 1=deginðvÞ for all edges
ðu;vÞ 2 E, where deginðvÞ denotes the in-degree of node u.

Algorithms. In Section 6.3, we compare CT-IPA algorithm with
the other algorithms. We do not include any algorithms for IC
model because they are not extendable to CT-IC model as de-
scribed in Section 4.2.
2 http://research.microsoft.com/en-us/people/weic/graphdata.zip.
3 http://snap.stanford.edu/data.
� Random: A baseline algorithm which selects k nodes uniformly
at random from the overall jV j nodes.
� MaxDegree: A simple heuristic algorithm which selects k nodes

in non-increasing order of node’s out-degree.
� Greedy: Algorithm 1 with lazy-forward optimization [17]. We

use R = 10,000, where R denotes the number of iterations for
Monte-Carlo simulation to compute rðS; TÞ.
� CT-IPA: Our proposed algorithm integrated with lazy-forward

greedy optimization. The last row of Table 1 shows tuned h val-
ues used on each dataset.4

In this experiment, we set av ¼ 0:1 for all v. Different a values
produced similar results. When we calculate the influence spread
of each seed set produced by each algorithm, we do 10,000
Monte-Carlo simulations and get the average of the values. We
conduct the following experiments in a Linux machine with two
Intel Xeon CPUs and 24 GB memory.
6.2. Characteristic of CT-IC model

Comparison between IC and CT-IC models. We show that CT-
IC model is a novel influence diffusion model by comparing CT-IC
model to IC model in both quantitative and qualitative ways. In
order to check whether CT-IC model is novel compared to IC model,
we run the greedy algorithm under ‘‘IC model’’ ðGreedyICÞ and the
greedy algorithm under ‘‘CT-IC model’’ (GreedyCT�IC). In the experi-
ment, we vary seed size k from 1 to 50, and set T ¼ 5. Note that,
since it is not feasible to get a solution by greedy algorithms for
large graphs (EPINION, AMAZON), we use IPA [7] and CT-IPA

instead of greedy algorithm for IC and CT-IC models, respectively.
4 We find that there is trade-off between processing time and influence spread as h
changes. Thus, by varying h ¼ 1=8;1=16=; . . . ;1=512, we select the first h at which an
increment in influence spread becomes much smaller than that in processing time.

http://arxiv.org
http://research.microsoft.com/en-us/people/weic/graphdata.zip
http://snap.stanford.edu/data
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Fig. 5. Influence spread of various algorithms.
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To show the difference between two models quantitatively,
after obtaining two difference seed sets from GreedyIC and
GreedyCT�IC, we compare the influence spreads of them under
‘‘CT-IC model’’. Fig. 3 shows the influence spread of two methods’
solutions on four datasets. On HEP, PHY and EPINION, the influence
spread of CT-IC model solution is always larger than that of IC
model solution, and moreover the gap between them becomes
larger as k increases. On much larger graph AMAZON, the similar
result is obtained. However, the gap between CT-IC and IC model
is much larger than that on other graphs. These results show that
(1) CT-IC model is a different model from IC model and (2) time
constraint and continuous activation trials of CT-IC model are
meaningful consideration for a realistic influence diffusion model.

One thing to note is that even though the difference ratio
between IC model and CT-IC model,dr, is close to 1 on HEP, PHY
and EPINION, it does not mean that our CT-IPA algorithm is unnec-
essary. The reason is that we cannot know that IC model solution
really works well in CT-IC model before computing the optimal
solution for CT-IC model. Moreover, there exist cases where dr
becomes very large like Lemma 1.

To show the difference between two models qualitatively, we
compare elements of two seed node sets which are obtained by
GreedyIC and GreedyCT�IC. In this comparison, we select the first 20
seed nodes under IC model and CT-IC model, which are identi-
fied by GreedyIC and GreedyCT�IC , respectively. The results on
PHY and AMAZON are listed in Table 2. In the node id list, the
top-left node is top-1st node of solution and the bottom-right
node is the top-20th node, and node ids in bold type are ones
which are included in CT-IC model solution but not in IC model
solution. Among top-20 nodes, only 13 and 6 nodes are in com-
mon for both solutions on PHY and AMAZON, respectively.
Moreover, the ranking of top-20 nodes in CT-IC model solution
is largely different from that in IC model solution. Thus, CT-IC
model is a more different model from IC model than it appears
in Fig. 3.
To sum up, we conclude that there exists definite distinction
between CT-IC model and IC model even though they are some-
times superficially similar in terms of influence spread.

Change of influence spread when varying T. To find out how
influence spread changes as T increases, influence spread is mea-
sured when T ¼ 1;3; . . . ;9. k is also varied from 1 to 50. We select
seed nodes by Greedy for small graphs (HEP, PHY) and by CT-IPA for
large graphs (EPINION, AMAZON).

Fig. 4 illustrates the results of influence spread on four datasets.
On every dataset, influence spread increases as T increases, which
is an obvious result. However, as T increases, the increment of
influence spread increases at first, and then starts to decrease at
some point (on HEP and EPINION) or does not decrease at all (on
PHY and AMAZON). The fact that the increment of influence spread
increases is not intuitive but can be explained as follows.

Let D½r�ðS; TÞ ¼ rðS; T þ 1Þ � rðS; TÞ and D2½r�ðS; TÞ ¼ D½r�
ðS; T þ 1Þ � D½r�ðS; TÞ. In this notation, the above statement is al-
most equivalent to that ‘‘D2½r�ðS; TÞ is at first positive but becomes
negative at some point as T increases.’’ In fact, two statements are
not exactly equivalent since seed sets for each T are slightly differ-
ent in our experiment. However, for simplicity, let us assume they
are all equal for every T. There are two opposite effects on the sign
of D2½r� – the effects of already active nodes and newly activated
nodes. The nodes that are already active at T activate less nodes
as time goes by because ppt keep decreasing. Accordingly, such
nodes try to make D2½r� negative. On the other hand, the nodes that
are newly activated at T þ 1 have just started to activate other
nodes. Because they are not active at T, their activation tries only
increase D½r�ðS; T þ 1Þ. Therefore, they try to make D2½r� positive.
By this argument, we can now explain the above observation –
D2½r� < 0 (resp. > 0) because the first effect (resp. the second
one) is stronger than the other.

Knowing when D2½r�ðS; TÞ becomes negative or positive is very
important for viral marketing. Suppose that a company plans to re-
lease product A and B at time step 0 and T, respectively. For a viral
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marketing of product A, seed nodes SA are selected by the influence
maximization and product A succeeds in making big profit until T.
Based on the success of product A, the company decides to delay
the release of product B. However, if D2½r�ðSA; TÞ < 0, the com-
pany’s expectation of product A’s steady success is wrong because
after T influence spread increment is diminishing. The opposite sit-
uation also holds.
6.3. Comparison between algorithms

Influence spread. We measure the influence spread of algo-
rithms’ solutions on four datasets by varying k from 1 to 50. We
set T ¼ 5. Greedy is only applied to HEP and PHY because of its
excessive processing time on EPINION and AMAZON. The results
are shown in Fig. 5.

On HEP, the influence spread of CT-IPA is almost close to that of
Greedy. Also, there is a significant gap between CT-IPA and MaxDe-

gree. Random is the worst one, which tells that randomly selecting
seed nodes is not a good idea like in IC model [6].

On PHY, the result is almost the same as on HEP. The only dif-
ference is that MaxDegree, Random produce much smaller influence
spread compared to Greedy and CT-IPA.

On EPINION, two interesting facts are observed. Unlike on the
other graphs, MaxDegree almost matches CT-IPA when k 	 40,
and the influence spread of Random is almost 0. We guess that this
result happens because EPINION has very few influential nodes,
which has very high degree, and almost every node is not such
influential and has low degree. Actually, the maximal degree of
EPINION (3079) is the highest among our data set.

Finally, on AMAZON, CT-IPA is still overwhelmingly the best,
and the influence spread of CT-IPA is almost linear to k, like in IC
model [6]. However, in this case, the influence spread of MaxDegree

is even much smaller than Random, which is completely opposite to
EPINION case. The reason is the topology of AMAZON is quite dif-
ferent from that of EPINION. The influential nodes in AMAZON
have not very high degree while high degree nodes in AMAZON
may have very low propagation probabilities to their neighbor
nodes.

In a nutshell, CT-IPA yields influence spread as high as Greedy,
and always shows better influence spread than other algorithms.
Additionally, MaxDegree is very unstable. Though it performs well
in few cases, it does not in other cases and is sometimes worse
than Random.

Processing time. We measure the processing time for all com-
binations of four algorithms and four datasets. In this experiment,
we retrieve top-50 seed nodes while fixing T ¼ 5. Fig. 6 shows the
processing time of four algorithms on four datasets where the y-
axis is log-scaled. Note that we ran each experiment up-to 10 h.

For all datasets, Greedy take the longest time to find seed nodes.
Even on small datasets, Greedy, the processing times of it are 5.0 h
on HEP and 10.0 h on PHY. On large dataset (EPINION and AMA-
Fig. 6. Processing time of various algorithms.
ZON), Greedy fail to provide seed node because it does not finish be-
fore 10 h of running. Thus, as in IC model, although Greedy

identifies seed nodes which has better influence spread, it is not
applicable to large datasets due to its poor scalability.

On the other hand, CT-IPA takes less than 15 s in all datasets.
Specifically, CT-IPA takes 1.0, 7.0, 14.5, and 14.3 s on HEP, PHY,
EPINION, and AMAZON. Compared to Greedy, CT-IPA shows four or-
ders of magnitude shorter processing time. Such efficient process-
ing of CT-IPA comes from considering critical paths as influence
evaluation unit of CT-IPA. For every rðS; TÞ evaluation, while Greedy

requires 10,000 times of fresh Monte-Carlo simulation, CT-IPA re-
uses critical paths and saves the processing time.

Since MaxDegree and Random do not consider the influence dif-
fusion, they always take less than one second. However, influence
spread of their solutions is unstable and much worse than CT-IPA.

7. Conclusion

In this paper, we propose a realistic influence diffusion model –
the time-considering independent cascade (CT-IC) model. Existing
influence diffusion models and their efficient processing algo-
rithms lack of two important aspects of influence propagation in
real world – time constraint and continuous activation trials. CT-
IC model embeds these two aspects into its activation process to
reflect more realistic influence diffusion in social networks. By
proving monotonicity and submodularity, the greedy algorithm
which has 1� 1=e approximation ratio can be applied to CT-IC
model. Moreover, exact influence spread evaluation in CT-IC for a
specific graph (e.g. arborescences and simple paths) are derived.
By plugging the exact influence spread evaluation of simple paths
to IPA algorithm for IC model, we have a highly scalable processing
algorithm CT-IPA for CT-IC model. Extensive experiments on real
datasets show that CT-IC model produces different results from
IC model, and CT-IPA produces seed sets several orders of magni-
tude faster than the greedy algorithm without sacrificing influence
spread.
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