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• Example:

• Automatic reasoning about floating-point is not easy
• have rounding errors
• d
• Associativity: 1 + 1030 − 1030 = 1 ≠ 0 = (1 + 1030) − 1030

• It becomes much harder if bit-level operations are used

Floating-Point Numbers

9
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Bit-Level Operations

• Example: Given 𝑁 (in int), compute 2𝑁 (in double)

• Such bit-manipulations are ubiquitous in highly optimized 
floating-point implementations

• If a code mixes floating-point and bit-level operations, 
reasoning about the code is difficult
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Problem Statement

• Goal: Find a small Θ > 0 such that
𝑓 𝑥 −𝑃 𝑥

𝑓(𝑥)
≤ Θ for all 𝑥 ∈ 𝑋

• i.e., prove a bound on the maximum precision loss

mathematical
specification

𝑓:ℝ → ℝ

𝑒𝑥
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Possible Alternatives

• Exhaustive testing
• feasible for 32-bit float:  ~ 30 seconds        (with 1 core for sinf)

• infeasible for 64-bit double:  > 4000 years (= 30 seconds × 232)

• infeasible even for input range X = −1, 1
∵ (# of doubles between −1 and 1) = 1

2
(# of all doubles)

• Machine-checkable proofs
• Harrison used transcendental 

functions are very accurate [ ]

• construction of these proofs often requires considerable 
persistence
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Possible Automatic Alternatives

• If only floating-point operations are used,
various automatic techniques can be applied
• e.g., Astree , Fluctuat , ROSA , FPTaylor

• Several commercial tools (e.g., Astree, Fluctuat) can handle 
certain bit-trick routines

• We are unaware of a general technique for verifying 
mixed floating-point and bit-level code

28
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Our Method
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1 vmovddup %xmm0, %xmm0

2 vmulpd L2E, %xmm0, %xmm2

3 vroundpd $0, %xmm2, %xmm2

4 vcvtpd2dqx %xmm2, %xmm3

5 vpaddd B,     %xmm3, %xmm3

6 vpslld $20,   %xmm3, %xmm3

7 vpshufd $114, %xmm3, %xmm3

8 vmulpd C1,    %xmm2, %xmm1

9 vmulpd C2,    %xmm2, %xmm2

10 vaddpd %xmm1, %xmm0, %xmm1

11 vaddpd %xmm2, %xmm1, %xmm1

12 vmovapd T1, %xmm0

13 vmulpd T12, %xmm1, %xmm2

14 vaddpd T11, %xmm2, %xmm2

...

36 vaddpd %xmm0, %xmm1, %xmm0

37 vmulpd %xmm3, %xmm0, %xmm0

38 retq

𝑒𝑥 Explained
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• Assume only floating-point operations are used

• 1 + 𝜖 property
• A standard way to model rounding errors

• For 64-bit doubles,  𝜖 = 2−53

• This property has been used in previous automatic techniques 
(FPTaylor -point programs

1) Abstract Floating-Point Operations
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• Compute a symbolic abstraction 𝐴
𝛿
𝑥 of a program 𝑃

• Example:  

• From 1 + 𝜖 property,  𝐴
𝛿
𝑥 satisfies

𝑃 𝑥 ∈ 𝐴
𝛿
𝑥 ∶ 𝛿𝑖 < 𝜖 for all 𝑥
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2) Divide the Input Range

• How to find such intervals?
• Use symbolic abstractions

• Example:
• 𝑁 = round 𝑥 ×f C
• (symbolic abstraction of 𝑥 ×f C) = 𝑥 × C 1+𝛿

• Let 𝐼𝑘 = largest interval contained in
𝑥 ∈ 𝑋 ∶ 𝑆 𝑥 ⊂ 𝑘 − 0.5, 𝑘 + 0.5

• Then 𝑁 is evaluated to 𝑘 for every input in 𝐼𝑘
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• (symbolic abstraction of 𝑥 ×f C) = 𝑥 × C 1+𝛿

• Let 𝐼𝑘 = largest interval contained in
𝑥 ∈ 𝑋 ∶ 𝑆 𝑥 ⊂ 𝑘 − 0.5, 𝑘 + 0.5

• Then 𝑁 is evaluated to 𝑘 for every input in 𝐼𝑘

𝑆(𝑥) = 𝑥 × C 1+𝛿 : 𝛿 < 𝜖
𝑥 ×f C

𝑘 − 0.5 𝑘 + 0.5
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3) Compute a Bound on Precision Loss

• Precision loss on each interval 𝐼𝑘
• Let 𝐴

𝛿
𝑥 be a symbolic abstraction on 𝐼𝑘

• Analytical optimization:

max
𝑥∈𝐼𝑘, |𝛿𝑖|<𝜖

𝑒𝑥−𝐴
𝛿
𝑥

𝑒𝑥

• Use Mathematica to solve optimization problems analytically
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• No.  The constructed intervals do not cover 𝑋 in general

• Because we made sound approximations

Are We Done?

−1 1input range 𝑋

𝐼−1 𝐼0 𝐼1
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• Example:  𝑁 = round 𝑥 ×f 𝐶

For 𝑥 =
1

2𝐶
, 𝑁 would be 0 or 1

• Let 𝐻 = {floating-
• We observe that |𝐻| is small in experiment

Are We Done?

0.5

0 1
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3) Compute a Bound on Precision Loss

• Precision loss on each interval 𝐼𝑘
• Let 𝐴

𝛿
𝑥 be a symbolic abstraction on 𝐼𝑘

• Analytical optimization:

max
𝑥∈𝐼𝑘, |𝛿𝑖|<𝜖

𝑒𝑥−𝐴
𝛿
𝑥

𝑒𝑥

• Use Mathematica to solve optimization problems analytically

• Precision loss on 𝐻
• For each 𝑥 ∈ 𝐻, obtain 𝑃 𝑥 by executing the binary
• Brute force:

max
𝑥∈𝐻

𝑒𝑥−𝑃 𝑥

𝑒𝑥

• Use Mathematica to compute 𝑒𝑥 and precision loss exactly
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𝑒𝑥−𝐴
𝛿
𝑥

𝑒𝑥

• Use Mathematica to solve optimization problems analytically

• Precision loss on 𝐻
• For each 𝑥 ∈ 𝐻, obtain 𝑃 𝑥 by executing the binary
• Brute force:

max
𝑥∈𝐻

𝑒𝑥−𝑃 𝑥

𝑒𝑥

• Use Mathematica to compute 𝑒𝑥 and precision loss exactly

take maximum
→ answer!
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Case Studies
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Settings

• Benchmarks
• exp:  from S3D (a combustion simulation engine)
• sin, log: from <math.h>

• Measures of precision loss

• Relative error :  RelErr(𝑎, 𝑏) = 
𝑎−𝑏

𝑎
• ULP error:

• Rounding errors of numeric libraries are typically measured by ULPs
• ULPErr 𝑎, 𝑏 = (# of floating-point numbers between 𝑎 and 𝑏)
• Example:

• ULPErr 𝑎, 𝑏 ≤ 2 ∙ RelErr(𝑎, 𝑏)/𝜖
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Results

Interval
Bound on
ULP error

# of
intervals

# of
𝛿

Size of

exp [−4, 4] 14 13 29 36

sin −
𝜋

2
,
𝜋

2
9 33 53 110

log (0,4) ∖
4095

4096
, 1 21 221 25 0

4095

4096
, 1 1 × 1014 1 25 0
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Results: sin, log

x-axis: input value

y-axis:
ULP error

bounds on the intervals

sin log
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Limitations of Our Method

• May construct a large number of intervals
• Example:  0x5fe6eb50c7b537a9 – (x >> 1)

• For this example, our method constructs 263 intervals

• May produce loose error bounds
• Example:  1014 ULPs for log on 4095

4096
, 1

• Sometimes 1 + 𝜖 property provides an imprecise abstraction

• Proving a precise error bound requires more sophisticated
error analysis beyond 1 + 𝜖 property

• Our recent result:  6 ULPs for for log on 0,4
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Summary

• First systematic method for verifying binaries
that mix floating-point and bit-level operations

• Use abstraction, analytical optimization, and testing

• Directly applicable to highly optimized binaries
of transcendental functions
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Questions?
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