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Summary

• One of the key challenges in stochastic variational inference 

is to design a low-variance estimator of objective’s gradient.

• The well-known reparameterization estimator has a low 

variance, but becomes biased for non-differentiable models.

• We generalize the reparameterization estimator so that it 

works for non-differentiable models as well.

Non-differentiable Models

• A probabilistic model can have non-differentiable density if

• it uses both discrete and continuous random variable,

• or it is specified using if-statements as in probabilistic 

programming.

• Assume 𝑟 𝐳 has the form:

𝑟 𝐳 = ෍

𝑘=1

𝐾

1 𝐳 ∈ 𝑅𝑘 ⋅ 𝑟𝑘 𝐳

• where 𝑟𝑘 is differentiable, 𝑅𝑘 1≤𝑘≤𝐾 is a disjoint partition of 

ℝ𝑛, and 𝜕𝑅𝑘 has Lebesgue measure zero.

• Example: Gaussian mixture model

𝑝 𝑧 = 𝒩 𝑧 0,1

𝑝 𝑥 𝑧 = 1 𝑧 > 0 𝒩 𝑥 5,1 + 1 𝑧 ≤ 0 𝒩 𝑥 −2,1

• For the above example with 𝑥0 = 0 and 𝑞𝜃 𝑧 = 𝒩 𝑧 𝜃, 1 ,

𝛻𝜃ELBO𝜃 ≠ 𝔼𝑞 𝜖 𝛻𝜃 log
𝑟 𝑓𝜃 𝜖

𝑞𝜃 𝑓𝜃 𝜖

• where 𝑞 𝜖 = 𝒩 𝜖 0,1 and 𝑓𝜃 𝜖 = 𝜖 + 𝜃.

• This happens because the below equation does not hold in 

general if 𝑔 is non-differentiable in 𝜃: 

𝛻𝜃න𝑔 𝝐, 𝜃 𝑑𝝐 = න𝛻𝜃𝑔 𝝐, 𝜃 𝑑𝝐

• In sum, the standard reparameterization estimator is biased

for non-differentiable models.

Variational Inference

• Let 𝑝 𝐱, 𝐳 be a probabilistic model about observed variable 

𝐱 ∈ ℝ𝑚 and latent variable 𝐳 ∈ ℝ𝑛.

• We are interested in inferring the posterior density 𝑝 𝐳|𝐱0

given a particular value 𝐱0 of 𝐱.

• Variational inference (VI) recasts the posterior inference 

problem as an optimization problem as follows.

• Given a collection of variational distributions 𝑞𝜃 𝐳 𝜃∈ℝ𝑑,

VI aims to find 𝜃 that maximizes the evidence lower bound 

(ELBO):

ELBO𝜃 ≜ 𝔼𝑞𝜃 𝐳 log
𝑟 𝐳

𝑞𝜃 𝐳
, where 𝑟 𝐳 ≜ 𝑝 𝐱0, 𝐳 .

• To solve the optimization problem efficiently, we need to 

estimate 𝛻𝜃ELBO𝜃 with a low variance.

Standard Gradient Estimators

• Score estimator (or REINFORCE):

𝛻𝜃ELBO𝜃 = 𝔼𝑞𝜃 𝐳 𝛻𝜃 log 𝑞𝜃(𝐳) ⋅ log
𝑟 𝐳

𝑞𝜃 𝐳

• It has a high variance,

• but can be applied even when 𝑟 𝐳 is non-differentiable.

• Reparameterization estimator:

𝛻𝜃ELBO𝜃 = 𝛻𝜃𝔼𝑞 𝝐 log
𝑟 𝑓𝜃(𝝐)

𝑞𝜃 𝑓𝜃(𝝐)
= 𝔼𝑞 𝝐 𝛻𝜃 log

𝑟 𝑓𝜃(𝝐)

𝑞𝜃 𝑓𝜃(𝝐)

• where 𝑞 ⋅ and 𝑓𝜃 ⋅ satisfy that 𝑓𝜃 𝝐 for 𝝐 ∼ 𝑞(𝝐) has the 

distribution 𝑞𝜃.

• It has a low variance,

• but can be applied only when 𝑟 𝐳 is differentiable.

Reparameterization for Non-differential Models

• Our unbiased reparameterization estimator:

𝛻𝜃ELBO𝜃 = 𝔼𝑞 𝝐 ෍

𝑘=1

𝐾

1 𝑓𝜃(𝝐) ∈ 𝑅𝑘 ⋅ 𝛻𝜃 log
𝑟𝑘 𝑓𝜃(𝝐)

𝑞𝜃 𝑓𝜃(𝝐)
+

෍

𝑘=1

𝐾

න
𝑓𝜃
−1 𝜕𝑅𝑘

𝑞 𝝐 log
𝑟𝑘 𝑓𝜃(𝝐)

𝑞𝜃 𝑓𝜃(𝝐)
⋅ 𝐕 𝝐, 𝜃 ⋅ 𝑑𝚺

• Here 𝐕 𝝐, 𝜃 ∈ ℝ𝑑×𝑛 is the velocity of 𝑓𝜃
−1 defined as

𝐕 𝝐, 𝜃 𝑖𝑗 ≜ ቤ
𝜕

𝜕𝜃𝑖
𝑓𝜃
−1 𝐳

𝐳=𝑓𝜃 𝝐 𝑗

Experimental Evaluation

• ELBO objective as a function of iteration number:

• Ratio of {REPARAM,OURS}’s average variance to SCORE’s

• Computation time (per iteration, in ms)

• OURS subsamples the summation in the correction term.

Key Ingredients

• Differentiation under moving domains:

𝛻𝜃න
𝐷𝜃

𝑔(𝝐, 𝜃)𝑑𝝐 = න
𝐷𝜃

𝛻𝜃𝑔 + 𝛻𝝐 ⋅ 𝑔𝐯 (𝝐, 𝜃)𝑑𝝐

• Divergence theorem:

න
𝑉

𝛻 ⋅ 𝑮 𝑑𝑉 = න
𝜕𝑉

𝑮 ⋅ 𝑑𝚺

• Estimation of surface integral:

We assume that the boundaries 𝑓𝜃
−1 𝜕𝑅𝑘 are affine.

Reparam’n term

Correction term


