Verifying Bit-Manipulations of Floating-Point

<u>Wonyeol Lee</u> Rahul Sharma Alex Aiken Stanford University

PLDI 2016

• Example:

e^{x}

mathematical specification

• Example:

e^{x}

mathematical specification

vpslld	\$20 ,	%xmm3,	%xmm3
vpshufd	\$114 ,	%xmm3,	%xmm3
vmulpd	C1,	%xmm2,	%xmm1
vmulpd	C2,	%xmm2,	%xmm2

• Example:

$$e^{\chi}$$
 \leftarrow \neq mathematical specification

• • •			
vpslld	\$20 ,	%xmm3,	%xmm3
vpshufd	\$114 ,	%xmm3,	%xmm3
vmulpd	C1,	%xmm2,	%xmm1
vmulpd	C2,	%xmm2,	%xmm2
•••			

• Example:

•••			
vpslld	\$20 ,	%xmm3,	%xmm3
vpshufd	\$114 ,	%xmm3,	%xmm3
vmulpd	C1,	%xmm2,	%xmm1
vmulpd	C2,	%xmm2,	%xmm2
•••			

• Example:

•••			
vpslld	\$20 ,	%xmm3,	%xmm3
vpshufd	\$114 ,	%xmm3,	%xmm3
vmulpd	C1,	%xmm2,	%xmm1
vmulpd	C2,	%xmm2,	%xmm2
•••			

floating-point implementation

• Goal: Bound the difference between spec and implementation

• Example:

•••			
vpslld	\$20 ,	%xmm3,	%xmm3
vpshufd	\$114 ,	%xmm3,	%xmm3
vmulpd	C1,	%xmm2,	%xmm1
vmulpd	C2,	%xmm2,	%xmm2
•••			

- Goal: Bound the difference between spec and implementation
- Key contribution: Verify binaries that mix floating-point and bitlevel operations

• Example:

•••			
vpslld	\$20 ,	%xmm3,	%xmm3
vpshufd	\$114,	%xmm3,	%xmm3
vmulpd	C1,	%xmm2,	%xmm1
vmulpd	C2,	%xmm2,	%xmm2
•••			

- Goal: Bound the difference between spec and implementation
- Key contribution: Verify binaries that mix floating-point and bitlevel operations
 - Intel's implementations of transcendental functions

Floating-Point Numbers

• Example: = $(-1)^{1} \cdot 2^{1023-1023} \cdot 1.110 \cdots 00_{(2)}$

Floating-Point Numbers

- Automatic reasoning about floating-point is not easy
 - have rounding errors
 - don't obey some algebraic rules of real numbers
 - Associativity: $1 + (10^{30} 10^{30}) = 1 \neq 0 = (1 + 10^{30}) 10^{30}$

Floating-Point Numbers

- Automatic reasoning about floating-point is not easy
 - have rounding errors
 - don't obey some algebraic rules of real numbers
 - Associativity: $1 + (10^{30} 10^{30}) = 1 \neq 0 = (1 + 10^{30}) 10^{30}$
- It becomes much harder if bit-level operations are used

- Such bit-manipulations are **ubiquitous** in highly optimized floating-point implementations
- If a code mixes floating-point and bit-level operations, reasoning about the code is difficult

e^{x}

mathematical specification $f: \mathbb{R} \to \mathbb{R}$

e^{x}

mathematical specification $f: \mathbb{R} \to \mathbb{R}$

•••			
vpslld	\$20 ,	%xmm3,	%xmm3
vpshufd	\$114 ,	%xmm3,	%xmm3
vmulpd	C1,	%xmm2,	%xmm1
vmulpd	C2,	%xmm2,	%xmm2
•••			

binary *P* that mixes floating-point and bit-level operations

mathematical specification $f: \mathbb{R} \to \mathbb{R}$

 e^{χ}

• • •			
vpslld	\$20 ,	%xmm3,	%xmm3
vpshufd	\$114 ,	%xmm3,	%xmm3
vmulpd	C1,	%xmm2,	%xmm1
vmulpd	C2,	%xmm2,	%xmm2
•••			

binary *P* that mixes floating-point and bit-level operations

e^{x}	$[-1,1]$ input range $X \subseteq \mathbb{R}$	vps vps vmu
mathematical specification		vmu
$f:\mathbb{R}\to\mathbb{R}$		bi

• • •			
vpslld	\$20 ,	%xmm3,	%xmm3
vpshufd	\$114 ,	%xmm3,	%xmm3
vmulpd	C1,	%xmm2,	%xmm1
vmulpd	C2,	%xmm2,	%xmm2
•••			

binary *P* that mixes floating-point and bit-level operations

• Goal: Find a small $\Theta > 0$ such that

$$\frac{f(x) - P(x)}{f(x)} \le \Theta \text{ for all } x \in X$$

• i.e., prove a bound on the maximum precision loss

- Exhaustive testing
 - feasible for 32-bit float: ~ 30 seconds (with 1 core for sinf)
 - infeasible for 64-bit double: > 4000 years (= 30 seconds $\times 2^{32}$)

- Exhaustive testing
 - feasible for 32-bit float: ~ 30 seconds (with 1 core for sinf)
 - infeasible for 64-bit double: > 4000 years (= 30 seconds $\times 2^{32}$)
 - infeasible even for input range X = [-1, 1]
 - : (# of doubles between -1 and 1) = $\frac{1}{2}$ (# of all doubles)

- Exhaustive testing
 - feasible for 32-bit float: ~ 30 seconds (with 1 core for sinf)
 - infeasible for 64-bit double: > 4000 years (= 30 seconds $\times 2^{32}$)
 - infeasible even for input range X = [-1, 1]
 - \therefore (# of doubles between -1 and 1) = $\frac{1}{2}$ (# of all doubles)
- Machine-checkable proofs
 - Harrison used HOL Light to prove Intel's transcendental functions are very accurate [FMCAD'00]

- Exhaustive testing
 - feasible for 32-bit float: ~ 30 seconds (with 1 core for sinf)
 - infeasible for 64-bit double: > 4000 years (= 30 seconds $\times 2^{32}$)
 - infeasible even for input range X = [-1, 1]
 - \therefore (# of doubles between -1 and 1) = $\frac{1}{2}$ (# of all doubles)
- Machine-checkable proofs
 - Harrison used HOL Light to prove Intel's transcendental functions are very accurate [FMCAD'00]
 - "The construction of these proofs often requires considerable persistence." [FMSD'00]

Possible Automatic Alternatives

- If only floating-point operations are used, various automatic techniques can be applied
 - e.g., Astree [PLDI'03], Fluctuat [FMICS'09], ROSA [POPL'14], FPTaylor [FM'15]
- Several commercial tools (e.g., Astree, Fluctuat) can handle certain bit-trick routines

Possible Automatic Alternatives

- If only floating-point operations are used, various automatic techniques can be applied
 - e.g., Astree [PLDI'03], Fluctuat [FMICS'09], ROSA [POPL'14], FPTaylor [FM'15]
- Several commercial tools (e.g., Astree, Fluctuat) can handle certain bit-trick routines
- We are unaware of a general technique for verifying mixed floating-point and bit-level code

Our Method

1	vmovddup	%xmm0,	%xmm0	
2	vmulpd	L2E,	%xmm0,	%xmm2
3	vroundpd	\$0 ,	%xmm2,	%xmm2
4	vcvtpd2dqx	%xmm2,	%xmm3	
5	vpaddd	Β,	%xmm3,	%xmm3
6	vpslld	\$20 ,	%xmm3,	%xmm3
7	vpshufd	\$114 ,	%xmm3,	%xmm3
8	vmulpd	C1,	%xmm2,	%xmm1
9	vmulpd	C2,	%xmm2,	%xmm2
10	vaddpd	%xmm1,	%xmm0,	%xmm1
11	vaddpd	%xmm2,	%xmm1,	%xmm1
12	vmovapd	T1 ,	%xmmO	
13	vmulpd	T12,	%xmm1,	%xmm2
14	vaddpd	T11,	%xmm2,	%xmm2
	• • •			
36	vaddpd	%xmm0,	%xmm1,	%xmm0
37	vmulpd	%xmm3,	%xmm0,	%xmm0
38	retq			

e^x Explained

1	vmovddup	%xmmQ,	<mark>≈xmm0</mark>	
2	vmulpd	L2E,	%xmm0,	%xmm2
3	vroundpd	\$0 ,	%xmm2,	%xmm2
4	vcvtpd2dqx	%xmm2,	%xmm3	
5	vpaddd	Β,	%xmm3,	%xmm3
6	vpslld	\$20 ,	%xmm3,	%xmm3
7	vpshufd	\$114 ,	%xmm3,	%xmm3
8	vmulpd	C1,	%xmm2,	%xmm1
9	vmulpd	C2,	%xmm2,	%xmm2
10	vaddpd	%xmm1,	%xmm0,	%xmm1
11	vaddpd	%xmm2,	%xmm1,	%xmm1
12	vmovapd	T1,	%xmm0	
13	vmulpd	T12,	%xmm1,	%xmm2
14	vaddpd	T11,	%xmm2,	%xmm2
	• • •			
36	vaddpd	%xmm0,	%xmm1,	%xmm0
37	vmulpd	%xmm3,	%xmm0,	%xmm0
38	retq			

1	vmovddup	%xmmQ,	<mark>%xmm0</mark>	
2	vmulpd	L2E,	%xmm0,	%xmm2
3	vroundpd	\$0 ,	%xmm2,	%xmm2
4	vcvtpd2dqx	%xmm2,	%xmm3	
5	vpaddd	В,	%xmm3,	%xmm3
6	vpslld	\$20 ,	%xmm3,	%xmm3
7	vpshufd	\$114 ,	%xmm3,	%xmm3
8	vmulpd	C1,	%xmm2,	%xmm1
9	vmulpd	C2,	%xmm2,	%xmm2
10	vaddpd	%xmm1,	%xmm0,	%xmm1
11	vaddpd	%xmm2,	%xmm1,	%xmm1
12	vmovapd	T1,	%xmm0	
13	vmulpd	T12,	%xmm1,	%xmm2
14	vaddpd	T11,	%xmm2,	%xmm2
	•••			
36	vaddpd	%xmm0,	%xmm1,	%xmm0
37	vmulpd	%xmm3,	%xmm0,	%xmm0
38	retq			

1	vmovddup	%xmmQ ,	%xmm0	
2	vmulpd	L2E,	%xmm0,	%xmm2
3	vroundpd	\$0 ,	%xmm2,	%xmm2
4	vcvtpd2dqx	%xmm2,	%xmm3	
5	vpaddd	Β,	%xmm3,	%xmm3
6	vpslld	\$20 ,	%xmm3,	%xmm3
7	vpshufd	\$114,	%xmm3,	%xmm3
8	vmulpd	C1,	%xmm2,	%xmm1
9	vmulpd	C2,	%xmm2,	%xmm2
10	vaddpd	%xmm1,	%xmm0,	%xmm1
11	vaddpd	%xmm2,	%xmm1,	%xmm1
12	vmovapd	T1,	%xmm0	
13	vmulpd	T12,	%xmm1,	%xmm2
14	vaddpd	T11,	%xmm2,	%xmm2
	•••			
36	vaddpd	%xmm0,	%xmm1,	%xmm0
37	vmulpd	%xmm3,	%xmm0,	%xmm0
38	retq			

1	vmovddup	%xmmQ,	<mark>%xmm0</mark>	
2	vmulpd	L2E,	%xmm0,	%xmm2
3	vroundpd	\$0 ,	%xmm2,	%xmm2
4	vcvtpd2dqx	%xmm2,	%xmm3	
5	vpaddd	Β,	%xmm3,	%xmm3
6	vpslld	\$20 ,	%xmm3,	%xmm3
7	vpshufd	\$114,	%xmm3,	%xmm3
8	vmulpd	C1,	%xmm2,	%xmm1
9	vmulpd	C2,	%xmm2,	%xmm2
10	vaddpd	%xmm1,	%xmm0,	%xmm1
11	vaddpd	%xmm2,	%xmm1,	%xmm1
12	vmovapd	T1,	%xmm0	
13	vmulpd	T12,	%xmm1,	%xmm2
14	vaddpd	T11,	%xmm2,	%xmm2
	•••			
36	vaddpd	%xmm0,	%xmm1,	%xmm0
37	vmulpd	%xmm3,	%xmm0,	%xmm0
38	retq			

Goal: Find a small $\Theta > 0$ such that

$$\frac{e^{x} - 2^{N} e^{r}}{e^{x}} \le \Theta \text{ for all } x \in X$$

1) Abstract Floating-Point Operations

• Assume only floating-point operations are used
- Assume only floating-point operations are used
- $(1 + \epsilon)$ property
 - A standard way to model rounding errors

- Assume only floating-point operations are used
- $(1 + \epsilon)$ property
 - A standard way to model rounding errors

 $x \bigotimes_{\mathbf{f}} y \in \{(x \otimes y)(1 + \delta) : |\delta| < \epsilon\}$

- Assume only floating-point operations are used
- $(1 + \epsilon)$ property
 - A standard way to model rounding errors

 $x \bigotimes_{\mathbf{f}} y \in \{(x \otimes y)(1 + \delta) : |\delta| < \epsilon\}$ $\overleftarrow{0} \qquad \uparrow \qquad 1$ $x \otimes y$

- Assume only floating-point operations are used
- $(1 + \epsilon)$ property
 - A standard way to model rounding errors

- Assume only floating-point operations are used
- $(1 + \epsilon)$ property
 - A standard way to model rounding errors

$$x \otimes_{\mathbf{f}} y \in \{(x \otimes y)(1 + \delta) : |\delta| < \epsilon\}$$

$$\overleftarrow{0}$$

$$x \otimes y$$

$$x \otimes y$$

$$x \otimes_{\mathbf{f}} y$$

- Assume only floating-point operations are used
- $(1 + \epsilon)$ property
 - A standard way to model rounding errors

$$x \otimes_{\mathbf{f}} y \in \{(x \otimes y)(1 + \delta) : |\delta| < \epsilon\}$$

$$\overleftarrow{0}$$

$$x \otimes y$$

$$x \otimes y$$

$$x \otimes_{\mathbf{f}} y$$

• For 64-bit doubles, $\epsilon = 2^{-53}$

- Assume only floating-point operations are used
- $(1 + \epsilon)$ property
 - A standard way to model rounding errors

- For 64-bit doubles, $\epsilon = 2^{-53}$
- This property has been used in previous automatic techniques (FPTaylor, ROSA, ...) for verifying floating-point programs

• Compute a symbolic abstraction $A_{\vec{\delta}}(x)$ of a program P

- Compute a symbolic abstraction $A_{\vec{\delta}}(x)$ of a program P
 - Example:

$$P(x) = \left((2 \times_{\mathrm{f}} x) +_{\mathrm{f}} 3 \right)$$

- Compute a symbolic abstraction $A_{\vec{\delta}}(x)$ of a program P
 - Example:

$$A_{\vec{\delta}}(x) = \left((2 \times_{\mathrm{f}} x) +_{\mathrm{f}} 3 \right)$$

- Compute a symbolic abstraction $A_{\vec{\delta}}(x)$ of a program P
 - Example:

$$A_{\vec{\delta}}(x) = ((2 \times x) + 3)$$

- Compute a symbolic abstraction $A_{\vec{\delta}}(x)$ of a program P
 - Example:

 $A_{\vec{\delta}}(x) = \big((2 \times x)(1+\delta_1) + 3\big)(1+\delta_2)$

- Compute a symbolic abstraction $A_{\vec{\delta}}(x)$ of a program P
 - Example:

 $A_{\vec{\delta}}(x) = \big((2 \times x)(1+\delta_1) + 3\big)(1+\delta_2)$

• From $(1 + \epsilon)$ property, $A_{\vec{\delta}}(x)$ satisfies $P(x) \in \{A_{\vec{\delta}}(x) : |\delta_i| < \epsilon\}$ for all x

- Compute a symbolic abstraction $A_{\vec{\delta}}(x)$ of a program P
 - Example:

 $A_{\vec{\delta}}(x) = \big((2 \times x)(1+\delta_1) + 3\big)(1+\delta_2)$

- From $(1 + \epsilon)$ property, $A_{\vec{\delta}}(x)$ satisfies $P(x) \in \{A_{\vec{\delta}}(x) : |\delta_i| < \epsilon\}$ for all x
 - Example:

 $P(x) = \left((2 \times_{\mathrm{f}} x) +_{\mathrm{f}} 3 \right)$

- Compute a symbolic abstraction $A_{\vec{\delta}}(x)$ of a program P
 - Example:

 $A_{\vec{\delta}}(x) = \big((2 \times x)(1+\delta_1) + 3\big)(1+\delta_2)$

- From $(1 + \epsilon)$ property, $A_{\vec{\delta}}(x)$ satisfies $P(x) \in \{A_{\vec{\delta}}(x) : |\delta_i| < \epsilon\}$ for all x
 - Example:

 $P(x) \quad \{ ((2 \times x)(1 + \delta_1) + 3)(1 + \delta_2) : |\delta_1|, |\delta_2| < \epsilon \}$

- Compute a symbolic abstraction $A_{\vec{\delta}}(x)$ of a program P
 - Example:

 $A_{\vec{\delta}}(x) = \big((2 \times x)(1+\delta_1) + 3\big)(1+\delta_2)$

- From $(1 + \epsilon)$ property, $A_{\vec{\delta}}(x)$ satisfies $P(x) \in \{A_{\vec{\delta}}(x) : |\delta_i| < \epsilon\}$ for all x
 - Example:

 $P(x) \in \{ ((2 \times x)(1 + \delta_1) + 3)(1 + \delta_2) : |\delta_1|, |\delta_2| < \epsilon \}$

• Assume bit-level operations are used as well

- Assume bit-level operations are used as well
- To handle bit-level operations, divide X into intervals I_{k} ,

- Assume bit-level operations are used as well
- To handle bit-level operations, divide X into intervals I_{k} ,

so that, on each I_k , we can statically know the result of each bit-level operation

• Example:
$$-1 \qquad X \qquad 1$$

 $\frac{\text{input x}}{\text{y} \leftarrow x \times_{f} C}$ (C=0x3ff71547652b82fe) $N \leftarrow \text{round}(y)$ $z \leftarrow \text{int}(N) +_{i} 0x3ff$ $W \leftarrow z << 52$...

- Assume bit-level operations are used as well
- To handle bit-level operations, divide X into intervals I_{k} ,

- Assume bit-level operations are used as well
- To handle bit-level operations, divide X into intervals I_{k} ,

- Assume bit-level operations are used as well
- To handle bit-level operations, divide X into intervals I_{k} ,

- Assume bit-level operations are used as well
- To handle bit-level operations, divide X into intervals I_{k} ,

so that, on each I_k , we can statically know the result of each bit-level operation

- Assume bit-level operations are used as well
- To handle bit-level operations, divide X into intervals I_{k} ,

so that, on each I_k , we can statically know the result of each bit-level operation

Only floating-point operations are left \rightarrow Can compute $A_{\vec{\delta}}(x)$ on each I_k

• How to find such intervals?

• How to find such intervals?

• How to find such intervals?

- How to find such intervals?
 - Use symbolic abstractions

- How to find such intervals?
 - Use symbolic abstractions
- Example:
 - $N = \operatorname{round}(x \times_{\mathrm{f}} \mathrm{C})$

- How to find such intervals?
 - Use symbolic abstractions

- Example:
 - $N = \operatorname{round}(x \times_{\mathrm{f}} \mathrm{C})$
 - (symbolic abstraction of $x \times_f C$) = ($x \times C$)(1 + δ)

- How to find such intervals?
 - Use symbolic abstractions

- Example:
 - $N = \operatorname{round}(x \times_{\mathrm{f}} \mathrm{C})$
 - (symbolic abstraction of $x \times_f C$) = ($x \times C$)(1 + δ)

$$x \times_{f} C \\ \leq S(x) = \{(x \times C)(1 + \delta) : |\delta| < \epsilon \}$$

- How to find such intervals?
 - Use symbolic abstractions

- Example:
 - $N = \operatorname{round}(x \times_{\mathrm{f}} \mathrm{C})$
 - (symbolic abstraction of $x \times_{f} C$) = ($x \times C$)(1 + δ)

- How to find such intervals?
 - Use symbolic abstractions

- Example:
 - $N = \operatorname{round}(x \times_{\mathrm{f}} \mathrm{C})$
 - (symbolic abstraction of $x \times_f C$) = ($x \times C$)(1 + δ)

- How to find such intervals?
 - Use symbolic abstractions

- Example:
 - $N = \operatorname{round}(x \times_{\mathrm{f}} \mathrm{C})$
 - (symbolic abstraction of $x \times_f C$) = ($x \times C$)(1 + δ)

• Let I_k = largest interval contained in $\{x \in X : S(x) \subset (k - 0.5, k + 0.5)\}$

- How to find such intervals?
 - Use symbolic abstractions

- Example:
 - $N = \operatorname{round}(x \times_{\mathrm{f}} \mathrm{C})$
 - (symbolic abstraction of $x \times_f C$) = ($x \times C$)(1 + δ)

- Let I_k = largest interval contained in { $x \in X : S(x) \subset (k - 0.5, k + 0.5)$ }
- Then N is evaluated to k for every input in I_k

3) Compute a Bound on Precision Loss

- Precision loss on each interval I_k
 - Let $A_{\vec{\delta}}(x)$ be a symbolic abstraction on I_k

3) Compute a Bound on Precision Loss

- Precision loss on each interval I_k
 - Let $A_{\vec{\delta}}(x)$ be a symbolic abstraction on I_k

X

• Analytical optimization:

$$\max_{\in I_{k}, |\delta_{i}| < \epsilon} \left| \frac{e^{x} - A_{\vec{\delta}}(x)}{e^{x}} \right|$$

• Use Mathematica to solve optimization problems analytically

• No. The constructed intervals do not cover X in general

• No. The constructed intervals do not cover X in general

• No. The constructed intervals do not cover X in general

- No. The constructed intervals do not cover X in general
 - Because we made sound approximations

- Example: $N = \operatorname{round}(x \times_{f} C)$
 - $\left(\right)$: abstraction of $x \times_{\mathrm{f}} C$

• Example: $N = \operatorname{round}(x \times_{f} C)$

For $x = \frac{1}{2C}$, we can't statically know if N would be 0 or 1

• Example: $N = \operatorname{round}(x \times_{f} C)$

For $x = \frac{1}{2C}$, we can't statically know if N would be 0 or 1

- Let $H = \{$ floating-point numbers in the ''gaps'' $\}$
 - We observe that |H| is small in experiment

3) Compute a Bound on Precision Loss

- Precision loss on each interval I_k
 - Let $A_{\vec{\delta}}(x)$ be a symbolic abstraction on I_k
 - Analytical optimization:

$$\max_{x \in I_{k}, |\delta_i| < \epsilon} \left| \frac{e^x - A_{\vec{\delta}}(x)}{e^x} \right|$$

- Use Mathematica to solve optimization problems analytically
- Precision loss on H
 - For each $x \in H$, obtain P(x) by executing the binary
 - Brute force:

$\max_{x \in H} \left| \frac{e^x - P(x)}{e^x} \right|$

• Use Mathematica to compute e^x and precision loss exactly

3) Compute a Bound on Precision Loss

- Precision loss on each interval I_k
 - Let $A_{\overrightarrow{\delta}}(x)$ be a symbolic abstraction on I_k
 - Analytical optimization:

take maximum

- $\max_{x \in I_k, |\delta_i| < \epsilon} \left| \frac{e^x A_{\vec{\delta}}(x)}{e^x} \right| \longrightarrow \text{answer!}$
- Use Mathematica to solve optimization problems analytically
- Precision loss on H
 - For each $x \in H$, obtain P(x) by executing the binary
 - Brute force:

$\max_{x \in H} \left| \frac{e^{x} - P(x)}{e^{x}} \right|$

• Use Mathematica to compute e^x and precision loss exactly

Case Studies

Settings

- Benchmarks
 - exp: from S3D (a combustion simulation engine)
 - sin,log: from Intel's <math.h>
- Measures of precision loss
 - Relative error: RelErr(a, b) = $\left|\frac{a-b}{a}\right|$
 - ULP error:
 - Rounding errors of numeric libraries are typically measured by ULPs

Settings

- Benchmarks
 - exp: from S3D (a combustion simulation engine)
 - sin,log: from Intel's <math.h>
- Measures of precision loss
 - Relative error: RelErr(a, b) = $\left|\frac{a-b}{a}\right|$
 - ULP error:
 - Rounding errors of numeric libraries are typically measured by ULPs
 - ULPErr(a, b) = (# of floating-point numbers between a and b)

• ULPErr $(a, b) \leq 2 \cdot \text{RelErr}(a, b)/\epsilon$

Results

	Interval	Bound on ULP error	# of intervals	$\#$ of $oldsymbol{\delta}$'s	Size of ''gaps''
exp	[—4, 4]	14	13	29	36
sin	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	9	33	53	110
log	$(0,4) \setminus \left[\frac{4095}{4096},1\right)$	21	2 ²¹	25	0
	$\left[rac{4095}{4096},1 ight)$	1×10^{14}	1	25	0

Results

	Interval	Bound on ULP error	# of intervals	# of δ's	Size of ''gaps''	
exp	[-4,4]	14	13	29	36	
sin	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	9	33	53	110	
log	$(0,4) \setminus \left[\frac{4095}{4096}, 1\right)$	21	2 ²¹	25	0	
	$\left[rac{4095}{4096},1 ight)$	1×10^{14}	1	25	0	
best illustrates						

the power of our method

Results: sin, log

x-axis: input value

bounds on the intervalserrors on the "gaps"

Results: sin, log

Limitations of Our Method

- May construct a large number of intervals
 - Example: 0x5fe6eb50c7b537a9 (x >> 1)
 - For this example, our method constructs 2⁶³ intervals
Limitations of Our Method

- May construct a large number of intervals
 - Example: 0x5fe6eb50c7b537a9 (x >> 1)
 - For this example, our method constructs 2⁶³ intervals
- May produce loose error bounds
 - Example: 10^{14} ULPs for log on $\left[\frac{4095}{4096}, 1\right)$
 - Sometimes $(1 + \epsilon)$ property provides an imprecise abstraction
 - Proving a precise error bound requires more sophisticated error analysis beyond $(1 + \epsilon)$ property
 - Our recent result: 6 ULPs for for log on (0,4)

Summary

- First systematic method for verifying binaries that mix floating-point and bit-level operations
- Use abstraction, analytical optimization, and testing
- Directly applicable to highly optimized binaries of transcendental functions

Questions?