Reparameterization Gradient for Non-differentiable Models

Summary

One of the key challenges in stochastic variational inference
IS to design a low-variance estimator of objective’s gradient.

The well-known reparameterization estimator has a low
variance, but becomes biased for non-differentiable models.

We generalize the reparameterization estimator so that it
works for non-differentiable models as well.

Variational Inference

Let p(x,z) be a probabilistic model about observed variable
x € R™ and latent variable z € R".

We are interested in inferring the posterior density p(z|x")
given a particular value x° of x.

Variational inference (VI) recasts the posterior inference
problem as an optimization problem as follows.

Given a collection of variational distributions {qg(z)}4cpa.

VI aims to find 8 that maximizes the evidence lower bound
(ELBO):

r(z)
qo(Z)

To solve the optimization problem efficiently, we need to
estimate VyELBOy with a low variance.

. where 7(z) 2 p(x°, 2).

ELBOg £ 00 (2) log

Standard Gradient Estimators

Score estimator (or REINFORCE):

r(z)
qo(z)

VeELBOg = [y, 2) | Vo l0g qo(2) - log

* It has a high variance,
* but can be applied even when r(z) is non-differentiable.

Reparameterization estimator:
: log r(fo(€)) : [\7 log r(fg(€))
M1 qa(fae)| ~ 191 C qa(fa(e))

where g(-) and fy(-) satisfy that f5(€) for € ~ q(€) has the
distribution gg.

Vg ELBO@ — Vg

* [t has a low variance,
* but can be applied only when r(z) is differentiable.
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Non-differentiable Models Key Ingredients
* A probabllistic model can have non-differentiable density if  Differentiation under moving domains:
It uses both discrete and continuous random variable,
 oritis specified using if-statements as in probabilistic VBL g(€,0)de = D (Vog + Ve - (gv))(€ 0)de
6 o

programming.

 Divergence theorem:
 Assume r(z) has the form: J

al V-6G)dV =] G-dx
r(z) = z 1[z € R,] - 7.(2) fv -6 fav
k=1

» Estimation of surface integral:
where 1y, is differentiable, {R; }; <<k IS a disjoint partition of

. _1 .
R", and aR, has Lebesgue measure zero. We assume that the boundaries f, ~(dR;) are affine.

« Example: Gaussian mixture model

Experimental Evaluation
p(2) = N(2]0,1) P

n(x|z) = 1[z > 0]V (x|5,1) + 1[z < 0]V (x|-2,1) » ELBO objective as a function of iteration number:
» For the above example with x° = 0 and g4(2) = N (2|6, 1), 25l ' ‘ ‘ . o
r(fo(€)) -
VQELBOQ ==3 | (€) lVg lOg —3.!
T qo(fo(€)) T
an
where g(e) = N'(€]|0,1) and fg(e) = € + 6. Sy,
This happens because the below equation does not hold in —2d : li(;iii |
general if g is non-differentiable in 8: e o | —
e 200 00 6000 S00( 000 7 2000 4000 6000 8000 10000
\79 f g(e’ H)de — J Veg(a H)de [teration [teration
textmsg (stepsize = 0.001) temperature (stepsize = 0.01)
* In sum, the standard reparameterization estimator Is biased » Ratio of {REPARAM,OURSY's average variance to SCORE'’s
for non-differentiable models.
Estimator  Type of Variance | temperature textmsg influenza
: : : : (VT —9 N—2 —3
Reparameterization for Non-differential Models REPARAM  Avg(V()) | 4.45x 107 2.91x 107%  4.38 X 10
e e————————————————————————————— V(| - 1]2) 2.45 x 1078  292x107¢ 2.12x 1073
« Our unbiased reparameterization estimator: OURS Avg(V(")) 1.85 x 107 2.77x 1072  4.89 x 107°
- V(| - [2) 759 x 107° 2.46 x 1072 2.36 x 1073
(8% (fg (E)) stepsize = 0.001
VQELBOQ = IEg(e) 2 1[fg(€) = Rk] ' VQ lOg ( ) |
£t qo(fo(€) o L
« Computation time (per Iteration, in ms)

Reparam’n term /

K

' " (fo (€)) Estimat t t text infl
Correction term —>z f CI(E) lOg k f@( ) . V(E, 9) Y stimator emp‘era ure extmsg in | uenza
= J5=1(aR,) qo (fo(€)) SCORE 21.7 1.9 18.7
: . _ REPARAM 46.1 15.4 251.4
» Here V(¢,6) € RY*" is the velocity of f; * defined as OURS 05 " )0 5

V(€ 0);; = ifg‘l(z)  OURS subsamples the summation in the correction term.
29, z=fg(€)
- J



