
Verifying Bit-Manipulations
of Floating-Point

Wonyeol Lee Rahul Sharma Alex Aiken

Stanford University

PLDI 2016

This Talk

• Example:

• Goal: Bound the difference between spec and implementation

• Key contribution: Verify binaries that mix floating-point and bit-
level operations
•

𝑒𝑥
mathematical
specification

2

This Talk

• Example:

• Goal: Bound the difference between spec and implementation

• Key contribution: Verify binaries that mix floating-point and bit-
level operations
•

𝑒𝑥

floating-point implementation

...

vpslld $20, %xmm3, %xmm3

vpshufd $114, %xmm3, %xmm3

vmulpd C1, %xmm2, %xmm1

vmulpd C2, %xmm2, %xmm2

...
mathematical
specification

3

This Talk

• Example:

• Goal: Bound the difference between spec and implementation

• Key contribution: Verify binaries that mix floating-point and bit-
level operations
•

≠
𝑒𝑥

floating-point implementation

...

vpslld $20, %xmm3, %xmm3

vpshufd $114, %xmm3, %xmm3

vmulpd C1, %xmm2, %xmm1

vmulpd C2, %xmm2, %xmm2

...
mathematical
specification

4

This Talk

• Example:

• Goal: Bound the difference between spec and implementation

• Key contribution: Verify binaries that mix floating-point and bit-
level operations
•

≠how different?
𝑒𝑥

floating-point implementation

...

vpslld $20, %xmm3, %xmm3

vpshufd $114, %xmm3, %xmm3

vmulpd C1, %xmm2, %xmm1

vmulpd C2, %xmm2, %xmm2

...
mathematical
specification

5

This Talk

• Example:

• Goal: Bound the difference between spec and implementation

• Key contribution: Verify binaries that mix floating-point and bit-
level operations
•

≠how different?
𝑒𝑥

floating-point implementation

...

vpslld $20, %xmm3, %xmm3

vpshufd $114, %xmm3, %xmm3

vmulpd C1, %xmm2, %xmm1

vmulpd C2, %xmm2, %xmm2

...
mathematical
specification

6

This Talk

• Example:

• Goal: Bound the difference between spec and implementation

• Key contribution: Verify binaries that mix floating-point and bit-
level operations
•

≠how different?
𝑒𝑥

floating-point implementation

...

vpslld $20, %xmm3, %xmm3

vpshufd $114, %xmm3, %xmm3

vmulpd C1, %xmm2, %xmm1

vmulpd C2, %xmm2, %xmm2

...
mathematical
specification

7

This Talk

• Example:

• Goal: Bound the difference between spec and implementation

• Key contribution: Verify binaries that mix floating-point and bit-
level operations
•

≠how different?
𝑒𝑥

floating-point implementation

...

vpslld $20, %xmm3, %xmm3

vpshufd $114, %xmm3, %xmm3

vmulpd C1, %xmm2, %xmm1

vmulpd C2, %xmm2, %xmm2

...
mathematical
specification

8

• Example:

• Automatic reasoning about floating-point is not easy
• have rounding errors
• d
• Associativity: 1 + 1030 − 1030 = 1 ≠ 0 = (1 + 1030) − 1030

• It becomes much harder if bit-level operations are used

Floating-Point Numbers

9

1 01111111111 1100⋯00 (2)

= −1 1 ∙ 21023−1023 ∙ 1.110⋯00(2)

• Example:

• Automatic reasoning about floating-point is not easy
• have rounding errors
• d
• Associativity: 1 + 1030 − 1030 = 1 ≠ 0 = (1 + 1030) − 1030

• It becomes much harder if bit-level operations are used

Floating-Point Numbers

10

1 01111111111 1100⋯00 (2)

= −1 1 ∙ 21023−1023 ∙ 1.110⋯00(2)

• Example:

• Automatic reasoning about floating-point is not easy
• have rounding errors
• d
• Associativity: 1 + 1030 − 1030 = 1 ≠ 0 = (1 + 1030) − 1030

• It becomes much harder if bit-level operations are used

Floating-Point Numbers

11

1 01111111111 1100⋯00 (2)

= −1 1 ∙ 21023−1023 ∙ 1.110⋯00(2)

Bit-Level Operations

• Example: Given 𝑁 (in int), compute 2𝑁 (in double)

• Such bit-manipulations are ubiquitous in highly optimized
floating-point implementations

• If a code mixes floating-point and bit-level operations,
reasoning about the code is difficult

12

Bit-Level Operations

• Example: Given 𝑁 (in int), compute 2𝑁 (in double)

• Such bit-manipulations are ubiquitous in highly optimized
floating-point implementations

• If a code mixes floating-point and bit-level operations,
reasoning about the code is difficult

1 [int]

2𝑁 [int]

2𝑁 [double]

bit-shifting by 𝑁

converting from int to double

here 𝑁 = 10

13

Bit-Level Operations

• Example: Given 𝑁 (in int), compute 2𝑁 (in double)

• Such bit-manipulations are ubiquitous in highly optimized
floating-point implementations

• If a code mixes floating-point and bit-level operations,
reasoning about the code is difficult

1 [int]

2𝑁 [int]

2𝑁 [double]

bit-shifting by 𝑁

converting from int to double

here 𝑁 = 10

14

expensive

Bit-Level Operations

• Example: Given 𝑁 (in int), compute 2𝑁 (in double)

• Such bit-manipulations are ubiquitous in highly optimized
floating-point implementations

• If a code mixes floating-point and bit-level operations,
reasoning about the code is difficult

works only for 0 ≤ 𝑁 ≤ 31

1 [int]

2𝑁 [int]

2𝑁 [double]

bit-shifting by 𝑁

converting from int to double

here 𝑁 = 10

15

expensive

Bit-Level Operations

• Example: Given 𝑁 (in int), compute 2𝑁 (in double)

• Such bit-manipulations are ubiquitous in highly optimized
floating-point implementations

• If a code mixes floating-point and bit-level operations,
reasoning about the code is difficult

integer addition

bit-shifting by 52

𝑁 [int]

𝑁 + 1023 [int]

00⋯0 [52 bits][12 bits]

works only for 0 ≤ 𝑁 ≤ 31

1 [int]

2𝑁 [int]

2𝑁 [double]

bit-shifting by 𝑁

converting from int to double

here 𝑁 = 10

16

expensive

Bit-Level Operations

• Example: Given 𝑁 (in int), compute 2𝑁 (in double)

• Such bit-manipulations are ubiquitous in highly optimized
floating-point implementations

• If a code mixes floating-point and bit-level operations,
reasoning about the code is difficult

integer addition

bit-shifting by 52

𝑁 [int]

𝑁 + 1023 [int]

00⋯0 [52 bits][12 bits] 2𝑁 [double]

works only for 0 ≤ 𝑁 ≤ 31

1 [int]

2𝑁 [int]

2𝑁 [double]

bit-shifting by 𝑁

converting from int to double

here 𝑁 = 10

17

expensive

Bit-Level Operations

• Example: Given 𝑁 (in int), compute 2𝑁 (in double)

• Such bit-manipulations are ubiquitous in highly optimized
floating-point implementations

• If a code mixes floating-point and bit-level operations,
reasoning about the code is difficult

integer addition

bit-shifting by 52

𝑁 [int]

𝑁 + 1023 [int]

00⋯0 [52 bits][12 bits] 2𝑁 [double]

works only for 0 ≤ 𝑁 ≤ 31 works for −1022 ≤ 𝑁 ≤ 1023

1 [int]

2𝑁 [int]

2𝑁 [double]

bit-shifting by 𝑁

converting from int to double

here 𝑁 = 10

18

expensive

Bit-Level Operations

• Example: Given 𝑁 (in int), compute 2𝑁 (in double)

• Such bit-manipulations are ubiquitous in highly optimized
floating-point implementations

• If a code mixes floating-point and bit-level operations,
reasoning about the code is difficult

integer addition

bit-shifting by 52

𝑁 [int]

𝑁 + 1023 [int]

00⋯0 [52 bits][12 bits] 2𝑁 [double]

works only for 0 ≤ 𝑁 ≤ 31 works for −1022 ≤ 𝑁 ≤ 1023

1 [int]

2𝑁 [int]

2𝑁 [double]

bit-shifting by 𝑁

converting from int to double

here 𝑁 = 10

19

expensive

Problem Statement

• Goal: Find a small Θ > 0 such that
𝑓 𝑥 −𝑃 𝑥

𝑓(𝑥)
≤ Θ for all 𝑥 ∈ 𝑋

• i.e., prove a bound on the maximum precision loss

mathematical
specification

𝑓:ℝ → ℝ

𝑒𝑥

20

Problem Statement

• Goal: Find a small Θ > 0 such that
𝑓 𝑥 −𝑃 𝑥

𝑓(𝑥)
≤ Θ for all 𝑥 ∈ 𝑋

• i.e., prove a bound on the maximum precision loss

binary 𝑃 that mixes floating-point
and bit-level operations

mathematical
specification

𝑓:ℝ → ℝ

𝑒𝑥
...

vpslld $20, %xmm3, %xmm3

vpshufd $114, %xmm3, %xmm3

vmulpd C1, %xmm2, %xmm1

vmulpd C2, %xmm2, %xmm2

...

vpslld

vpshufd

21

Problem Statement

• Goal: Find a small Θ > 0 such that
𝑓 𝑥 −𝑃 𝑥

𝑓(𝑥)
≤ Θ for all 𝑥 ∈ 𝑋

• i.e., prove a bound on the maximum precision loss

binary 𝑃 that mixes floating-point
and bit-level operations

mathematical
specification

𝑓:ℝ → ℝ

𝑒𝑥 input range 𝑋 ⊆ ℝ

[−1, 1] ...

vpslld $20, %xmm3, %xmm3

vpshufd $114, %xmm3, %xmm3

vmulpd C1, %xmm2, %xmm1

vmulpd C2, %xmm2, %xmm2

...

vpslld

vpshufd

22

Problem Statement

• Goal: Find a small Θ > 0 such that
𝑓 𝑥 −𝑃 𝑥

𝑓(𝑥)
≤ Θ for all 𝑥 ∈ 𝑋

• i.e., prove a bound on the maximum precision loss

binary 𝑃 that mixes floating-point
and bit-level operations

mathematical
specification

𝑓:ℝ → ℝ

𝑒𝑥 input range 𝑋 ⊆ ℝ

[−1, 1] ...

vpslld $20, %xmm3, %xmm3

vpshufd $114, %xmm3, %xmm3

vmulpd C1, %xmm2, %xmm1

vmulpd C2, %xmm2, %xmm2

...

vpslld

vpshufd

23

Possible Alternatives

• Exhaustive testing
• feasible for 32-bit float: ~ 30 seconds (with 1 core for sinf)

• infeasible for 64-bit double: > 4000 years (= 30 seconds × 232)

• infeasible even for input range X = −1, 1
∵ (# of doubles between −1 and 1) = 1

2
(# of all doubles)

• Machine-checkable proofs
• Harrison used transcendental

functions are very accurate []

• construction of these proofs often requires considerable
persistence

24

Possible Alternatives

• Exhaustive testing
• feasible for 32-bit float: ~ 30 seconds (with 1 core for sinf)

• infeasible for 64-bit double: > 4000 years (= 30 seconds × 232)

• infeasible even for input range X = −1, 1
∵ (# of doubles between −1 and 1) = 1

2
(# of all doubles)

• Machine-checkable proofs
• Harrison used transcendental

functions are very accurate []

• construction of these proofs often requires considerable
persistence

25

Possible Alternatives

• Exhaustive testing
• feasible for 32-bit float: ~ 30 seconds (with 1 core for sinf)

• infeasible for 64-bit double: > 4000 years (= 30 seconds × 232)

• infeasible even for input range X = −1, 1
∵ (# of doubles between −1 and 1) = 1

2
(# of all doubles)

• Machine-checkable proofs
• Harrison used transcendental

functions are very accurate []

• construction of these proofs often requires considerable
persistence

26

Possible Alternatives

• Exhaustive testing
• feasible for 32-bit float: ~ 30 seconds (with 1 core for sinf)

• infeasible for 64-bit double: > 4000 years (= 30 seconds × 232)

• infeasible even for input range X = −1, 1
∵ (# of doubles between −1 and 1) = 1

2
(# of all doubles)

• Machine-checkable proofs
• Harrison used transcendental

functions are very accurate []

• construction of these proofs often requires considerable
persistence.

27

Possible Automatic Alternatives

• If only floating-point operations are used,
various automatic techniques can be applied
• e.g., Astree , Fluctuat , ROSA , FPTaylor

• Several commercial tools (e.g., Astree, Fluctuat) can handle
certain bit-trick routines

• We are unaware of a general technique for verifying
mixed floating-point and bit-level code

28

Possible Automatic Alternatives

• If only floating-point operations are used,
various automatic techniques can be applied
• e.g., Astree , Fluctuat , ROSA , FPTaylor

• Several commercial tools (e.g., Astree, Fluctuat) can handle
certain bit-trick routines

• We are unaware of a general technique for verifying
mixed floating-point and bit-level code

29

Our Method

30

1 vmovddup %xmm0, %xmm0

2 vmulpd L2E, %xmm0, %xmm2

3 vroundpd $0, %xmm2, %xmm2

4 vcvtpd2dqx %xmm2, %xmm3

5 vpaddd B, %xmm3, %xmm3

6 vpslld $20, %xmm3, %xmm3

7 vpshufd $114, %xmm3, %xmm3

8 vmulpd C1, %xmm2, %xmm1

9 vmulpd C2, %xmm2, %xmm2

10 vaddpd %xmm1, %xmm0, %xmm1

11 vaddpd %xmm2, %xmm1, %xmm1

12 vmovapd T1, %xmm0

13 vmulpd T12, %xmm1, %xmm2

14 vaddpd T11, %xmm2, %xmm2

...

36 vaddpd %xmm0, %xmm1, %xmm0

37 vmulpd %xmm3, %xmm0, %xmm0

38 retq

𝑒𝑥 Explained

31

1 vmovddup %xmm0, %xmm0

2 vmulpd L2E, %xmm0, %xmm2

3 vroundpd $0, %xmm2, %xmm2

4 vcvtpd2dqx %xmm2, %xmm3

5 vpaddd B, %xmm3, %xmm3

6 vpslld $20, %xmm3, %xmm3

7 vpshufd $114, %xmm3, %xmm3

8 vmulpd C1, %xmm2, %xmm1

9 vmulpd C2, %xmm2, %xmm2

10 vaddpd %xmm1, %xmm0, %xmm1

11 vaddpd %xmm2, %xmm1, %xmm1

12 vmovapd T1, %xmm0

13 vmulpd T12, %xmm1, %xmm2

14 vaddpd T11, %xmm2, %xmm2

...

36 vaddpd %xmm0, %xmm1, %xmm0

37 vmulpd %xmm3, %xmm0, %xmm0

38 retq

𝑒𝑥 Explained

𝑁 = round 𝑥 ∙ log2 𝑒

𝑥

32

1 vmovddup %xmm0, %xmm0

2 vmulpd L2E, %xmm0, %xmm2

3 vroundpd $0, %xmm2, %xmm2

4 vcvtpd2dqx %xmm2, %xmm3

5 vpaddd B, %xmm3, %xmm3

6 vpslld $20, %xmm3, %xmm3

7 vpshufd $114, %xmm3, %xmm3

8 vmulpd C1, %xmm2, %xmm1

9 vmulpd C2, %xmm2, %xmm2

10 vaddpd %xmm1, %xmm0, %xmm1

11 vaddpd %xmm2, %xmm1, %xmm1

12 vmovapd T1, %xmm0

13 vmulpd T12, %xmm1, %xmm2

14 vaddpd T11, %xmm2, %xmm2

...

36 vaddpd %xmm0, %xmm1, %xmm0

37 vmulpd %xmm3, %xmm0, %xmm0

38 retq

2𝑁

𝑒𝑥 Explained

𝑁 = round 𝑥 ∙ log2 𝑒

𝑥

33

1 vmovddup %xmm0, %xmm0

2 vmulpd L2E, %xmm0, %xmm2

3 vroundpd $0, %xmm2, %xmm2

4 vcvtpd2dqx %xmm2, %xmm3

5 vpaddd B, %xmm3, %xmm3

6 vpslld $20, %xmm3, %xmm3

7 vpshufd $114, %xmm3, %xmm3

8 vmulpd C1, %xmm2, %xmm1

9 vmulpd C2, %xmm2, %xmm2

10 vaddpd %xmm1, %xmm0, %xmm1

11 vaddpd %xmm2, %xmm1, %xmm1

12 vmovapd T1, %xmm0

13 vmulpd T12, %xmm1, %xmm2

14 vaddpd T11, %xmm2, %xmm2

...

36 vaddpd %xmm0, %xmm1, %xmm0

37 vmulpd %xmm3, %xmm0, %xmm0

38 retq 𝑒𝑥 = 𝑒𝑁∙ln 2 ∙ 𝑒𝑟 ≈ 2𝑁 ∙ 𝑒𝑟

𝑒𝑟 ≈෍

𝑖=0

12
𝑟𝑖

𝑖!

𝑟 = 𝑥 − 𝑁 ∙ ln 2

2𝑁

𝑒𝑥 Explained

𝑁 = round 𝑥 ∙ log2 𝑒

𝑥

34

1 vmovddup %xmm0, %xmm0

2 vmulpd L2E, %xmm0, %xmm2

3 vroundpd $0, %xmm2, %xmm2

4 vcvtpd2dqx %xmm2, %xmm3

5 vpaddd B, %xmm3, %xmm3

6 vpslld $20, %xmm3, %xmm3

7 vpshufd $114, %xmm3, %xmm3

8 vmulpd C1, %xmm2, %xmm1

9 vmulpd C2, %xmm2, %xmm2

10 vaddpd %xmm1, %xmm0, %xmm1

11 vaddpd %xmm2, %xmm1, %xmm1

12 vmovapd T1, %xmm0

13 vmulpd T12, %xmm1, %xmm2

14 vaddpd T11, %xmm2, %xmm2

...

36 vaddpd %xmm0, %xmm1, %xmm0

37 vmulpd %xmm3, %xmm0, %xmm0

38 retq 𝑒𝑥 = 𝑒𝑁∙ln 2 ∙ 𝑒𝑟 ≈ 2𝑁 ∙ 𝑒𝑟

𝑒𝑟 ≈෍

𝑖=0

12
𝑟𝑖

𝑖!

𝑟 = 𝑥 − 𝑁 ∙ ln 2

2𝑁

𝑒𝑥 Explained

𝑁 = round 𝑥 ∙ log2 𝑒

𝑥

Goal: Find a small Θ > 0 such that
𝑒𝑥−2𝑁𝑒𝑟

𝑒𝑥
≤ Θ for all 𝑥 ∈ 𝑋

35

• Assume only floating-point operations are used

• 1 + 𝜖 property
• A standard way to model rounding errors

• For 64-bit doubles, 𝜖 = 2−53

• This property has been used in previous automatic techniques
(FPTaylor -point programs

1) Abstract Floating-Point Operations

36

• Assume only floating-point operations are used

• 1 + 𝜖 property
• A standard way to model rounding errors

• For 64-bit doubles, 𝜖 = 2−53

• This property has been used in previous automatic techniques
(FPTaylor -point programs

1) Abstract Floating-Point Operations

37

• Assume only floating-point operations are used

• 1 + 𝜖 property
• A standard way to model rounding errors

• For 64-bit doubles, 𝜖 = 2−53

• This property has been used in previous automatic techniques
(FPTaylor -point programs

𝑥 ⨂f 𝑦 ∈ 𝑥⨂𝑦 1 + 𝛿 ∶ 𝛿 < 𝜖

1) Abstract Floating-Point Operations

38

• Assume only floating-point operations are used

• 1 + 𝜖 property
• A standard way to model rounding errors

• For 64-bit doubles, 𝜖 = 2−53

• This property has been used in previous automatic techniques
(FPTaylor -point programs

𝑥 ⨂f 𝑦 ∈ 𝑥⨂𝑦 1 + 𝛿 ∶ 𝛿 < 𝜖

1) Abstract Floating-Point Operations

39

𝑥⨂𝑦
0 1

• Assume only floating-point operations are used

• 1 + 𝜖 property
• A standard way to model rounding errors

• For 64-bit doubles, 𝜖 = 2−53

• This property has been used in previous automatic techniques
(FPTaylor -point programs

𝑥 ⨂f 𝑦 ∈ 𝑥⨂𝑦 1 + 𝛿 ∶ 𝛿 < 𝜖

1) Abstract Floating-Point Operations

40

𝑥⨂𝑦
0 1

• Assume only floating-point operations are used

• 1 + 𝜖 property
• A standard way to model rounding errors

• For 64-bit doubles, 𝜖 = 2−53

• This property has been used in previous automatic techniques
(FPTaylor -point programs

𝑥 ⨂f 𝑦 ∈ 𝑥⨂𝑦 1 + 𝛿 ∶ 𝛿 < 𝜖

1) Abstract Floating-Point Operations

41

𝑥 ⨂f 𝑦𝑥⨂𝑦
0 1

• Assume only floating-point operations are used

• 1 + 𝜖 property
• A standard way to model rounding errors

• For 64-bit doubles, 𝜖 = 2−53

• This property has been used in previous automatic techniques
(FPTaylor -point programs

𝑥 ⨂f 𝑦 ∈ 𝑥⨂𝑦 1 + 𝛿 ∶ 𝛿 < 𝜖

1) Abstract Floating-Point Operations

42

𝑥 ⨂f 𝑦𝑥⨂𝑦
0 1

𝜖

• Assume only floating-point operations are used

• 1 + 𝜖 property
• A standard way to model rounding errors

• For 64-bit doubles, 𝜖 = 2−53

• This property has been used in previous automatic techniques
(FPTaylor -point programs

𝑥 ⨂f 𝑦 ∈ 𝑥⨂𝑦 1 + 𝛿 ∶ 𝛿 < 𝜖

1) Abstract Floating-Point Operations

43

𝑥 ⨂f 𝑦𝑥⨂𝑦
0 1

𝜖

• Compute a symbolic abstraction 𝐴
𝛿
𝑥 of a program 𝑃

• Example:

• From 1 + 𝜖 property, 𝐴
𝛿
𝑥 satisfies

𝑃 𝑥 ∈ 𝐴
𝛿
𝑥 ∶ 𝛿𝑖 < 𝜖 for all 𝑥

• Example:

1) Abstract Floating-Point Operations

44

• Compute a symbolic abstraction 𝐴
𝛿
𝑥 of a program 𝑃

• Example:

• From 1 + 𝜖 property, 𝐴
𝛿
𝑥 satisfies

𝑃 𝑥 ∈ 𝐴
𝛿
𝑥 ∶ 𝛿𝑖 < 𝜖 for all 𝑥

• Example:

1) Abstract Floating-Point Operations

45

𝑃 𝑥 = 2 ×f 𝑥 1 + 𝛿1 +f 3 1 + 𝛿2

• Compute a symbolic abstraction 𝐴
𝛿
𝑥 of a program 𝑃

• Example:

• From 1 + 𝜖 property, 𝐴
𝛿
𝑥 satisfies

𝑃 𝑥 ∈ 𝐴
𝛿
𝑥 ∶ 𝛿𝑖 < 𝜖 for all 𝑥

• Example:

1) Abstract Floating-Point Operations

46

𝑃 𝑥 = 2 ×f 𝑥 1 + 𝛿1 +f 3 1 + 𝛿2𝐴
𝛿
𝑥

• Compute a symbolic abstraction 𝐴
𝛿
𝑥 of a program 𝑃

• Example:

• From 1 + 𝜖 property, 𝐴
𝛿
𝑥 satisfies

𝑃 𝑥 ∈ 𝐴
𝛿
𝑥 ∶ 𝛿𝑖 < 𝜖 for all 𝑥

• Example:

1) Abstract Floating-Point Operations

47

𝑃 𝑥 = 2 ×f 𝑥 1 + 𝛿1 +f 3 1 + 𝛿2𝐴
𝛿
𝑥 × +

• Compute a symbolic abstraction 𝐴
𝛿
𝑥 of a program 𝑃

• Example:

• From 1 + 𝜖 property, 𝐴
𝛿
𝑥 satisfies

𝑃 𝑥 ∈ 𝐴
𝛿
𝑥 ∶ 𝛿𝑖 < 𝜖 for all 𝑥

• Example:

1) Abstract Floating-Point Operations

48

𝑃 𝑥 = 2 ×f 𝑥 1 + 𝛿1 +f 3 1 + 𝛿2𝐴
𝛿
𝑥 × +

• Compute a symbolic abstraction 𝐴
𝛿
𝑥 of a program 𝑃

• Example:

• From 1 + 𝜖 property, 𝐴
𝛿
𝑥 satisfies

𝑃 𝑥 ∈ 𝐴
𝛿
𝑥 ∶ 𝛿𝑖 < 𝜖 for all 𝑥

• Example:

1) Abstract Floating-Point Operations

49

𝑃 𝑥 = 2 ×f 𝑥 1 + 𝛿1 +f 3 1 + 𝛿2𝐴
𝛿
𝑥 × +

• Compute a symbolic abstraction 𝐴
𝛿
𝑥 of a program 𝑃

• Example:

• From 1 + 𝜖 property, 𝐴
𝛿
𝑥 satisfies

𝑃 𝑥 ∈ 𝐴
𝛿
𝑥 ∶ 𝛿𝑖 < 𝜖 for all 𝑥

• Example:

𝑃 𝑥 = 2 ×f 𝑥 1 + 𝛿1 +f 3 1 + 𝛿2 ∶ 𝛿1 , 𝛿2 < 𝜖

1) Abstract Floating-Point Operations

50

𝑃 𝑥 = 2 ×f 𝑥 1 + 𝛿1 +f 3 1 + 𝛿2𝐴
𝛿
𝑥 × +

• Compute a symbolic abstraction 𝐴
𝛿
𝑥 of a program 𝑃

• Example:

• From 1 + 𝜖 property, 𝐴
𝛿
𝑥 satisfies

𝑃 𝑥 ∈ 𝐴
𝛿
𝑥 ∶ 𝛿𝑖 < 𝜖 for all 𝑥

• Example:

𝑃 𝑥 = 2 ×f 𝑥 1 + 𝛿1 +f 3 1 + 𝛿2 ∶ 𝛿1 , 𝛿2 < 𝜖

1) Abstract Floating-Point Operations

51

𝑃 𝑥 = 2 ×f 𝑥 1 + 𝛿1 +f 3 1 + 𝛿2𝐴
𝛿
𝑥 × +

+× }{

• Compute a symbolic abstraction 𝐴
𝛿
𝑥 of a program 𝑃

• Example:

• From 1 + 𝜖 property, 𝐴
𝛿
𝑥 satisfies

𝑃 𝑥 ∈ 𝐴
𝛿
𝑥 ∶ 𝛿𝑖 < 𝜖 for all 𝑥

• Example:

𝑃 𝑥 = 2 ×f 𝑥 1 + 𝛿1 +f 3 1 + 𝛿2 ∶ 𝛿1 , 𝛿2 < 𝜖

1) Abstract Floating-Point Operations

52

𝑃 𝑥 = 2 ×f 𝑥 1 + 𝛿1 +f 3 1 + 𝛿2𝐴
𝛿
𝑥 × +

+×∈ }{

Our Method: Overview

𝑋

−1 1

𝑃(𝑥)

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

53

Our Method: Overview

𝑋

−1 1

𝑃(𝑥)

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

54

Our Method: Overview

𝑋

−1 1

𝑃(𝑥)

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

55

Our Method: Overview

𝑋

−1 1

𝑃(𝑥)

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

56

hard to find

Our Method: Overview

𝑋

−1 1

𝑃(𝑥)

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

57

hard to find

abstract using

n

Our Method: Overview

𝑋

−1 1

𝐼1 𝐼2 𝐼𝑛

𝑃(𝑥)

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

58

hard to find

abstract using

n

Our Method: Overview

𝑋

−1 1

𝐼1 𝐼2 𝐼𝑛

𝑃(𝑥)

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

59

hard to find

abstract using

n

Our Method: Overview

𝑋

−1 1

𝐼1 𝐼2 𝐼𝑛

𝑃(𝑥)

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

1
3

𝒏
𝟐𝒏 + 𝟏

partial evaluation
of bit-level operations

60

hard to find

abstract using

n

Our Method: Overview

𝑋

−1 1

𝐼1 𝐼2 𝐼𝑛

𝑃(𝑥)

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

1
3

𝒏
𝟐𝒏 + 𝟏

partial evaluation
of bit-level operations

61

hard to find

only floating-point
operations

abstract using

n

Our Method: Overview

𝐴
1,𝛿
(𝑥)

𝐴
𝑛,𝛿
(𝑥)

𝐴
2,𝛿
(𝑥)

𝑋

−1 1

𝐼1 𝐼2 𝐼𝑛

𝑃(𝑥)

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

1
3

𝒏
𝟐𝒏 + 𝟏

partial evaluation
of bit-level operations

62

hard to find

only floating-point
operations

abstract using

n

Our Method: Overview

𝐴
1,𝛿
(𝑥)

𝐴
𝑛,𝛿

(𝑥)

𝐴
2,𝛿
(𝑥)

𝐼1 𝐼2 𝐼𝑛

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

1
3

𝒏
𝟐𝒏 + 𝟏

partial evaluation
of bit-level operations

63

Our Method: Overview

𝐼1 𝐼2 𝐼𝑛

𝑓 𝑥 − 𝐴
1,𝛿

𝑥

𝑓(𝑥)

𝑓 𝑥 − 𝐴
𝑛,𝛿

𝑥

𝑓(𝑥)

𝐴
1,𝛿
(𝑥)

𝐴
𝑛,𝛿

(𝑥)

𝐴
2,𝛿
(𝑥)

𝐼1 𝐼2 𝐼𝑛

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

1
3

𝒏
𝟐𝒏 + 𝟏

partial evaluation
of bit-level operations

64

Our Method: Overview

𝐼1 𝐼2 𝐼𝑛

𝑓 𝑥 − 𝐴
1,𝛿

𝑥

𝑓(𝑥)

𝑓 𝑥 − 𝐴
𝑛,𝛿

𝑥

𝑓(𝑥)

solve optimization problems
𝐴
1,𝛿
(𝑥)

𝐴
𝑛,𝛿

(𝑥)

𝐴
2,𝛿
(𝑥)

𝐼1 𝐼2 𝐼𝑛

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

1
3

𝒏
𝟐𝒏 + 𝟏

partial evaluation
of bit-level operations

65

max
max

Our Method: Overview

𝐼1 𝐼2 𝐼𝑛

𝑓 𝑥 − 𝐴
1,𝛿

𝑥

𝑓(𝑥)

𝑓 𝑥 − 𝐴
𝑛,𝛿

𝑥

𝑓(𝑥)

answer!

solve optimization problems
𝐴
1,𝛿
(𝑥)

𝐴
𝑛,𝛿

(𝑥)

𝐴
2,𝛿
(𝑥)

𝐼1 𝐼2 𝐼𝑛

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

...

vpslld $20, ...

vpshufd $114, ...

vmulpd C1, ...

vmulpd C2, ...

...

1
3

𝒏
𝟐𝒏 + 𝟏

partial evaluation
of bit-level operations

66

max
max

• Assume bit-level operations are used as well

• To handle bit-level operations, divide 𝑋 into intervals 𝐼𝑘 ,

so that, on each 𝐼𝑘 , we can statically know
the result of each bit-level operation

• Example:

2) Divide the Input Range

67

• Assume bit-level operations are used as well

• To handle bit-level operations, divide 𝑋 into intervals 𝐼𝑘 ,

so that, on each 𝐼𝑘 , we can statically know
the result of each bit-level operation

• Example:

2) Divide the Input Range

68

• Assume bit-level operations are used as well

• To handle bit-level operations, divide 𝑋 into intervals 𝐼𝑘 ,

so that, on each 𝐼𝑘 , we can statically know
the result of each bit-level operation

• Example:

input x

y ← x ×f C

(C= 0x3ff71547652b82fe)

N ← round(y)

z ← int(N) +i 0x3ff

w ← z << 52
...

2) Divide the Input Range

−1 1𝑋

69

• Assume bit-level operations are used as well

• To handle bit-level operations, divide 𝑋 into intervals 𝐼𝑘 ,

so that, on each 𝐼𝑘 , we can statically know
the result of each bit-level operation

• Example:

input x

y ← x ×f C

(C= 0x3ff71547652b82fe)

N ← round(y)

z ← int(N) +i 0x3ff

w ← z << 52
...

2) Divide the Input Range

−1 1𝑋

𝐼−1 𝐼0 𝐼1

70

• Assume bit-level operations are used as well

• To handle bit-level operations, divide 𝑋 into intervals 𝐼𝑘 ,

so that, on each 𝐼𝑘 , we can statically know
the result of each bit-level operation

• Example:

input x

y ← x ×f C

(C= 0x3ff71547652b82fe)

N ← round(y)

z ← int(N) +i 0x3ff

w ← z << 52
...

2) Divide the Input Range

−1 1𝑋

𝐼−1 𝐼0 𝐼1

71

𝐼1𝐼0

𝑋−1 1

𝐼−1

• Assume bit-level operations are used as well

• To handle bit-level operations, divide 𝑋 into intervals 𝐼𝑘 ,

so that, on each 𝐼𝑘 , we can statically know
the result of each bit-level operation

• Example:

input x

y ← x ×f C

(C= 0x3ff71547652b82fe)

N ← round(y)

z ← int(N) +i 0x3ff

w ← z << 52
...

2) Divide the Input Range

−1 1𝑋

𝐼−1 𝐼0 𝐼1

72

𝐼1𝐼0

𝑋−1 1

−1

𝐼−1

• Assume bit-level operations are used as well

• To handle bit-level operations, divide 𝑋 into intervals 𝐼𝑘 ,

so that, on each 𝐼𝑘 , we can statically know
the result of each bit-level operation

• Example:

input x

y ← x ×f C

(C= 0x3ff71547652b82fe)

N ← round(y)

z ← int(N) +i 0x3ff

w ← z << 52
...

2) Divide the Input Range

−1 1𝑋

𝐼−1 𝐼0 𝐼1

73

𝐼1𝐼0

𝑋−1 1

−1 partial evaluation

input x

y ← x ×f C

(C= 0x3ff71547652b82fe)

N ← −1
z ← 1022
w ← 0.5
...

𝐼−1

• Assume bit-level operations are used as well

• To handle bit-level operations, divide 𝑋 into intervals 𝐼𝑘 ,

so that, on each 𝐼𝑘 , we can statically know
the result of each bit-level operation

• Example:

input x

y ← x ×f C

(C= 0x3ff71547652b82fe)

N ← round(y)

z ← int(N) +i 0x3ff

w ← z << 52
...

2) Divide the Input Range

−1 1𝑋

𝐼−1 𝐼0 𝐼1

74

𝐼1𝐼0

𝑋−1 1

−1 partial evaluation

input x

y ← x ×f C

(C= 0x3ff71547652b82fe)

N ← −1
z ← 1022
w ← 0.5
...

Only floating-point operations are left
→ Can compute 𝐴

𝛿
𝑥 on each 𝐼𝑘

𝐼−1

2) Divide the Input Range

• How to find such intervals?
• Use symbolic abstractions

• Example:
• 𝑁 = round 𝑥 ×f C
• (symbolic abstraction of 𝑥 ×f C) = 𝑥 × C 1+𝛿

• Let 𝐼𝑘 = largest interval contained in
𝑥 ∈ 𝑋 ∶ 𝑆 𝑥 ⊂ 𝑘 − 0.5, 𝑘 + 0.5

• Then 𝑁 is evaluated to 𝑘 for every input in 𝐼𝑘

75

2) Divide the Input Range

• How to find such intervals?
• Use symbolic abstractions

• Example:
• 𝑁 = round 𝑥 ×f C
• (symbolic abstraction of 𝑥 ×f C) = 𝑥 × C 1+𝛿

• Let 𝐼𝑘 = largest interval contained in
𝑥 ∈ 𝑋 ∶ 𝑆 𝑥 ⊂ 𝑘 − 0.5, 𝑘 + 0.5

• Then 𝑁 is evaluated to 𝑘 for every input in 𝐼𝑘

76

−1 1𝑋

𝐼−1 𝐼0 𝐼1

2) Divide the Input Range

• How to find such intervals?
• Use symbolic abstractions

• Example:
• 𝑁 = round 𝑥 ×f C
• (symbolic abstraction of 𝑥 ×f C) = 𝑥 × C 1+𝛿

• Let 𝐼𝑘 = largest interval contained in
𝑥 ∈ 𝑋 ∶ 𝑆 𝑥 ⊂ 𝑘 − 0.5, 𝑘 + 0.5

• Then 𝑁 is evaluated to 𝑘 for every input in 𝐼𝑘

77

𝑁 = −1 𝑁 = 0 𝑁 = 1

−1 1𝑋

𝐼−1 𝐼0 𝐼1

2) Divide the Input Range

• How to find such intervals?
• Use symbolic abstractions

• Example:
• 𝑁 = round 𝑥 ×f C
• (symbolic abstraction of 𝑥 ×f C) = 𝑥 × C 1+𝛿

• Let 𝐼𝑘 = largest interval contained in
𝑥 ∈ 𝑋 ∶ 𝑆 𝑥 ⊂ 𝑘 − 0.5, 𝑘 + 0.5

• Then 𝑁 is evaluated to 𝑘 for every input in 𝐼𝑘

78

𝑁 = −1 𝑁 = 0 𝑁 = 1

−1 1𝑋

𝐼−1 𝐼0 𝐼1

2) Divide the Input Range

• How to find such intervals?
• Use symbolic abstractions

• Example:
• 𝑁 = round 𝑥 ×f C
• (symbolic abstraction of 𝑥 ×f C) = 𝑥 × C 1+𝛿

• Let 𝐼𝑘 = largest interval contained in
𝑥 ∈ 𝑋 ∶ 𝑆 𝑥 ⊂ 𝑘 − 0.5, 𝑘 + 0.5

• Then 𝑁 is evaluated to 𝑘 for every input in 𝐼𝑘

79

𝑁 = −1 𝑁 = 0 𝑁 = 1

−1 1𝑋

𝐼−1 𝐼0 𝐼1

2) Divide the Input Range

• How to find such intervals?
• Use symbolic abstractions

• Example:
• 𝑁 = round 𝑥 ×f C
• (symbolic abstraction of 𝑥 ×f C) = 𝑥 × C 1+𝛿

• Let 𝐼𝑘 = largest interval contained in
𝑥 ∈ 𝑋 ∶ 𝑆 𝑥 ⊂ 𝑘 − 0.5, 𝑘 + 0.5

• Then 𝑁 is evaluated to 𝑘 for every input in 𝐼𝑘

80

𝑁 = −1 𝑁 = 0 𝑁 = 1

−1 1𝑋

𝐼−1 𝐼0 𝐼1

2) Divide the Input Range

• How to find such intervals?
• Use symbolic abstractions

• Example:
• 𝑁 = round 𝑥 ×f C
• (symbolic abstraction of 𝑥 ×f C) = 𝑥 × C 1+𝛿

• Let 𝐼𝑘 = largest interval contained in
𝑥 ∈ 𝑋 ∶ 𝑆 𝑥 ⊂ 𝑘 − 0.5, 𝑘 + 0.5

• Then 𝑁 is evaluated to 𝑘 for every input in 𝐼𝑘

𝑆(𝑥) = 𝑥 × C 1+𝛿 : 𝛿 < 𝜖
𝑥 ×f C

81

𝑁 = −1 𝑁 = 0 𝑁 = 1

−1 1𝑋

𝐼−1 𝐼0 𝐼1

2) Divide the Input Range

• How to find such intervals?
• Use symbolic abstractions

• Example:
• 𝑁 = round 𝑥 ×f C
• (symbolic abstraction of 𝑥 ×f C) = 𝑥 × C 1+𝛿

• Let 𝐼𝑘 = largest interval contained in
𝑥 ∈ 𝑋 ∶ 𝑆 𝑥 ⊂ 𝑘 − 0.5, 𝑘 + 0.5

• Then 𝑁 is evaluated to 𝑘 for every input in 𝐼𝑘

𝑆(𝑥) = 𝑥 × C 1+𝛿 : 𝛿 < 𝜖
𝑥 ×f C

𝑘 − 0.5 𝑘 + 0.5

82

𝑁 = −1 𝑁 = 0 𝑁 = 1

−1 1𝑋

𝐼−1 𝐼0 𝐼1

2) Divide the Input Range

• How to find such intervals?
• Use symbolic abstractions

• Example:
• 𝑁 = round 𝑥 ×f C
• (symbolic abstraction of 𝑥 ×f C) = 𝑥 × C 1+𝛿

• Let 𝐼𝑘 = largest interval contained in
𝑥 ∈ 𝑋 ∶ 𝑆 𝑥 ⊂ 𝑘 − 0.5, 𝑘 + 0.5

• Then 𝑁 is evaluated to 𝑘 for every input in 𝐼𝑘

𝑆(𝑥) = 𝑥 × C 1+𝛿 : 𝛿 < 𝜖
𝑥 ×f C

𝑘 − 0.5 𝑘 + 0.5

83

𝑁 = −1 𝑁 = 0 𝑁 = 1

−1 1𝑋

𝐼−1 𝐼0 𝐼1

𝑁 = 𝑘

2) Divide the Input Range

• How to find such intervals?
• Use symbolic abstractions

• Example:
• 𝑁 = round 𝑥 ×f C
• (symbolic abstraction of 𝑥 ×f C) = 𝑥 × C 1+𝛿

• Let 𝐼𝑘 = largest interval contained in
𝑥 ∈ 𝑋 ∶ 𝑆 𝑥 ⊂ 𝑘 − 0.5, 𝑘 + 0.5

• Then 𝑁 is evaluated to 𝑘 for every input in 𝐼𝑘

𝑆(𝑥) = 𝑥 × C 1+𝛿 : 𝛿 < 𝜖
𝑥 ×f C

𝑘 − 0.5 𝑘 + 0.5

84

𝑁 = −1 𝑁 = 0 𝑁 = 1

−1 1𝑋

𝐼−1 𝐼0 𝐼1

𝑁 = 𝑘

2) Divide the Input Range

• How to find such intervals?
• Use symbolic abstractions

• Example:
• 𝑁 = round 𝑥 ×f C
• (symbolic abstraction of 𝑥 ×f C) = 𝑥 × C 1+𝛿

• Let 𝐼𝑘 = largest interval contained in
𝑥 ∈ 𝑋 ∶ 𝑆 𝑥 ⊂ 𝑘 − 0.5, 𝑘 + 0.5

• Then 𝑁 is evaluated to 𝑘 for every input in 𝐼𝑘

𝑆(𝑥) = 𝑥 × C 1+𝛿 : 𝛿 < 𝜖
𝑥 ×f C

𝑘 − 0.5 𝑘 + 0.5

85

𝑁 = −1 𝑁 = 0 𝑁 = 1

−1 1𝑋

𝐼−1 𝐼0 𝐼1

𝑁 = 𝑘

3) Compute a Bound on Precision Loss

• Precision loss on each interval 𝐼𝑘
• Let 𝐴

𝛿
𝑥 be a symbolic abstraction on 𝐼𝑘

• Analytical optimization:

max
𝑥∈𝐼𝑘, |𝛿𝑖|<𝜖

𝑒𝑥−𝐴
𝛿
𝑥

𝑒𝑥

• Use Mathematica to solve optimization problems analytically

86

3) Compute a Bound on Precision Loss

• Precision loss on each interval 𝐼𝑘
• Let 𝐴

𝛿
𝑥 be a symbolic abstraction on 𝐼𝑘

• Analytical optimization:

max
𝑥∈𝐼𝑘, |𝛿𝑖|<𝜖

𝑒𝑥−𝐴
𝛿
𝑥

𝑒𝑥

• Use Mathematica to solve optimization problems analytically

87

• No. The constructed intervals do not cover 𝑋 in general

• Because we made sound approximations

Are We Done?

−1 1input range 𝑋

𝐼−1 𝐼0 𝐼1

88

• No. The constructed intervals do not cover 𝑋 in general

• Because we made sound approximations

Are We Done?

−1 1input range 𝑋

𝐼−1 𝐼0 𝐼1

89

floating-point numbers

• No. The constructed intervals do not cover 𝑋 in general

• Because we made sound approximations

Are We Done?

−1 1input range 𝑋

𝐼−1 𝐼0 𝐼1

90

floating-point numbers

between
intervals

• No. The constructed intervals do not cover 𝑋 in general

• Because we made sound approximations

Are We Done?

−1 1input range 𝑋

𝐼−1 𝐼0 𝐼1

91

floating-point numbers

between
intervals

• Example: 𝑁 = round 𝑥 ×f 𝐶

For 𝑥 =
1

2𝐶
, 𝑁 would be 0 or 1

• Let 𝐻 = {floating-
• We observe that |𝐻| is small in experiment

Are We Done?

0.5

0 1

92

: abstraction of 𝑥 ×f 𝐶

• Example: 𝑁 = round 𝑥 ×f 𝐶

For 𝑥 =
1

2𝐶
, 𝑁 would be 0 or 1

• Let 𝐻 = {floating-
• We observe that |𝐻| is small in experiment

Are We Done?

0.5

0 1

93

: abstraction of 𝑥 ×f 𝐶

𝑥 = 1/(3𝐶) 𝑥 = 1/(1.5𝐶)

• Example: 𝑁 = round 𝑥 ×f 𝐶

For 𝑥 =
1

2𝐶
, 𝑁 would be 0 or 1

• Let 𝐻 = {floating-
• We observe that |𝐻| is small in experiment

Are We Done?

0.5

0 1

94

: abstraction of 𝑥 ×f 𝐶

𝑥 = 1/(3𝐶) 𝑥 = 1/(1.5𝐶)

𝑁 = 0 𝑁 = 1

• Example: 𝑁 = round 𝑥 ×f 𝐶

For 𝑥 =
1

2𝐶
, 𝑁 would be 0 or 1

• Let 𝐻 = {floating-
• We observe that |𝐻| is small in experiment

Are We Done?

0.5

0 1

95

: abstraction of 𝑥 ×f 𝐶

𝑥 = 1/(3𝐶) 𝑥 = 1/(1.5𝐶)
𝑥 = 1/(2𝐶)

𝑁 = 0 𝑁 = 1

• Example: 𝑁 = round 𝑥 ×f 𝐶

For 𝑥 =
1

2𝐶
, 𝑁 would be 0 or 1

• Let 𝐻 = {floating-
• We observe that |𝐻| is small in experiment

Are We Done?

𝑥 ×f 𝐶

0.5

0 1
???

96

: abstraction of 𝑥 ×f 𝐶

𝑥 = 1/(3𝐶) 𝑥 = 1/(1.5𝐶)
𝑥 = 1/(2𝐶)

𝑁 = 0 𝑁 = 1

• Example: 𝑁 = round 𝑥 ×f 𝐶

For 𝑥 =
1

2𝐶
, 𝑁 would be 0 or 1

• Let 𝐻 = {floating-
• We observe that |𝐻| is small in experiment

Are We Done?

𝑥 ×f 𝐶

0.5

0 1
???

97

: abstraction of 𝑥 ×f 𝐶

𝑥 = 1/(3𝐶) 𝑥 = 1/(1.5𝐶)
𝑥 = 1/(2𝐶)

𝑁 = 0 𝑁 = 1

• Example: 𝑁 = round 𝑥 ×f 𝐶

For 𝑥 =
1

2𝐶
, 𝑁 would be 0 or 1

• Let 𝐻 = {floating-
• We observe that |𝐻| is small in experiment

Are We Done?

𝑥 ×f 𝐶

0.5

0 1
???

98

: abstraction of 𝑥 ×f 𝐶

𝑥 = 1/(3𝐶) 𝑥 = 1/(1.5𝐶)
𝑥 = 1/(2𝐶)

𝑁 = 0 𝑁 = 1

3) Compute a Bound on Precision Loss

• Precision loss on each interval 𝐼𝑘
• Let 𝐴

𝛿
𝑥 be a symbolic abstraction on 𝐼𝑘

• Analytical optimization:

max
𝑥∈𝐼𝑘, |𝛿𝑖|<𝜖

𝑒𝑥−𝐴
𝛿
𝑥

𝑒𝑥

• Use Mathematica to solve optimization problems analytically

• Precision loss on 𝐻
• For each 𝑥 ∈ 𝐻, obtain 𝑃 𝑥 by executing the binary
• Brute force:

max
𝑥∈𝐻

𝑒𝑥−𝑃 𝑥

𝑒𝑥

• Use Mathematica to compute 𝑒𝑥 and precision loss exactly

99

3) Compute a Bound on Precision Loss

• Precision loss on each interval 𝐼𝑘
• Let 𝐴

𝛿
𝑥 be a symbolic abstraction on 𝐼𝑘

• Analytical optimization:

max
𝑥∈𝐼𝑘, |𝛿𝑖|<𝜖

𝑒𝑥−𝐴
𝛿
𝑥

𝑒𝑥

• Use Mathematica to solve optimization problems analytically

• Precision loss on 𝐻
• For each 𝑥 ∈ 𝐻, obtain 𝑃 𝑥 by executing the binary
• Brute force:

max
𝑥∈𝐻

𝑒𝑥−𝑃 𝑥

𝑒𝑥

• Use Mathematica to compute 𝑒𝑥 and precision loss exactly

take maximum
→ answer!

100

Case Studies

101

Settings

• Benchmarks
• exp: from S3D (a combustion simulation engine)
• sin, log: from <math.h>

• Measures of precision loss

• Relative error : RelErr(𝑎, 𝑏) =
𝑎−𝑏

𝑎
• ULP error:

• Rounding errors of numeric libraries are typically measured by ULPs
• ULPErr 𝑎, 𝑏 = (# of floating-point numbers between 𝑎 and 𝑏)
• Example:

• ULPErr 𝑎, 𝑏 ≤ 2 ∙ RelErr(𝑎, 𝑏)/𝜖

102

Settings

• Benchmarks
• exp: from S3D (a combustion simulation engine)
• sin, log: from <math.h>

• Measures of precision loss

• Relative error : RelErr(𝑎, 𝑏) =
𝑎−𝑏

𝑎
• ULP error:

• Rounding errors of numeric libraries are typically measured by ULPs
• ULPErr 𝑎, 𝑏 = (# of floating-point numbers between 𝑎 and 𝑏)
• Example:

• ULPErr 𝑎, 𝑏 ≤ 2 ∙ RelErr(𝑎, 𝑏)/𝜖

103

5 ULPs
𝑎 𝑏

Results

Interval
Bound on
ULP error

of
intervals

of
𝛿

Size of

exp [−4, 4] 14 13 29 36

sin −
𝜋

2
,
𝜋

2
9 33 53 110

log (0,4) ∖
4095

4096
, 1 21 221 25 0

4095

4096
, 1 1 × 1014 1 25 0

104

Results

Interval
Bound on
ULP error

of
intervals

of
𝛿

Size of

exp [−4, 4] 14 13 29 36

sin −
𝜋

2
,
𝜋

2
9 33 53 110

log (0,4) ∖
4095

4096
, 1 21 221 25 0

4095

4096
, 1 1 × 1014 1 25 0

105

best illustrates
the power of our method

Results: sin, log

x-axis: input value

y-axis:
ULP error

bounds on the intervals

sin log

106

1014
⋮

Results: sin, log

x-axis: input value

y-axis:
ULP error

bounds on the intervals

sin log

107

1014
⋮

Limitations of Our Method

• May construct a large number of intervals
• Example: 0x5fe6eb50c7b537a9 – (x >> 1)

• For this example, our method constructs 263 intervals

• May produce loose error bounds
• Example: 1014 ULPs for log on 4095

4096
, 1

• Sometimes 1 + 𝜖 property provides an imprecise abstraction

• Proving a precise error bound requires more sophisticated
error analysis beyond 1 + 𝜖 property

• Our recent result: 6 ULPs for for log on 0,4

108

Limitations of Our Method

• May construct a large number of intervals
• Example: 0x5fe6eb50c7b537a9 – (x >> 1)

• For this example, our method constructs 263 intervals

• May produce loose error bounds
• Example: 1014 ULPs for log on 4095

4096
, 1

• Sometimes 1 + 𝜖 property provides an imprecise abstraction

• Proving a precise error bound requires more sophisticated
error analysis beyond 1 + 𝜖 property

• Our recent result: 6 ULPs for for log on 0,4

109

Summary

• First systematic method for verifying binaries
that mix floating-point and bit-level operations

• Use abstraction, analytical optimization, and testing

• Directly applicable to highly optimized binaries
of transcendental functions

110

Questions?

111

