
Verifying Bit-Manipulations of Floating-Point

Wonyeol Lee Rahul Sharma Alex Aiken
Stanford University, USA

{wonyeol, sharmar, aiken}@cs.stanford.edu

Abstract
Reasoning about floating-point is difficult and becomes only
more so if there is an interplay between floating-point and
bit-level operations. Even though real-world floating-point
libraries use implementations that have such mixed compu-
tations, no systematic technique to verify the correctness of
the implementations of such computations is known. In this
paper, we present the first general technique for verifying the
correctness of mixed binaries, which combines abstraction,
analytical optimization, and testing. The technique provides
a method to compute an error bound of a given implementa-
tion with respect to its mathematical specification. We apply
our technique to Intel’s implementations of transcendental
functions and prove formal error bounds for these widely
used routines.

Categories and Subject Descriptors D.2.4 [Software/Pro-
gram Verification]: Correctness proofs

Keywords Verification; Floating-point; Bit-manipulation;
Bit-level operation; ULP error; Absolute error; x86 binary;
Binary analysis; Transcendental function

1. Introduction
Highly optimized implementations of floating-point libraries
rely on intermixing floating-point and bit-level code. Even
though such code is part of widely used libraries, such as
optimized implementations of C math libraries, automatic
formal verification of these implementations has remained
an open challenge [22]. Although it has been demonstrated
that it is possible to construct machine-checkable proofs of
correctness by hand for floating-point algorithms of the level
of sophistication we are interested in [11, 12], no existing au-

tomated verification technique is capable of analyzing these
implementations. In this paper, we present a first step to-
wards addressing this challenge.

Bit-precise floating-point reasoning is hard: floating-
point is an approximation to real arithmetic, but floating-
point numbers do not obey the algebraic axioms of real
numbers due to rounding errors. The situation becomes even
more difficult in the presence of bit-level operations, such as
bit-manipulations of the floating-point representation. To il-
lustrate a mixed code, consider an implementation that com-
putes the floating-point number 2n from a small integer n. A
naı̈ve implementation would first compute the integer repre-
senting 2n and then perform the computationally expensive
operation of converting an integer to a floating-point num-
ber. Alternatively, the same result can be obtained by bit-
shifting n + 1023 left by 52 bits (Figure 3). Existing static
analyses for floating-point arithmetic would be stumped by
the bit-shift operation and would fail to prove the functional
correctness of this trick. Moreover, such tricks are routine in
real codes [9, 16].

Before explaining our solution, it is important to under-
stand why existing automated techniques (based on testing,
model checking, and abstract interpretation) are inadequate.
The simplest verification technique is exhaustive testing of
all possible inputs. This approach is feasible for a function
like expf that computes the exponential of a 32-bit sin-
gle precision floating-point number. However, the number
of double precision floating-point numbers is too large for
brute force enumeration to be tractable.

A plausible verification strategy involves encoding cor-
rectness as the validity of a SMT formula [5]. However,
the specifications of interest here are transcendentals and
these (ex, sin (x) , etc.) cannot be encoded precisely in exist-
ing SMT theories. Verifiers based on abstract interpretation,
such as ASTRÉE and FLUCTUAT, use pattern matching to
handle certain bit-trick routines in commercial floating-point
avionics codes [9, 16]. Our goal is a general technique.

Our approach to the problem is to divide and conquer.
For a given floating-point implementation, we consider non-
overlapping intervals that are subsets of the possible range
of inputs. We require each interval I to satisfy the following
property: if we statically know that the inputs are restricted
to I , the bit-level operations can be removed from the im-
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plementation by partial evaluation. Then, for each interval,
we have a specialized implementation that is composed ex-
clusively of floating-point operations and thus amenable to
abstraction-based techniques. Our main contribution is to
devise a procedure to construct such intervals (§4). There
is one significant subtlety: The intervals do not always fully
cover the space and we must deal with potential “gaps” be-
tween intervals. Commercial tools such as FLUCTUAT [7, 9]
also subdivide the input range (with no gaps) to improve pre-
cision and our technique can be seen as a systematic method
to construct these subdivisions. We analyze the implementa-
tions specialized for each interval and report the maximum
error between the implementation and the ideal mathemati-
cal specification.

We make the following contributions.

• We describe the first general technique for verification
of mixed floating-point and bit-level code. We are un-
aware of any automatic or semi-automatic verification
technique that can prove the functional correctness of the
production grade benchmarks we consider. Prior to this
work, formal verification of such benchmarks required
manual construction of machine-checkable proofs [11,
12].
• We reduce the problem of computing bounds on numeri-

cal errors to an optimization problem and leverage state-
of-the-art techniques for analytical optimization. While
our method is not fully automatic, these techniques auto-
mate one of the most difficult aspects of the problem and
make verification of complex implementations feasible.
• Our technique performs verification at the binary level,

not on source code or a model of the program. Thus,
the derived bounds apply to the actual code that executes
directly on the hardware.

We evaluate our technique on three implementations of
transcendental functions from Intel’s libraries: a bounded
periodic function (sin, §5.2), an unbounded discontinuous
periodic function (tan, §5.3), and an unbounded continu-
ous function (log, §5.4). We are able to successfully bound
the difference between the result computed by these imple-
mentations and the exact mathematical result. For each of
these functions, we also trade precision for performance and
create significantly more efficient variants that produce ap-
proximately correct results. Using our technique, we are able
to provide a bound on the difference between the approx-
imate variants and the mathematical specifications. These
results demonstrate the generality of our technique and ad-
dress some of the drawbacks of manually constructed proofs:
modifying the manual proofs to prove even slightly different
theorems is difficult [11, 12]. To quote Harrison [11],

[N]ontrivial proofs, as are carried out in the work de-
scribed here, often require long and complicated se-
quence of rules. The construction of these proofs often
requires considerable persistence. Moreover, the re-

1 vmovddup %xmm0, %xmm0
2 vmulpd L2E, %xmm0, %xmm2
3 vroundpd $0, %xmm2, %xmm2

4 vcvtpd2dqx %xmm2, %xmm3
5 vpaddd B, %xmm3, %xmm3
6 vpslld $20, %xmm3, %xmm3
7 vpshufd $114, %xmm3, %xmm3

8 vmulpd C1, %xmm2, %xmm1
9 vmulpd C2, %xmm2, %xmm2
10 vaddpd %xmm1, %xmm0, %xmm1
11 vaddpd %xmm2, %xmm1, %xmm1

12 vmovapd T1, %xmm0
13 vmulpd T12, %xmm1, %xmm2
14 vaddpd T11, %xmm2, %xmm2
15 vmulpd %xmm1, %xmm2, %xmm2
16 vaddpd T10, %xmm2, %xmm2
17 vmulpd %xmm1, %xmm2, %xmm2
18 vaddpd T9, %xmm2, %xmm2
19 vmulpd %xmm1, %xmm2, %xmm2
20 vaddpd T8, %xmm2, %xmm2
21 vmulpd %xmm1, %xmm2, %xmm2
22 vaddpd T7, %xmm2, %xmm2
23 vmulpd %xmm1, %xmm2, %xmm2
24 vaddpd T6, %xmm2, %xmm2
25 vmulpd %xmm1, %xmm2, %xmm2
26 vaddpd T5, %xmm2, %xmm2
27 vmulpd %xmm1, %xmm2, %xmm2
28 vaddpd T4, %xmm2, %xmm2
29 vmulpd %xmm1, %xmm2, %xmm2
30 vaddpd T3, %xmm2, %xmm2
31 vmulpd %xmm1, %xmm2, %xmm2
32 vaddpd T2, %xmm2, %xmm2
33 vmulpd %xmm1, %xmm2, %xmm2
34 vaddpd %xmm0, %xmm2, %xmm2
35 vmulpd %xmm1, %xmm2, %xmm1
36 vaddpd %xmm0, %xmm1, %xmm0

37 vmulpd %xmm3, %xmm0, %xmm0
38 retq

Figure 1. The x86 assembly code of exp that ships with
S3D [3]. Instructions have been reordered to aid understand-
ing, without affecting the output.

sulting proof scripts can be quite hard to read, and in
some cases hard to modify to prove a slightly different
theorem.

The rest of the paper is organized as follows. §2, through
an example, discusses our verification technique. §3 reviews
formal definitions of rounding errors and §4 presents our
verification technique that combines abstraction, analytical
optimization, and testing. §5 discusses evaluation and §6
surveys prior work. Finally, §7 gives a discussion of future
work and §8 concludes.

2. Motivating Example
S3D [3] is a combustion chemistry simulation that is heavily
used in research on developing more efficient and cleaner
fuels for internal combustion engines. The performance of
the exponential function is so important for this task that the
developers ship a hand-coded x86 assembly implementation
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1 vmulpd L2E, %xmm0, %xmm2
2 vroundpd $0xfffffffffffffffe, %xmm2, %xmm2

3 vcvttpd2dq %xmm2, %xmm3
4 vpaddw B, %xmm3, %xmm3
5 vpsllq $0x14, %xmm3, %xmm3
6 vpshufd $0x3, %xmm3, %xmm3

7 vmulpd C1, %xmm2, %xmm1
8 vaddpd %xmm1, %xmm0, %xmm1

9 vmovapd T1, %xmm0
10 vlddqu T8, %xmm2
11 vmulpd %xmm1, %xmm2, %xmm2
12 vaddpd T7, %xmm2, %xmm2
13 vmulpd %xmm1, %xmm2, %xmm2
14 vaddpd T6, %xmm2, %xmm2
15 vmulsd %xmm1, %xmm2, %xmm2
16 vaddpd T5, %xmm2, %xmm2
17 vmulpd %xmm1, %xmm2, %xmm2
18 vaddpd T4, %xmm2, %xmm2
19 vmulpd %xmm1, %xmm2, %xmm2
20 vaddpd T3, %xmm2, %xmm2
21 vmulsd %xmm1, %xmm2, %xmm2
22 vaddpd T2, %xmm2, %xmm2
23 vmulsd %xmm1, %xmm2, %xmm2
24 vaddsd %xmm0, %xmm2, %xmm2
25 vmulpd %xmm1, %xmm2, %xmm1
26 vaddsd %xmm0, %xmm1, %xmm0

27 vmulpd %xmm3, %xmm0, %xmm0
28 retq

Figure 2. The x86 assembly code of expopt automatically
generated by STOKE [22]. This code is less precise but has
better performance compared to exp (Figure 1).

exp (Figure 1), which is inspired by the implementation
of the exponential function present in CUDA libraries for
GPUs. There is no source code as it has been implemented
directly in assembly. There is also no documentation avail-
able regarding exp except that it is supposed to compute ex

for x ∈ [−2.6, 0.12]. As is characteristic of highly optimized
floating-point implementations, exp contains bit-level oper-
ations (rounding to integer on line 3, converting double to
integer on line 4, bit-vector addition on line 5, bit-shift on
line 6, and bit-shuffle on line 7).

The main algorithm used by exp first computes an inte-
ger N and a reduced value d:

N = round (x · log2 e) , d = x− (log 2)N, (1)

where log (·) without a base denotes the natural logarithm.
Then it uses the following identity to compute ex:

ex = e(log 2)N · ed = 2N · ed

The implementation exp computes 2N (a double in IEEE
representation) from N (a 64-bit integer in 2’s complement
representation) using bit-level operations. It computes ed

using a Taylor series expansion of degree 12:

ed ≈
12∑
i=0

di

i!

Next, we relate this algorithm with Figure 1. Our descrip-
tion below elides several details that are important for per-
formance (such as the use of vector instructions), and fo-
cuses on functionality. The calling convention used by exp
includes storing the first argument and the return value of a
function in the register xmm0. We omit details about the x86
syntax and describe the implementation at a high level. The
code is divided into several blocks by the horizontal lines in
Figure 1 and the instructions within a block compute a value
of interest.

• The first block (lines 1-3) computes N from the input x.
The second instruction multiplies x by L2E (the double
closest to log2 e) and the third instruction rounds the
result.
• The second block (lines 4-7) computes 2N from N , us-

ing bit-vector addition (line 5), bit-shift (line 6), and
bit-shuffle (line 7). The bit-vector represented by B is
0x000003ff000003ff (in hex). Recall that 0x3ff
in hex is 1023 in decimal, which is the bias used for the
exponent in doubles (§3).
• The third group (lines 8-11) computes d from x and N .

This computation uses log 2 which is a transcendental
number (Equation 1). To maintain accuracy, log 2 is rep-
resented as the sum of two doubles: c1 = −0.69315 · · ·
(line 8) and c2 = −2.31904 · · · × 10−17 (line 9) where
log 2 ≈ −c1 − c2. This representation effectively pro-
vides more than a hundred bits to represent log 2 with
the desired accuracy. Using c1 and c2, we can compute
d ≈ (x+ c1N) + c2N (lines 10-11).
• The fourth block (lines 12-36) computes ed from d, using

a Taylor series expansion of degree 12. The constant Ti
represents 1

i! .

• The last group (line 37-38) returns ex = 2N · ed. Recall
that 2N is computed exactly by the second block and ed

is computed approximately by the fourth block.

Given this non-trivial implementation, a valid question is:
What does it achieve? Fundamentally, since there are only a
finite number of floating-point numbers, no implementation
can compute ex exactly. All floating-point implementations
provide only an approximate result which has finite preci-
sion. Therefore, one possible measure of a correctness of
such implementations is given by precision loss: the devia-
tion of the computed answer from the mathematically exact
result. Our goal in this paper is to provide sound bounds on
the maximum precision loss of such implementations.

The first challenge associated with floating-point imple-
mentations is that of rounding errors. As is standard, we
model rounding error using non-determinism. For example,
line 2 of Figure 1 multiplies the input x and a constant
L2E, and we model its output as an element chosen non-
deterministically from the set {(x× L2E)(1 + δ) : |δ| < ε},
where + and × denote real-number addition and multiplica-
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tion, respectively. The quantity δ models the rounding error
and the machine epsilon ε provides a bound on the rounding
errors of floating-point multiplication (§3).

The next challenge, which has not been systematically
addressed previously, is associated with bit-level operations.
We use a divide-and-conquer approach to address the chal-
lenge. We denote the set of possible inputs by the interval X
and create a set of intervals I = {Ik : k ∈ Z and Ik ⊆ X}
such that the following property holds:

∀x ∈ Ik. {(x×L2E)(1 + δ) : |δ| < ε} ⊂
(
k − 1

2
, k +

1

2

)
(2)

This decomposition is useful because it ensures that for each
input x ∈ Ik the rounded output N of line 3 is k. We show
how to obtain this decomposition in §4.

Given such a decomposition I, we run |I| separate anal-
yses, where the kth analysis restricts the inputs to Ik. In the
kth analysis, the result N of rounding (line 3) is always k
which is the only input to the bit-level operations of the sec-
ond block (lines 4-7). Hence, it is sound to replace the bit-
level operations by an instruction that moves the double 2k

to the register xmm3. This specialized code consists exclu-
sively of floating-point operations.

Next, each analysis generates a separate symbolic repre-
sentation that over-approximates the possible outputs of its
specialized code. The symbolic representation A~δ(x) is a
function of the input x and the rounding errors ~δ. For ex-
ample, the symbolic representation of the multiplication of
x and L2E (line 2) is given by (x×L2E)(1+δ). In general, if
an expression e1 has symbolic representation A′~δ(x) and e2
has symbolic representation A′′~δ(x) then the symbolic rep-
resentation of e1⊗f e2 (where⊗f is floating-point addition or
multiplication) is given by (A′~δ(x)⊗A′′~δ(x))(1+δ′), where
⊗ is real-number addition or multiplication and δ′ is a new
variable representing the rounding error of the operation ⊗f .

Finally, each analysis uses analytical optimization to
maximize the difference between the symbolic represen-
tation and the ideal mathematical result in the interval of in-
terest. Several representations of precision loss are possible.
If we measure precision loss using absolute error (§3) then
the kth analysis solves the following optimization problem:

max
x∈Ik,~δ

∣∣A~δ(x)− ex
∣∣

For exp, we use the set of inputs X = [−4, 4] that results in
13 intervals, i.e., |I| = 13 and the symbolic representations
have a maximum of 29 δ variables for rounding errors.
The maximum absolute error reported across all intervals is
5.6× 10−14.

There is one remaining issue. The division of the entire
input range X into intervals I = {Ik} may result in some
x ∈ X where x /∈ Ik for any k. For example, consider the
input 1

2·L2E . Due to rounding errors, it is not clear whether,
for this input, the result N of line 3 would be 0 or 1. There-
fore, this input is not included in any Ik ∈ I (Equation 2).

For exp, there are 36 such floating-point numbers that are
not included in any interval. For these inputs, we simply ex-
ecute the program on each one and directly measure the pre-
cision loss. The maximum absolute error for these 36 inputs
is 2.1× 10−14 (which is close to but less than 5.6× 10−14).

Another common representation for precision loss is ULP
error (§3) that signifies the number of floating-point numbers
between the computed and the mathematically exact result.
We show how to compute ULP error (for each interval) in
§4.4. For exp, the maximum ULP error over X is 14, that
is, there are at most 14 floating-point numbers between the
output of exp and ex. We are unaware of any previous
automated analysis that can prove this result.

It is possible to further improve the performance of exp
by sacrificing more precision. Despite its heavy use of the
exponential function, S3D loses precision elsewhere and
does not require precise results from exp to maintain cor-
rectness. One possible strategy involves asking a developer
to create a customized implementation that has better per-
formance at the cost of less precise results (§5). Such im-
plementations can also be automatically generated using
stochastic optimizers such as STOKE [22]. At a high level,
STOKE makes random changes to binaries until they get
faster and remain “approximately correct” on some tests.

The binary expopt (Figure 2) is automatically generated
by making random changes to exp using STOKE. The differ-
ences between expopt and exp are that expopt computes d
as x+ c1N (without using c2) and it uses a Taylor series ex-
pansion of degree 8 (instead of 12). The authors of [22] claim
that expopt has an ULP error below 107 from exp and im-
proves the performance of the diffusion task of S3D by 27%.
However, the correctness guarantees provided by STOKE are
statistical and there is no formal guarantee that expopt can-
not produce results with an ULP error much greater than 107

for some unobserved input.
We use our analysis to bound the precision loss between

exp and expopt. Our analysis reports that the maximum
absolute error between exp and expopt is 1.2 × 10−8 and
the maximum ULP error is 1.9 × 106 which though large
is well below the desired bound of 107 ULPs. Therefore,
we have proven formally that the STOKE generated code
respects the ULP bound of 107 for all inputs x ∈ [−4, 4].
This verification task was left as a challenge in [22].

3. Preliminaries
Figure 3 describes the bit representation of 64-bit double
precision floating-point numbers according to the IEEE 754
standard. The most significant bit is the sign bit (denoted
by s) which determines whether the number is positive or
negative. The next 11 bits represent the exponent (denoted
by p) and the remaining 52 bits represent the significand
or the fractional part (denoted by f ). Figure 3 shows the
values represented by different bit patterns. Unless otherwise
stated, a floating-point number is such a double precision
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63 52 0

sign
exponent
(11 bit)

fraction
(52 bit)

Type Exponent (p) Fraction (f ) Value

Zero 0 0 (−1)s · 0
Denormal 0 6= 0 (−1)s · 2−1022 · 0.f
Normal [1, 2046] unconstrained (−1)s · 2p−1023 · 1.f
Infinity 2047 0 (−1)s · ∞

NaN 2047 6= 0 (−1)s · ⊥

Figure 3. IEEE-754 double precision floating-point format.

floating-point number. For simplicity we do not consider
denormals, but it is straightforward to incorporate them in
our verification techniques (see the footnote 4 in §4.3).

The result of applying an arithmetic operation to floating-
point number(s) need not to be expressible as a floating-point
number. In this case, the result r is rounded to the clos-
est representable floating-point number, denoted by fl(r).
The IEEE standard provides algorithms for addition, sub-
traction, multiplication, and division, and requires the im-
plementations following the standard to produce exactly the
results specified by the algorithms. If an architecture obeys
the IEEE standard then we have the following guarantee1:

x⊗f y = fl(x⊗ y) ∈
{

(x⊗ y)(1 + δ) : |δ| < 2−53
}

(3)

That is, if we have two floating-point numbers x and y and
apply a floating-point operation ⊗f included in the IEEE
standard, then the result is the closest floating-point number
to the real number obtained by treating x and y as real
numbers and applying the exact operation ⊗ over the reals.
The floating-point result is guaranteed to belong to a very
small interval around the actual result. We call the constant
2−53 machine epsilon2 and denote it by ε.

There are three standard methods for representing round-
ing errors. The absolute error simply measures the magni-
tude of the difference between the two results:

abs err(r1, r2) = |r1 − r2|

For example, in Equation 3 the maximum absolute error
between the computed result and the actual result is |(x ⊗
y)ε|. Therefore, this error grows with the magnitude of (x⊗
y). In contrast, the relative error is the following:

rel err(r1, r2) =

∣∣∣∣r1 − r2r2

∣∣∣∣
1 Equation 3 is valid because we neglect underflows, overflows, and de-
normals. In general, if |x ⊗ y| < 21024 then it is always true that
fl(x⊗ y) ∈ {(x⊗ y)(1 + δ) + δ′ : |δ| < 2−53, |δ′| < 2−1075} [18].
2 The IEEE standard does not define machine epsilon and different defini-
tions can be found in the literature. Regardless, Equation 3 is valid.

For Equation 3, the maximum relative error is ε which is
independent of x and y. The relative error is traditionally
expressed as a multiple of ε.

The final representation is “units in last place” error or
ULP error. If d = 1.f1 . . . f52 × 2p is used to represent a
real number r then it is in error by

ULP(d, r) =
∣∣∣1.f1 . . . f52 − r

2p

∣∣∣ 252
units in last place. For Equation 3, the maximum ULP error
is 1

2 , which is attained when r lies exactly in between two
consecutive floating-point numbers. The relative error ex-
pressed as a multiple of machine epsilon and the ULP error
are guaranteed to be within a factor of two for floating-point
numbers [8]. Intel claims3 that the maximum error of its im-
plementations of transcendentals is within 1 ULP, which is
typical for well-engineered implementations of transcenden-
tal functions. Therefore, if r represents the mathematically
exact result and d is the floating-point number closest to r
then the belief is that the implementation produces a result
which is d, or d− (the floating-point number just below d),
or d+ (the floating-point number just above d).

Remark. Note that almost half of all floating-point num-
bers lie in the interval [−1, 1] and the density of floating-
point numbers increases almost exponentially as we ap-
proach 0. Hence, for floating-point numbers x and y that
are near 0, even if the absolute error |x − y| is small, the
ULP error ULP(x, y) can still be huge. For instance, if x
is zero and |x − y| ≈ ε then ULP(x, y) ≈ 4 × 1018. Thus
all analysis techniques based on propagating round-off er-
rors, including ours, must necessarily yield large ULP errors
for many floating-point operations that produce results very
close to 0.

4. Formalism
We now describe our procedure for estimating the preci-
sion loss of an implementation with respect to its math-
ematical specification. The procedure has two main steps.
First, we construct a symbolic abstraction that soundly over-
approximates the implementation. Next, we use an analyti-
cal optimization procedure to obtain a precise bound on the
deviations the symbolic abstraction can have from the math-
ematical specification. We start by defining the syntax of a
core language that we use for the formal development.

4.1 Core Language
Recall that the implementations of interest are highly opti-
mized x86 binaries. The x86 ISA has more than two thou-
sand different instruction variants, so we desugar x86 pro-
grams into a core expression language that is the subject of
our analysis.

Figure 4 shows the grammar representing the expressions
in this language. An expression e in the core language can

3 https://software.intel.com/sites/default/files/article/
326703/fp-control-2012-08.pdf
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expression e ::= c | χ | L[e] |
e⊗b e | e⊗s e |
e⊗i e | e⊗f e | ⊗c e

bitwise operators ⊗b ∈ {AND,OR, · · · }
shift operators ⊗s ∈ {<<, >>, · · · }

bit-vector arithmetic operators ⊗i ∈ {+i , −i , ×i , · · · }
floating-point operators ⊗f ∈ {+f , ×f , / f , · · · }

casting operators ⊗c ∈ {i2f, f2i, round, · · · }

Figure 4. The syntax of the core language.

be a 64-bit constant c, a 64-bit input χ, the result of a table
lookup L[·], or the application of a unary or a binary operator
to subexpression(s). All expressions in this language evalu-
ate to 64-bit values. The x86 implementations often use 128-
bit SSE registers and SIMD instructions for efficiency. How-
ever, these operations can be expressed in our language by
desugaring them to multiple operations applied to multiple
64-bit expressions. For brevity, we also restrict our presenta-
tion to settings with only a single input and a single lookup
table. It is straightforward to generalize our results to im-
plementations with multiple inputs and multiple tables (but
see discussion in §7 of scaling issues in handling multiple
inputs).

The operators relevant for our benchmarks are shown in
Figure 4. The bitwise operators include bitwise-and (AND)
and bitwise-or (OR) that are used for masking bits. The left
shift ( << ) and the right shift ( >> ) operators are “logi-
cal” shifts (as opposed to “arithmetic” shifts) and introduce
zeros. The bit-vector arithmetic operators are “signed” op-
erators that interpret the argument bits as 64-bit integers in
the 2’s complement notation. The floating-point operators
interpret the argument bits as 64-bit IEEE 754 double pre-
cision floating-point numbers. The casting operator i2f con-
sumes a bit-string, interprets it as an integer written in the
2’s complement notation (e.g., 42), and generates a bit-string
that when interpreted as a floating-point number represents
a value equal to the integer (e.g., 42.0). The round oper-
ator rounds to the nearest integer (e.g, 42.1 is rounded to
42.0) and the f2i operator first rounds and then converts the
rounded floating-point number to a 64-bit integer.

For any expression e, the concrete semantics is denoted
by E(e) : {0, 1}64 → {0, 1}64. That is, the value obtained
by evaluating e with an input x is given by E(e)(x). The
definition of E(·) is standard and we omit it.

4.2 Symbolic Abstractions
Our goal is to compute a symbolic representation that over-
approximates the behaviors of an expression e. Construct-
ing this abstraction is difficult due to the interplay between
floating-point and bit-level (bitwise, shift, bit-vector arith-
metic, and casting) operations. Therefore, we define this
abstraction piecewise. We restrict the inputs to small enough
intervals—thus ensuring that the bit-level operations are

amenable to static analysis—and we construct multiple ab-
stractions, one for each interval.

The description of our abstractions requires some opera-
tors relating real numbers and floating-point numbers. The
function d2R : {0, 1}64 → R ∪ {±∞,NaN} is the nat-
ural map from 64-bit floating-point numbers to real num-
bers. It handles infinity and not-a-number by mapping them
to {±∞,NaN}. This mapping is also extended to sets of
floating-point numbers in the obvious way. If P(·) denotes
the power set of a given set then the inverse map R2d :
P(R) → P({0, 1}64) maps a subset S of real numbers to
the largest set of floating-point numbers such that

∀x ∈ R2d(S). d2R(x) ∈ S

For brevity, we use the abbreviation Ŝ , R2d(S). We useX
to denote the interval over real numbers over which we want
to compute the precision loss. Therefore, the input χ ranges
over the set X̂ = R2d(X).

We next define a symbolic abstraction. Let I = {[l1, r1],
· · · , [ln, rn]} denote a set of intervals in R, where [li, ri] ⊆
X for all i. The symbolic representationA~δ : R→ R∪{⊥}
is a function of x ∈ R and ~δ = (δ1, · · · , δm), where each
δi ∈ R represents a rounding error. The fact that (I,A~δ) is
an abstraction of e is defined as follows.

Definition 1. (I,A~δ) is a symbolic abstraction of e if for all
intervals I ∈ I, for all floating-point numbers x ∈ Î ,

d2R(E(e)(x)) ∈ A(d2R(x))

where A(y) , [min~δ A~δ(y),max~δ A~δ(y)].

We discuss a procedure to construct a symbolic abstraction
(I,A~δ) of an expression e next.

4.3 Construction of Symbolic Abstractions
The expressions consist of floating-point and bit-level parts.
To reason about bit-level operations, we need to keep track
of subexpressions that are constant or are determined by
a small subset of the bits of the input χ. To this end, we
define a book-keeping map B : {0, 1}64 → {0, 1}64 ∪ {⊥}.
If B(x) 6= ⊥ then for all i = 0, · · · , 63, the ith bit of
B(x), denoted by B(x)[i], is either 0, or 1, or a boolean
function of the bits x[63], · · · , x[0]. For instance, consider
an expression e = (x AND 0x8015) OR 0x3fe013 which
computes a floating-point number sgn(x) × 0.5, where bi

is the string with i b’s, and sgn(·) is the sign function. The
book-keeping map for e is B(x) = x[63]019053, and it
represents that the sign bit of e is that of x and the rest of
the bits of e are the same as that of 0x3fe013.

Just like symbolic abstractions, the book-keeping map is
also defined piecewise over different intervals of I. We give
the formal definitions of defined-ness next.

Definition 2.
(I,A~δ) defined ⇔ ∀I ∈ I. ∀x ∈ I. A~δ(x) 6= ⊥
(I,B) defined ⇔ ∀I ∈ I. ∀x ∈ Î . B(x) 6= ⊥
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Next, we relate these abstractions with concrete semantics.

Definition 3. (I,A~δ,B) is consistent with e if the following
hold:

(I,A~δ) defined ⇒ (I,A~δ) is a symbolic abstraction of e,
(I,B) defined ⇒ ∀I ∈ I. ∀x ∈ Î . E(e)(x) = B(x)

An important case is when every bit of B is a constant over
each interval and we define it separately.

Definition 4.

(I,B) constant ⇔ ∀I ∈ I. ∃n ∈ {0, 1}64. ∀x ∈ Î . B(x) = n

Figure 5 lists the rules for construction of symbolic
abstractions. These rules have the following form: e B
(I,A~δ,B), read as e is provably consistent with (I,A~δ,B).
These rules use the following notations. For a set S, IdS :
S → S denotes the identity function. For a function
f : T → U and a subset S ⊂ T , f�S : S → U is a
restriction of f on S.

The rules for atomic expressions are direct (CONST and
INPUT). For a table lookup, the index should be a con-
stant over each interval (LOOKUP). Here, the result of the
lookup can be obtained via the concrete semantics. For ex-
ample, consider a table lookup L[e] where e represents the
bits of the exponent of χ. Also assume that I = {Ik :

∀x ∈ Îk. exponent of x = k}. Then, the lookup corre-
sponding to the kth interval provides the bits L[k], which
are recorded in the book-keeping map and the symbolic rep-
resentation. The rule for i2f is similar. Similarly, if all the
arguments to a binary operator ⊗ are constant over each in-
terval then the resulting values can be obtained by evaluation
(CONSTARG). For example, suppose that for all Ik ∈ I,
the book-keeping map says that for all x ∈ Îk, the expres-
sion e1 evaluates to k and e2 evaluates to k + 1. Then the
book-keeping map for e1 +i e2 maps x ∈ Îk to 2k + 1.
Note that for bit-vector arithmetic operations, only the rule
CONSTARG applies.

The rule for bitwise operations, when B is defined but the
bits are not constant (BITOP), requires a refinement of two
sets of intervals. This operation is defined as follows:

refine(I1, I2) , {I1 ∩ I2 6= ∅ : I1 ∈ I1, I2 ∈ I2}

The refinement operation is necessary because the intervals
over which B1 (or A1,~δ) is defined piecewise can be differ-
ent from those intervals for B2 (or A2,~δ). For instance, for
I1 = {[−3, 0), (0, 3]} and I2 = {[−3,−1), (−1, 1), (1, 3]},
refine(I1, I2) = {[−3,−1), (−1, 0), (0, 1), (1, 3]}. Note
that the refined intervals do not necessarily cover the original
intervals: there can be inputs x ∈ I1 where I1 ∈ I1 and x is
absent from all intervals of refine(I1, I2). The shift opera-
tion also uses refine(·, ·) and requires the shift amount to be
a constant for each interval (SHIFT). These are in contrast
to the rule CONSTARG that requires both of the arguments
of a binary operator to be constant for each interval.

The symbolic representation is undefined for bit-level op-
erations (BITOP and SHIFT). A floating-point operation
results in an undefined book-keeping map and the symbolic
representation is updated by applying the corresponding op-
eration over real numbers and introducing a new error term
δ′ (FLOP)4.

Remark. The rule FLOP describes an abstraction step:
we are over-approximating the result obtained from a floating-
point operator by introducing the δ variables that model
rounding errors. Floating-point operations can be composed
in non-trivial ways to generate exactly rounded results [8],
whereas in the symbolic representations that we use, the
rounding errors only increase with the number of operations.
For example, there are no rounding errors if a floating-point
number is multiplied by a power of two. However, the rule
FLOP introduces a new δ variable for this operation.

The rounding operation requires an auxiliary function
splitA(I,A~δ) (RND). This function splits the intervals in I
further so that all floating-point numbers in each sub-interval
round to the same integer:

splitA(I,A~δ) ,
⋃
I∈I{Ik 6= ∅ : k ∈ Z}

where each Ik ⊂ I is an interval such that A(Ik) ⊂ (k −
1
2 , k+ 1

2 ), andA(I) , [minx∈I,~δ A~δ,maxx∈I,~δ A~δ]. For in-
stance, for I = {[−3, 3]} and A~δ(x) = (0.25× x)(1 + δ1),
splitA(I,A~δ) = {[−3,− 2

1−ε ], [−
2

1+ε ,
2

1+ε ], [
2

1−ε , 3]} =
I ′. The intervals created by splitA(I,A~δ) are not guaran-
teed to include all floating-point numbers that belong to the
intervals of I (e.g., no interval of I ′ includes 2).

The rule SPLIT uses an auxiliary function splitB(I,B)
to split the intervals in I further so that B is constant on each
sub-interval. For an interval I , we define

M(I,B) , max{i : ∀x ∈ {0, 1}64−i. ∃n ∈ {0, 1}64.
∀y ∈ {0, 1}i. (x, y) ∈ Î ⇒ B((x, y)) = n}

Intuitively, M(I,B) is the maximum bit position i such that
for each choice of bits x[63], · · · , x[i] we have B(x[63], · · · ,
x[0]) = n for some constant n regardless of the choice
of bits x[i − 1], · · · , x[0]. By using M(I,B), we define
splitB(I,B) as

splitB(I,B) ,⋃
I∈I

{
[d2R(l),d2R(r)] ∩ I 6= ∅ : x ∈ {0, 1}64−i,

where i = M(I,B), l = (x, 0i), and r = (x, 1i)
}

Here, l and r are 64-bit vectors. For instance, for B(x) =
x[63]019053, I = [−3, 3], and I = {I}, we haveM(I,B) =
63 and splitB(I,B) = {[−∞,−0] ∩ I, [+0,+∞] ∩ I} =
{[−3, 0], [0, 3]}. Unlike refine(·, ·) and splitA(·, ·), the in-
tervals created by splitB(I,B) include all the floating-point
numbers that belong to the intervals of I. This rule is useful

4 Modifying the rule FLOP from A′ = (A1 ⊗ A2)(1 + δ′) to A′ =
(A1 ⊗A2)(1 + δ′) + δ′′ enables us to fully support denormals, where δ′′

is a fresh variable with |δ′′| < 2−1075.
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to create intervals over which expressions evaluate to con-
stant values, which are required for the rules LOOKUP,
I2F, F2ICONST, RNDCONST, CONSTARG and SHIFT.

If we mask out the lower order bits of the significand
using a bitwise-and operation (BAND) then its affect on the
symbolic representation can be modeled by an error term
using the following result:

Lemma 1. Let c ∈ {0, 1}64 and d = 112+n052−n ∈
{0, 1}64 for some n ∈ N. Then d2R(c AND d) ∈ {d2R(c)(1+
δ′) : |δ′| < 2−n}.
This result bounds the difference between the masked output
and the input using error terms.

Our main result follows by induction on the derivation tree:

Theorem 1. If eB (I,A~δ,B), then (I,A~δ,B) is consistent
with e, and thus (I,A~δ) is a symbolic abstraction of e.

From the rules to construct symbolic abstractions, intervals
in I cannot overlap with each other because each interval
I ∈ I has the property that for all values in Î , the value
of some subexpression is guaranteed to be a constant, and
because distinct intervals correspond to distinct constants.
In constructing symbolic abstractions, the only step that re-
quires manual intervention is the computation of splitA(·, ·),
which could be automated for our benchmarks in §5.

Next, we use this symbolic abstraction to bound the abso-
lute error or the ULP error of an implementation e from its
mathematical specification.

4.4 Computing Precision Loss
We describe a procedure to bound the precision loss of an
implementation. Let e be an expression that implements a
mathematical specification f : R → R. The aim is to
compute a bound Θ such that on any input the outputs of
e and f differ by at most Θ. More formally,

Definition 5. Θa ∈ R is a sound absolute error bound for e
and f over the interval I if for all x ∈ Î ,

|d2R(E(e)(x))− f(d2R(x))| ≤ Θa

We have a similar definition for ULPs.

Definition 6. Θu ∈ R is a sound ULP error bound for e and
f over the interval I if for all x ∈ Î ,

ULP(E(e)(x), f(d2R(x))) ≤ Θu

We first present a procedure to compute Θa. Let (I,A~δ)
be a symbolic abstraction of e. We compute

Θ1 = max

{
max
x∈I,~δ

∣∣f(x)−A~δ(x)
∣∣ : I ∈ I

}
(4)

This computation is an analytical optimization problem that
can be solved by computer algebra systems. The time and
memory required to solve the optimization problem in-
creases with the number of variables. Moreover, A~δ(x) has

many variables, because a new δ variable is created for each
floating-point operation (the rule FLOP of Figure 5). Hence
off-the-shelf solvers fail to solve Equation 4 as is.

For tractability, we simplify Equation 4. In our evalu-
ation, the symbolic representations are polynomials with
small degrees and the inputs are restricted to small ranges
(§5). In this setting, we can prove that the terms in A~δ(x)
that involve a product of multiple δ variables are negligi-
ble compared to other values. Informally, if the coefficients
and input ranges of a polynomial are bounded by a constant
c then the rounding error introduced by all δ terms with de-
gree> 1 is bounded by C = (4c)nε

1−ε . The proof uses standard
numerical analysis techniques and is omitted.

With this simplification, the expression
∣∣f(x)−A~δ(x)

∣∣
can be rearranged such that |f(x) − A~δ(x)| ≤ |M0(x)| +∑
i |Mi(x)||δi|, where M0(x) is C plus all the terms of

f(x) − A~δ(x) having no δ, and Mi(x) is the coefficient
of δi in f(x) − A~δ(x). We use optimization techniques to
maximize |Mi(x)| for each interval I ∈ I (which is tractable
because Mi(x) is a function of a single variable) and report

max
x∈I
|M0(x)|+

∑
i

(
max
x∈I
|Mi(x)|

)(
max
δi
|δi|
)

(5)

as a bound on the absolute error over the interval I . The
number of total optimization tasks required to obtain Θ1

(Equation 4) is proportional to the product of the number of δ
variables and the number of intervals in I. In our evaluation,
we observe that the number of optimization tasks is tractable
and the time taken by each task is less than a second (§5).

Recall that X represents the interval of interest and
we may have

(⋃
I∈I I

)
6= X due to the operations used

in computing symbolic abstractions (i.e., refine(·, ·) and
splitA(·, ·)). Therefore, it is possible that Θa 6= Θ1 if the
input that results in the maximum absolute error belongs to
the set H = X\

(⋃
I∈I I

)
. So we compute

Θ2 = max
{
|d2R(E(e)(x))− f(d2R(x))| : x ∈ Ĥ

}
(6)

In our experiments, |Ĥ| is small enough that it is feasible
to compute Θ2 by brute force testing, i.e., by evaluating e
and f on every floating-point number in Ĥ . Note that it
is not feasible to perform brute force on X̂ as it contains
an intractable number of floating-point numbers and thus
symbolic abstractions are necessary. A sound absolute error
bound is then given by Θa = max{Θ1,Θ2}.

Next, we compute a sound ULP error bound Θu. It can
be computed from either a bound on absolute error or a
bound on relative error (§3). The latter is the maximum of
two quantities: the maximum relative error observed during
testing on inputs in Ĥ and the result of the following opti-
mization problem:

Θr = max

{
max
x∈I,~δ

∣∣∣∣f(x)−A~δ(x)

f(x)

∣∣∣∣ : I ∈ I

}
(7)
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Rules for atomic expressions:

cB ({X}, d2R(c), c)
CONST

χB ({X}, IdR, Id{0,1}64)
INPUT

Rules for operators (with all constant arguments):

eB (I, ,B) (I,B) constant
∀I ∈ I. B′�Î = E(L[B�Î ]) ∧ A

′
~δ�I = d2R(B′�Î)

L[e]B (I,A′~δ,B
′)

LOOKUP

eB (I, ,B) (I,B) constant
∀I ∈ I. A′~δ�I = d2R(B�Î)

i2f(e)B (I,A′~δ,B)
I2F

eB (I, ,B) (I,B) constant
∀I ∈ I. B′�Î = E(f2i(B�Î)) ∧ A

′
~δ�I = d2R(B′�Î)

f2i(e)B (I,A′~δ,B
′)

F2ICONST

eB (I, ,B) (I,B) constant
∀I ∈ I. B′�Î = E(round(B�Î)) ∧ A

′
~δ�I = d2R(B′�Î)

round(e)B (I,A′~δ,B
′)

RNDCONST

e1 B (I1, ,B1) (I1,B1) constant
e2 B (I2, ,B2) (I2,B2) constant

I′ = refine(I1, I2) ∀I ∈ I′. B′�Î = E(B1�Î ⊗ B2�Î) ∧ A
′
~δ�I = d2R(B′�Î)

e1 ⊗ e2 B (I′,A′~δ,B
′)

CONSTARG

Rules for operators (with one or more non-constant argument(s)):

e1 B (I1, ,B1) (I1,B1) defined
e2 B (I2, ,B2) (I2,B2) defined

I′ = refine(I1, I2) ∀I ∈ I′. ∀x ∈ Î . B′�Î(x) = B1�Î(x)⊗b B2�Î(x)

e1 ⊗b e2 B (I′,⊥,B′) BITOP

e1 B (I1, ,B1) (I1,B1) defined
e2 B (I2, ,B2) (I2,B2) constant

I′ = refine(I1, I2) ∀I ∈ I′. ∀x ∈ Î . B′�Î(x) = B1�Î(x)⊗s B2�Î
e1 ⊗s e2 B (I′,⊥,B′) SHIFT

e1 B (I1,A1,~δ, ) (I1,A1,~δ) defined
e2 B (I2,A2,~δ, ) (I2,A2,~δ) defined

I′ = refine(I1, I2) ∀I ∈ I′. ∀x ∈ I. A′~δ�I(x) = (A1,~δ�I(x)⊗A2,~δ�I(x))(1 + δ′),
where δ′ is a fresh variable with a condition |δ′| < ε

e1 ⊗f e2 B (I′,A′~δ,⊥)
FLOP

round(e)B (I,A~δ,B) (I,B) defined

f2i(e)B (I,A~δ,B)
F2I

eB (I,A~δ, ) (I,A~δ) defined

I′ = splitA(I,A~δ) ∀Ik ∈ I′. A′~δ�Ik = k ∧ B′�Îk = k̂

round(e)B (I′,A′~δ,B
′)

RND

Rule to produce a book-keeping map that is constant on each interval:

eB (I, ,B) (I,B) defined
I′ = splitB(I,B) ∀I ∈ I′. A′~δ�I = d2R(B�Î)

eB (I′,A′~δ,B)
SPLIT

Rule for masking:
e1 B (I1,A1,~δ, ) (I1,A1,~δ) defined
e2 B (I2, ,B2) (I2,B2) constant
∃n ∈ N. ∀I ∈ I2. B2�Î = 112+n052−n,

I′ = refine(I1, I2) ∀I ∈ I′. ∀x ∈ I. A′~δ�I(x) = (A1,~δ�I(x))(1 + δ′),
where δ′ is a fresh variable with a condition |δ′| < 2−n

e1 AND e2 B (I′,A′~δ,⊥)
BAND

Figure 5. The rules for constructing a symbolic abstraction.
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f LoC of f LoC of fopt Reduction in size Speedup
exp 38 28 10 1.6×
sin 66 42 24 1.5×
tan 107 89 18 1.1×
log 67 54 13 1.3×

Table 1. Important statistics of each implementation for
case studies (LoC is lines of x86 assembly). The manual-
ly/automatically created variants have smaller number of in-
structions (column 4) and are faster (column 5) than their
production counterparts.

In our evaluation, we compute bounds on the ULP error
using both the relative and the absolute error and report the
better bound.

5. Case Studies
We evaluate our technique on Intel’s implementations of
the positive difference function and three widely used tran-
scendental functions: the sine function, the tangent function,
and the natural logarithm function. We prove formal bounds
on how much each implementation (fdim, sin, tan, and
log) deviates from the corresponding mathematical speci-
fication (fdim (·, ·), sin (·), tan (·), and log (·)). These im-
plementations are available as (undocumented) x86 binaries
included in libimf, which is Intel’s implementation of the
C numerics library math.h. The library contains many dif-
ferent implementations for these functions that have differ-
ing performance on different processors and input ranges.
We choose the implementations used in the benchmark set
of [22] and perform the verification for these implementa-
tions.

Next, we manually modify these binaries to create imple-
mentations that have better performance at the cost of less
precise results (Table 1). Using our technique, we are also
able to prove formal bounds on the precision loss of these
variants. The results are summarized in Table 2 and Figure 7.

We currently use Mathematica to solve Equation 5,
though this is largely a matter of convenience. Mathemat-
ica provides functions to solve global optimization problems
analytically, namely the MaxValue[·] and the MinValue[·]
functions which find exact global optima of a given opti-
mization problem (using several different algorithms, e.g.,
cylindrical algebraic decompositions).5 The analytical opti-
mization that we use is in contrast to typical numerical op-
timization that uses finite-precision arithmetic without pro-
viding formal guarantees. Other techniques, such as interval
arithmetic or branch and bound optimization [23], can be
used (instead of Mathematica) to solve Equation 5 soundly.

To compute Θ2 in Equation 6, for each x ∈ Ĥ , we com-
pare the floating-point result E(e)(x) computed by an eval-

5 https://reference.wolfram.com/language/tutorial/
ConstrainedOptimizationExact.html

1 movapd %xmm0, %xmm2
2 cmpsd $0x6, %xmm1, %xmm0
3 andpd %xmm0, %xmm1
4 andpd %xmm2, %xmm0
5 subsd %xmm1, %xmm0
6 retq

Figure 6. The x86 assembly code of fdim.

uation of e on x, with the exact result f(d2R(x)) computed
by Mathematica.

Even though Mathematica claims soundness guarantees,
it does not produce a certificate of correctness with the
solution. In the future we would like to replace Mathematica
with a solver that produces machine-checkable certificates.

5.1 The fdim Implementation
As a warm up, consider the positive difference function of
math.h: fdim (x, y) , x − y if x > y and 0 otherwise.
Figure 6 shows Intel’s implementation of fdim. It first sets
each of the lower 64 bits of the register xmm0 to be 0 if
x ≤ y, and 1 otherwise (line 2). Next, it sets xmm0 and
xmm1 to be both 0 if x ≤ y, and x and y otherwise (lines 3-
4). The output is obtained by subtracting xmm1 from xmm0
(lines 5-6).

To obtain a symbolic abstraction (I,A~δ) of fdim, we
apply the technique described in §4.3 with X = [−1, 1] ×
[−1, 1]. The instruction cmpsd6 in line 2 results in the
intervals I = {I1, I2}, where I1 = {(x, y) ∈ X : x ≤ y}
and I2 = {(x, y) ∈ X : x > y}. The final symbolic
representation is A~δ(x, y)�I1 = 0 and A~δ(x, y)�I2 = (x −
y)(1 + δ1). Computing a sound absolute error bound Θa for
fdim and fdim (·, ·) over X is straightforward:

Θa = max
(x,y)∈I2, |δ1|<ε

|(x− y)δ1| = 2ε

The relative error bound (Equation 7) is ε so a sound ULP
error bound is Θu = 2.

5.2 The sin Implementation
Intel’s sin implementation uses the following procedure
to compute sin (x). It first computes an integer N and a
reduced value d:

N = round

(
32

π
x

)
, d = x− π

32
N (8)

Then it uses the following trigonometric identity:

sin (x) = sin (d) cos
( π

32
N
)

+ cos (d) sin
( π

32
N
)

6 Due to space constraints, Figure 5 omits the rule for cmpsd.
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Interval Θa Θu |Ĥ| |~δ| |I|

fdim [−1, 1]× [−1, 1] 2× 10−16 2 0 1 2

exp [−4, 4] 6× 10−14 14 36 29 13

expopt [−4, 4] 1× 10−8 2× 106 36 19 13

sin
[
−π

2
, π
2

]
2× 10−16 9 110 53 33

sinopt
[
−π

2
, π
2

]
2× 10−11 3× 105 110 26 33

tan
[
0, 17π

64

)
7× 10−16 12 89 84 10[

17π
64
, 31π

64

)∗
2× 10−13 218 89 85 7[

31π
64
, π
2

)∗
2× 1015 9× 1018 89 85 1

tanopt
[
0, 17π

64

)
3× 10−12 3× 104 89 69 10[

17π
64
, 31π

64

)∗
4× 10−10 5× 105 89 69 7[

31π
64
, π
2

)∗
2× 1016 9× 1018 89 69 1

log (0, 4) \
[
4095
4096

, 1
)

8× 10−14 21 0 25 221[
4095
4096

, 1
)

9× 10−19 1× 1014 0 25 1

logopt (0, 4) \
[
4095
4096

, 1
)

6× 10−11 5× 105 0 12 221[
4095
4096

, 1
)

1× 10−18 1× 1014 0 12 1

Table 2. Summary of results: For each implementation (col-
umn 1), for all inputs in the interval (column 2), Θa shows
the bound on maximum absolute error and Θu shows the
bound on maximum ULP error between the implementation
and the exact mathematical result. The number of inputs that
require testing (|Ĥ|), the number of δ variables (|~δ|), and the
number of intervals considered (|I|) in the symbolic abstrac-
tion are also shown. The values of Θa and Θu on the rows
with ∗ need not to be sound.

The terms sin (d) and cos (d) are computed by a Taylor
series expansion:

sin (d) ≈ d− d3

3!
+
d5

5!
− d7

7!
+
d9

9!

cos (d) ≈ 1− d2

2!
+
d4

4!
− d6

6!
+
d8

8!

The Taylor series expansion includes an infinite number
of terms. However, since d is small in magnitude, a small
number of Taylor series terms shown above are sufficient to
provide a good approximation of sin (d) and cos (d). The
remaining terms, sin

(
π
32N

)
and cos

(
π
32N

)
, are obtained

by table lookups. A table in memory stores precomputed
values sin

(
π
32 i
)

and cos
(
π
32 i
)

for each i = 0, · · · , 63 and
the index i = (N) AND 0x3f is used to retrieve the correct
value. The sin implementation uses bit-level operations to
compute the index i and the final memory address for the
lookup.

We modify sin to obtain a more efficient but less pre-
cise implementation sinopt. These modifications include
removing all subcomputations that have only a small ef-
fect on the final output. In particular, sinopt uses a Tay-
lor series expansion of degree 5 (instead of 9). The com-

pensation terms are also omitted. These are terms such
as (c1 −f (c1 +f c2)) +f c2 that are 0 in the absence of
rounding errors but are important for maintaining accu-
racy of floating-point computations (see the remark in
§4.3). Moreover sinopt replaces some very small constants
(e.g., 7.9× 10−18) by 0.

For X = [−π2 ,
π
2 ], we compute a symbolic abstraction

(I,A~δ) of sin by applying the technique described in §4.3.
In the final abstraction |I| = 33 and there are 53 δ’s in A~δ
(Table 2). The main step in the construction of a symbolic
abstraction for sin (as well as sinopt) is the application of
the rule RND so that each of the resulting intervals contains
inputs that map to the sameN (Equation 8). A total of |Ĥ| =
110 inputs do not belong to any interval of I, which is easily
a small enough set that we can compute Θ2 (Equation 6) via
testing on each of these inputs.

We then use the procedure described in §4.4 to compute
Θa and Θu over the intervalX for sin and sinopt (Table 2
and Figure 7). Our main result for sin is a proof that for all
inputs in

[
−π2 ,

π
2

]
, the computed result differs from sin (x)

only by 9 ULPs, that is, there are at most 9 floating-point
numbers between the computed result and the mathemati-
cally exact result. For sinopt, we have successfully traded
a small loss in precision (bearable for many applications) for
over 50% improvement in performance (Table 1).

5.3 The tan Implementation
Intel’s tan implementation uses the following procedure
to compute tan (x). To focus on the distinctive parts of
the implementation, we assume that the input x ∈ X =[
0, π2

)
. The first step is to compute an integer N and

a reduced value d:

N =

⌊
32

π
x+

1

2

⌋
, d = x− π

32
N

Then we compute

tan (x) ≈ bR(x) + T15(d), R(x) =
1

π
2 − x

+
c

(π2 − x)2

Here, b = 0 if x ∈
[
0, 17π64

)
and b = 1 if x ∈

[
17π
64 ,

π
2

)
,

c = 8.84372 · · · × 10−29, and T15(d) =
∑15
i=0 qid

i is a
polynomial approximation of tan (x) − bR(x) of degree
15 where the polynomial coefficients depend on N . The
coefficients q0, · · · , q15 of T15(·) are retrieved from a lookup
table based on the index N . Note that, unlike exp and sin,
tan includes rational terms 1/

(
π
2 − x

)
and 1/

(
π
2 − x

)2
in

order to minimize the precision loss near x = π
2 .

The hand-optimized implementation tanopt uses a poly-
nomial approximation of degree 12 (instead of 15) and omits
an AND operation used by tan to mask out lower order
bits of the significand of an intermediate result. We omit the
compensation terms and obtain a total speed up of 1.1× (Ta-
ble 1).

To construct a symbolic abstraction of tan (and tanopt),
we apply the rules RND, SPLIT, and BAND. Again, we
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use Mathematica to compute an absolute error bound. How-
ever, the analytical optimization routines of Mathematica
time out while computing Θ1 in the presence of rational
terms (i.e., if x ≥ 17π

64 ). Therefore, we use numerical op-
timization routines NMaxValue[·] and NMinValue[·] for the
intervals that are subsets of

[
17π
64 ,

π
2

)
. Since numerical opti-

mization routines have no correctness guarantees, the com-
puted error bounds for x ≥ 17π

64 need not to be sound. How-
ever, soundness is still maintained for x < 17π

64 as these
intervals are optimized analytically (using MaxValue and
MinValue).

In Table 2, we observe that the ULP error over
[
0, 17π64

)
is small (12 ULPs), and the ULP error over

[
17π
64 ,

31π
64

)
is

slightly higher (218 ULPs). For the interval J =
[
31π
64 ,

π
2

)
,

we do not obtain good bounds. The absolute error is large on
the interval J as the rational terms grow quickly near π2 . The
relative error is large on J as one of the optimization task is
the following:

max
x∈J

∣∣∣∣ 1

(π2 − x)2 tan(x)

∣∣∣∣
For x close to π

2 , the optimization objective is unbounded
so the obtained bounds on relative error are large. Because
neither the absolute error nor the relative error provides good
bounds on ULP error, the bounds on ULP error are large
for x ∈ J . The results for tanopt are similar (Table 2 and
Figure 7).

5.4 The log Implementation
Intel’s log implementation uses the following procedure to
compute log (x) for x > 0. Let us denote the exponent of
x by p and f = f1, f2, . . . , f52 denotes the bits of the sig-
nificand of x. The implementation first constructs a single
precision floating-point number g = 1.f1 . . . f23. Next, the
result 1

g obtained from a single precision reciprocal opera-
tion is converted to a double d′. Using x = 1.f × 2p, we
have the following identity:

log (x) ≈ log (2p) + log (g) + log (d′ × 1.f)

≈ p log (2) + log

(
256

i+ 128

)
+ log (1 + d) ,

where i = round (256d′ − 128) and d = d′ × 1.f − 1. The
quantity p is computed exactly by bit-level operations that
extract the exponent of x. The quantity log

(
256
i+128

)
is com-

puted by table lookups based on the index i. The lookup ta-
ble stores the value log

(
256
i+128

)
for i = 0, · · · , 128. Finally,

since d is small in magnitude, log (1 + d) is computed using
a Taylor series of degree 7. The log implementation uses
bit-level operations to compute p, g, and d′.

We hand-optimize log to create an implementation
logopt that uses a Taylor series of degree 4 (instead of
7) and ignores some bit-manipulations of the significand.

We also remove the compensation terms and obtain a total
speedup of 1.3× (Table 1).

To construct a symbolic abstraction of log (as well as
logopt), we apply the rule SPLIT to ensure that, for each
interval, d′ is a constant. UsingX = (0, 4), we obtain a sym-
bolic abstraction (I,A~δ) of log with |I| = 221, |Ĥ| = 0,
and 25 δ variables (Table 2). Unlike the other benchmarks,
|Ĥ| = 0 as splitA(·, ·) is not used in constructing the sym-
bolic abstraction. Since the number of intervals, |I|, is large,
we run 32 different instances of Mathematica in parallel. The
optimizations are performed analytically and the obtained
error bounds are sound. Moreover, each optimization task
takes less than a second and the total wall clock time for
log (resp. logopt) was 16 hours (resp. 5 hours).

In our opinion, the analysis of the log function best illus-
trates the power of our technique: We are able to automati-
cally reduce a very complex problem to millions of tractable
subproblems, and the total time required compares favorably
with the only alternative available today, which is an expert
using an interactive theorem prover to construct the proof.

We present the most interesting results. Except for the
interval J =

[
4095
4096 , 1

)
, the ULP error is small: 21 ULPs

(Table 2). For the interval J , the absolute error is very small:
9×10−19. This small absolute error is expected as log (x) is
close to zero on this interval (log (1) = 0). However, due to
the proximity to zero, even this small absolute error leads to
a large ULP error (see the remark in §3). For sin and tan,
we are able to get good bounds on ULP error near zero by
using bounds on relative error. However, the relative error
of log is large on the interval J as one of the optimization
tasks is the following:

max
x∈J

∣∣∣∣x− 255
256

log x

∣∣∣∣
For x close to one, the optimization objective is unbounded
and the obtained bounds on relative error are large. There-
fore, the bounds on ULP error are large for x ∈ J . The re-
sults for logopt are similar (Table 2 and Figure 7).

6. Prior Work
Due to their mathematical sophistication and practical im-
portance, transcendental functions are used as benchmarks
in many verification studies. However, prior studies have ei-
ther focused on the verification of algorithms (and not im-
plementations) or the verification of comparatively simple
implementations that contain no bit-level operations.

In the absence of bit-level operations, a variety of tech-
niques can be used to bound rounding errors: GAPPA uses
interval arithmetic [6], FLUCTUAT uses affine arithmetic [7,
9], MATHSAT is an SMT solver that uses interval arithmetic
for floating-point [10], and ROSA combines affine arithmetic
with SMT solvers [5]. Interval arithmetic does not preserve
dependencies between variables and affine arithmetic fits
poorly with non-linearities. Hence, these approaches lead to
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Figure 7. Each graph shows a bound on precision loss between an implementation and the mathematically exact result. For
example, (a) plots a bound on absolute error between exp(x) and ex as a function of x. The brown lines represent the bounds
obtained from symbolic abstractions and the blue dots signify the errors observed during explicit testing on inputs in Ĥ .
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imprecise results (see the evaluation in [23]). Very recently
optimization has been used in FPTAYLOR to bound round-
ing errors [23].

The problem that our technique solves is slightly differ-
ent from the problems that previous methods do. FPTAYLOR
bounds the difference between interpretations of an expres-
sion over the reals and over the floating-point numbers. For-
mally speaking, given a function g : R → R, FPTAYLOR
computes a bound on |fp(g)(x) − g(x)|, where fp(g) is a
function (from floating-point numbers to floating-point num-
bers) obtained from g by replacing all real-valued operations
with the corresponding floating-point operations. In contrast,
our technique bounds the difference between the polynomi-
als obtained from symbolic abstractions of binaries and the
true mathematical transcendentals. Due to the relationship
between fp(g) and g, it is impossible to have that fp(g) is a
polynomial and g is a transcendental, so FPTAYLOR and our
technique solve different problems.

Similarly, GAPPA, FLUCTUAT, and ROSA also aim to
bound the difference between two interpretations of the same
expression: over the reals and over the floating-point num-
bers. Moreover, they do not encode transcendentals while
our method requires encoding transcendentals.

Commercial tools such as FLUCTUAT and ASTRÉE [16]
provide some support for mixed floating-point and bit-level
code. These tools use abstract domains tailored to specific
code patterns and reason soundly about low-level C imple-
mentations. In contrast, our approach is general and system-
atic. FLUCTUAT supports subdivision of input ranges, but its
subdivision strategy is generic and requires no static analy-
sis (e.g., repeatedly halving an input interval until the desired
error bound on each subdivision is reached). The paper [15]
subdivides according to the exponent bits to improve pre-
cision. Our work provides a general algorithm to construct
these subdivisions; the need for this automatic interval con-
struction to be sound leads to a distinctive characteristic of
our subdivisions, the presence of floating-point numbers that
are not covered by any interval.

Intel’s processors contain instructions (e.g., fsin, fcos,
etc.) that evaluate transcendental functions. The manual7

for Pentium processors stated that a “rigorous mathematical
analysis” had been performed and that the “worst case er-
ror is less than one ulp” for the output of these instructions.
These claims were discovered to be incorrect and the instruc-
tions actually have large errors even for small arguments8.
This incident indicates that obtaining accurate implementa-
tions of transcendental functions is non-trivial. Intel’s lat-
est manual9 acknowledges the mistake (“the ulp error will
grow above these thresholds”) and recommends developers

7 Appendix G, http://www.intel.com/design/pentium/MANUALS/

24143004.pdf
8 http://notabs.org/fpuaccuracy/
9 §8.3.1, http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html

use the software implementations in Intel’s Math Library.
We are interested in verification of these implementations.
A description of implementations that are similar to the ones
that we verify can be found in [13].

Harrison describes machine-checkable proofs of algo-
rithms that compute 64-bit sin (·) [12] and 32-bit exp (·) [11].
The verified algorithms are fairly close to the one employed
by the implementations described in §5. Harrison’s main re-
sult is a proof in HOL Light that the algorithms compute
results within 0.57 ULPs of the mathematically exact result.
The proof requires an extensive mathematical apparatus that
seems necessary for such a precise bound. Harrison reports
that the manual effort required for each such proof can vary
from weeks to months [11].

In contrast, we have a general verification technique that
can be readily applied to a variety of functions and their au-
tomatically or manually produced variants. This generality
and better automation is achieved at the expense of analy-
sis precision and the bounds we infer, while sharp enough to
be useful, are loose compared to Harrison’s manual proofs.
Moreover, we have evaluated our technique only on small in-
put ranges, whereas Harrison proves bounds for large ranges.

Techniques that provide statistical (as opposed to formal)
guarantees include [17, 19, 22]. Analyses described in [1, 2,
4, 14] do not have any formal or statistical guarantees.

7. Discussion
Our technique is directly applicable to trading precision for
performance. Most programs do not require all bits of preci-
sion and imprecise implementations can have better perfor-
mance [21]. We believe that our verification technique sig-
nificantly lowers the barrier to entry for developers who want
to explore such trade-offs but are afraid of the subtleties as-
sociated with floating-point. The developers can create im-
precise but efficient implementations either manually or by
using tools such as [21, 22] and prove their correctness for-
mally using our technique. Conversely, our technique can
also be used to formally prove the correctness of transfor-
mations that improve precision [20]. These transformations
are currently validated via sampling.

While we believe our approach is promising, there are
important limitations that would be desirable to improve
or remove altogether. Ideally, we would like to achieve
bounds within 1 ULP. We have taken a step in this direction
by demonstrating the first technique that can prove sound
bounds on the ULP error for these implementations, which
in some cases, are close to the desired result (e.g., 9 ULPs
for sin). However, automatically proving that these rou-
tines are accurate to within 1 ULP requires further advances
in verification techniques for floating-point that can address
the imprecision introduced by the abstractions for rounding
errors (see the remark in §4.3). Next, the inferred bounds
are sound only for small ranges of inputs. Removing this
restriction introduces new challenges: if the inputs belong
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to a large range then the intermediate values could include
NaNs or infinities. Moreover, the simplifications of the op-
timization problem described in §4.4 would no longer be
sound. Orthogonally, our technique cannot handle all bit-
level tricks. For example, a good approximation to the in-
verse square root of a floating-point number x is given by
0x5f3759df − (x >> 1). During verification of this ap-
proximation using our technique, the rule SPLIT of Fig-
ure 5 creates an intractable number of intervals. Therefore,
this task requires a different technique (e.g., exhaustive enu-
meration).

In general, the number of intervals can grow quickly with
the number of arguments on which bit-level operations are
performed. However, the functions in math.h have at most
three arguments. Therefore, this situation does not arise in
our particular application. We expect the number of intervals
to be tractable even for multivariate implementations. E.g.,
the dyadic function fdim requires only two divisions (§5.1).
Finally, since the optimization problems are independent,
parallelization can improve scalability significantly (§5.4).

8. Conclusion
We have presented the first systematic method for verifying
the behavior of binaries that mix floating-point and bit-level
operations. We have also demonstrated that the technique is
applicable directly to binaries corresponding to Intel’s highly
optimized implementations of transcendental functions.
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