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Abstract

We present a new algorithm for stochastic variational inference that targets at
models with non-differentiable densities. One of the key challenges in stochastic
variational inference is to come up with a low-variance estimator of the gradient of
a variational objective. We tackle the challenge by generalizing the reparameteriza-
tion trick, one of the most effective techniques for addressing the variance issue
for differentiable models, so that the trick works for non-differentiable models
as well. Our algorithm splits the space of latent variables into regions where the
density of the variables is differentiable, and their boundaries where the density
may fail to be differentiable. For each differentiable region, the algorithm applies
the standard reparameterization trick and estimates the gradient restricted to the
region. For each potentially non-differentiable boundary, it uses a form of manifold
sampling and computes the direction for variational parameters that, if followed,
would increase the boundary’s contribution to the variational objective. The sum of
all the estimates becomes the gradient estimate of our algorithm. Our estimator
enjoys the reduced variance of the reparameterization gradient while remaining
unbiased even for non-differentiable models. The experiments with our preliminary
implementation confirm the benefit of reduced variance and unbiasedness.

1 Introduction

Stochastic variational inference (SVI) is a popular choice for performing posterior inference in
Bayesian machine learning. It picks a family of variational distributions, and formulates posterior
inference as a problem of finding a member of this family that is closest to the target posterior. SVI,
then, solves this optimization problem approximately using stochastic gradient ascent. One major
challenge in developing an effective SVI algorithm is the difficulty of designing a low-variance
estimator for the gradient of the optimization objective. Addressing this challenge has been the
driver of recent advances for SVI, such as reparameterization trick [13, 30, 31, 26, 15], clever control
variate [28, 7, 8, 34, 6, 23], and continuous relaxation of discrete distributions [20, 10].

Our goal is to tackle the challenge for models with non-differentiable densities. Such a model naturally
arises when one starts to use both discrete and continuous random variables or specifies a model
using programming constructs, such as if statement, as in probabilistic programming [4, 22, 37, 5].
The high variance of a gradient estimate is a more serious issue for these models than for those
with differentiable densities. Key techniques for addressing it simply do not apply in the absence
of differentiability. For instance, a prerequisite for the so called reparameterization trick is the
differentiability of a model’s density function.

In the paper, we present a new gradient estimator for non-differentiable models. Our estimator splits
the space of latent variables into regions where the joint density of the variables is differentiable, and
their boundaries where the density may fail to be differentiable. For each differentiable region, the
estimator applies the standard reparameterization trick and estimates the gradient restricted to the
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region. For each potentially non-differentiable boundary, it uses a form of manifold sampling, and
computes the direction for variational parameters that, if followed, would increase the boundary’s
contribution to the variational objective. This manifold sampling step cannot be skipped if we want
to get an unbiased estimator, and it only adds a linear overhead to the overall estimation time for a
large class of non-differentiable models. The result of our gradient estimator is the sum of all the
estimated values for regions and boundaries.

Our estimator generalizes the estimator based on the reparameterization trick. When a model
has a differentiable density, these two estimators coincide. But even when a model’s density is
not differentiable and so the reparameterization estimator is not applicable, ours still applies; it
continues to be an unbiased estimator, and enjoys variance reduction from reparameterization. The
unbiasedness of our estimator is not trivial, and follows from an existing yet less well-known theorem
on exchanging integration and differentiation under moving domain [3] and the divergence theorem.
We have implemented a prototype of an SVI algorithm that uses our gradient estimator and works for
models written in a simple first-order loop-free probabilistic programming language. The experiments
with this prototype confirm the strength of our estimator in terms of variance reduction.

2 Variational Inference and Reparameterization Gradient

Before presenting our results, we review the basics of stochastic variational inference.

Let x and z be, respectively, observed and latent variables living in Rm and Rn, and p(x, z) a density
that specifies a probabilistic model about x and z. We are interested in inferring information about
the posterior density p(z|x0) for a given value x0 of x.

Variational inference approaches this posterior-inference problem from the optimization angle. It
recasts posterior inference as a problem of finding a best approximation to the posterior among
a collection of pre-selected distributions {qθ(z)}θ∈Rd , called variational distributions, which all
have easy-to-compute and easy-to-differentiate densities and permit efficient sampling. A standard
objective for this optimization is to maximize a lower bound of log p(x0) called evidence lower
bound or simply ELBO:

argmaxθ

(
ELBOθ

)
, where ELBOθ , Eqθ(z)

[
log

p(x0, z)

qθ(z)

]
. (1)

It is equivalent to the objective of minimizing the KL divergence from qθ(z) to the posterior p(z|x0).

Most of recent variational-inference algorithms solve the optimization problem (1) by stochastic
gradient ascent. They repeatedly estimate the gradient of ELBOθ and move θ towards the direction
of this estimate:

θ ← θ + η · ∇θELBOθ
∧

The success of this iterative scheme crucially depends on whether it can estimate the gradient well in
terms of computation time and variance. As a result, a large part of research efforts on stochastic
variational inference has been devoted to constructing low-variance gradient estimators or reducing
the variance of existing estimators.

The reparameterization trick [13, 30] is the technique of choice for constructing a low-variance
gradient estimator for models with differentiable densities. It can be applied in our case if the joint
p(x, z) is differentiable with respect to the latent variable z. The trick is a two-step recipe for
building a gradient estimator. First, it tells us to find a distribution q(ε) on Rn and a smooth function
f : Rd×Rn → Rn such that fθ(ε) for ε ∼ q(ε) has the distribution qθ. Next, the reparameterization
trick suggests us to use the following estimator:

∇θELBOθ
∧

,
1

N

N∑
i=1

∇θlog
r(fθ(ε

i))

qθ(fθ(εi))
, where r(z) , p(x0, z) and ε1, . . . , εN ∼ q(ε). (2)

The reparameterization gradient in (2) is unbiased, and has variance significantly lower than the so
called score estimator (or REINFORCE) [35, 27, 36, 28], which does not exploit differentiability.
But so far its use has been limited to differentiable models. We will next explain how to lift this
limitation.
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3 Reparameterization for Non-differentiable Models

Our main result is a new unbiased gradient estimator for a class of non-differentiable models, which
can use the reparameterization trick despite the non-differentiability.

Recall the notations from the previous section: x ∈ Rm and z ∈ Rn for observed and latent variables,
p(x, z) for their joint density, x0 for an observed value, and qθ(z) for a variational distribution
parameterized by θ ∈ Rd.

Our result makes two assumptions. First, the variational distribution qθ(z) satisfies the conditions of
the reparameterization gradient. Namely, qθ(z) is continuously differentiable with respect to θ ∈ Rd,
and is the distribution of fθ(ε) for a smooth function f : Rd × Rn → Rn and a random variable
ε ∈ Rn distributed by q(ε). Also, the function fθ on Rn is bijective for every θ ∈ Rd. Second, the
joint density r(z) = p(x0, z) at x = x0 has the following form:

r(z) =

K∑
k=1

1[z ∈ Rk] · rk(z) (3)

where rk is a non-negative continuously-differentiable function Rn → R, Rk is a (measurable) subset
of Rn with measurable boundary ∂Rk such that

∫
∂Rk

dz = 0, and {Rk}1≤k≤K is a partition of Rn.
Note that r(z) is an unnormalized posterior under the observation x = x0. The assumption indicates
that the posterior r may be non-differentiable at some z’s, but all the non-differentiabilities occur only
at the boundaries ∂Rk of regions Rk. Also, it ensures that when considered under the usual Lebesgue
measure on Rn, these non-differentiable points are negligible (i.e., they are included in a null set of
the measure). As we illustrate in our experiments section, models satisfying our assumption naturally
arise when one starts to use both discrete and continuous random variables or specifies models using
programming constructs, such as if statement, as in probabilistic programming [4, 22, 37, 5].

Our estimator is derived from the following theorem:
Theorem 1. Let

hk(ε, θ) , log
rk(fθ(ε))

qθ(fθ(ε))
, V (ε, θ) ∈ Rd×n, V (ε, θ)ij ,

(
∂

∂θi

(
f−1θ (z)

)∣∣∣
z=fθ(ε)

)
j

.

Then,

∇θELBOθ = Eq(ε)

[
K∑
k=1

1[fθ(ε)∈Rk] · ∇θhk(ε, θ)

]
︸ ︷︷ ︸

RepGradθ

+

K∑
k=1

∫
f−1
θ (∂Rk)

(
q(ε)hk(ε, θ)V (ε, θ)

)
• dΣ︸ ︷︷ ︸

BouContrθ

where the RHS of the plus uses the surface integral of q(ε)hk(ε, θ)V (ε, θ) over the boundary
f−1θ (∂Rk) expressed in terms of ε, the dΣ is the normal vector of this boundary that is outward
pointing with respect to f−1θ (Rk), and the • operation denotes the matrix-vector multiplication.

The theorem says that the gradient of ELBOθ comes from two sources. The first is the usual
reparameterized gradient of each hk but restricted to its region Rk. The second source is the sum of
the surface integrals over the region boundaries ∂Rk. Intuitively, the surface integral for k computes
the direction to move θ in order to increase the contribution of the boundary ∂Rk to ELBOθ. Note
that the integrand of the surface integral has the additional V term. This term is a by-product of
rephrasing the original integration over z in terms of the reparameterization variable ε. We write
RepGradθ for the contribution from the first source, and BouContrθ for that from the second source.
The proof of the theorem uses an existing but less known theorem about interchanging integration
and differentiation under moving domain [3], together with the divergence theorem. It appears in the
supplementary material of this paper.

At this point, some readers may feel uneasy with the BouContrθ term in our theorem. They may
reason like this. Every boundary ∂Rk is a measure-zero set in Rn, and non-differentiabilities occur
only at these ∂Rk’s. So, why do we need more than RepGradθ, the case-split version of the usual
reparameterization? Unfortunately, this heuristic reasoning is incorrect, as indicated by the following
proposition:
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Proposition 2. There are models satisfying this section’s conditions s.t. ∇θELBOθ 6= RepGradθ.

Proof. Consider the model p(x, z) = N (z|0, 1)
(
1[z > 0]N (x|5, 1) + 1[z ≤ 0]N (x|−2, 1)

)
for

x ∈ R and z ∈ R, the variational distribution qθ(z) = N (z|θ, 1) for θ ∈ R, and its reparameterization
fθ(ε) = ε + θ and q(ε) = N (ε|0, 1) for ε ∈ R. For an observed value x0 = 0, the joint density
p(x0, z) becomes r(z) = 1[z > 0] · c1N (z|0, 1) + 1[z ≤ 0] · c2N (z|0, 1), where c1 = N (0|5, 1)
and c2 = N (0|−2, 1). Notice that r is non-differentiable only at z = 0 and {0} is a null set in R.

For any θ, ∇θELBOθ is computed as follows: Since log(r(z)/qθ(z)) = 1[z > 0] · (θ2/2 − zθ +

log c1) + 1[z ≤ 0] · (θ2/2 − zθ + log c2), we have1 ELBOθ = 1
2 [−θ2 + erf(θ/

√
2) log(c1/c2) +

log(c1c2)] and thus obtain ∇θELBOθ = −θ + log(c1/c2) exp
(
−θ2/2

)
/
√

2π.

On the other hand, RepGradθ is computed as follows: After reparameterizing z into ε, we have
log
(
r(fθ(ε))/qθ(fθ(ε))

)
= 1[ε+ θ > 0]·(−θ2/2−εθ+log c1)+1[ε+ θ ≤ 0]·(−θ2/2−εθ+log c2),

so the term inside the expectation of RepGradθ is 1[ε+ θ > 0] · (−θ − ε) + 1[ε+ θ ≤ 0] · (−θ − ε)
and we obtain RepGradθ = −θ.

Note that∇θELBOθ 6= RepGradθ for any θ. The difference between the two quantities is BouContrθ
in Theorem 1. The main culprit here is that interchanging differentiation and integration is sometimes
invalid: for D1, D2(θ) ⊂ Rn and α1, α2 : Rn×Rd → R, the below equations do not hold in general
if α1 is not differentiable in θ, and if D2(·) is not constant (even when α2 is differentiable in θ).

∇θ
∫
D1

α1(ε, θ)dε =

∫
D1

∇θα1(ε, θ)dε and ∇θ
∫
D2(θ)

α2(ε, θ)dε =

∫
D2(θ)

∇θα2(ε, θ)dε.

The RepGradθ term in Theorem 1 can be easily estimated by the standard Monte Carlo:

RepGradθ ≈
1

N

N∑
i=1

(
K∑
k=1

1
[
fθ(ε

i)∈Rk
]
· ∇θhk(εi, θ)

)
for i.i.d. ε1, . . . , εN ∼ q(ε).

We write RepGradθ

∧
for this estimate.

However, estimating the other BouContrθ term is not that easy, because of the difficulties in esti-
mating surface integrals in the term. In general, to approximate a surface integral well, we need
a parameterization of the surface, and a scheme for generating samples from it [2]; this general
methodology and a known theorem related to our case are reviewed in the supplementary material.

In this paper, we focus on a class of models that use relatively simple (reparameterized) boundaries
f−1θ (∂Rk) and permit, as a result, an efficient method for estimating surface integrals in BouContrθ.

A good way to understand our simple-boundary condition is to start with something even simpler,
namely the condition that f−1θ (∂Rk) is an (n−1)-dimensional hyperplane {ε | a · ε = c}. Here the
operation · denotes the dot-product. A surface integral over such a hyperplane can be estimated using
the following theorem:

Theorem 3. Let q(ε) =
∏n
i=1 q(εi) and S a measurable subset of Rn. Assume that S = {ε |

a · ε > c} or S = {ε | a · ε ≥ c} for some a ∈ Rn and c ∈ R, and that aj 6= 0 for some j. Then,∫
∂S

(
q(ε)F (ε)

)
• dΣ = Eq(ζ) [G(g(ζ)) • n] for all measurable F : Rn → Rd×n.

Here dΣ is the normal vector pointing outward with respect to S, ζ ranges over Rn−1, its density
q(ζ) is the product of the densities for its components, and this component density q(ζi) is the same
as the density q(εi′) for the i′-th component of ε, where i′ = i+ 1[i ≥ j]. Also,

G(ε) , q(εj)F (ε), g(ζ) ,
(
ζ1, . . . , ζj−1,

1

aj
(c− a−j · ζ), ζj , . . . , ζn−1

)ᵀ
,

a−j , (a1, . . . ,aj−1,aj+1, . . . ,an), n , sgn(−aj)
(a1

aj
, . . . ,

aj−1
aj

, 1,
aj+1

aj
, . . . ,

an
aj

)ᵀ
.

1The error function erf is defined by erf(x) = 2
∫ x

0
exp
(
−t2

)
dt/
√
π.
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The theorem says that if the boundary ∂S is an (n−1)-dimensional hyperplane {ε | a · ε = c}, we
can parameterize the surface by a linear map g : Rn−1 → Rn and express the surface integral as an
expectation over q(ζ). This distribution for ζ is the marginalization of q(ε) over the j-th component.
Inside the expectation, we have the product of the matrix G and the vector n. The matrix comes
from the integrand of the surface integral, and the vector is the direction of the surface. Note that
G(ε) has q(εj) instead of q(ε); the missing part of q(ε) has been converted to the distribution q(ζ).

When every f−1θ (∂Rk) is an (n−1)-dimensional hyperplane {ε | a · ε = c} for a ∈ Rn and c ∈ R
with ajk 6= 0, we can use Theorem 3 and estimate the surface integrals in BouContrθ as follows:∫
f−1
θ (∂Rk)

(
q(ε)hk(ε, θ)V (ε, θ)

)
• dΣ ≈ 1

M

M∑
i=1

W (g(ζi)) • n for i.i.d. ζ1, . . . , ζM ∼ q(ζ),

whereW (ε) = q(εjk)hk(ε, θ)V (ε, θ). Let BouContr(θ,k)
∧

be this estimate. Then, our estimator for
the gradient of ELBOθ in this case computes:

∇θELBOθ
∧

, RepGradθ

∧
+

K∑
k=1

BouContr(θ,k)
∧

.

The estimator is unbiased because of Theorems 1 and 3:

Corollary 4. E
[
∇θELBOθ
∧]

= ∇θELBOθ.

We now relax the condition that each boundary is a hyperplane, and consider a more liberal simple-
boundary condition, which is often satisfied by non-differentiable models from a first-order loop-free
probabilistic programming language. This new condition and the estimator under this condition are
what we have used in our implementation. The relaxed condition is that the regions {f−1θ (Rk)}1≤k≤K
are obtained by partitioning Rn with L (n−1)-dimensional hyperplanes. That is, there are affine
maps Φ1, . . . ,ΦL : Rn → R such that for all 1 ≤ k ≤ K,

f−1θ (Rk) =

L⋂
l=1

Sl,(σk)l for some σk ∈ {−1, 1}L

where Sl,1 = {ε | Φl(ε) > 0} and Sl,−1 = {ε | Φl(ε) ≤ 0}. Each affine map Φl defines an
(n−1)-dimensional hyperplane ∂Sl,1, and (σk)l specifies on which side the region f−1θ (Rk) lies
with respect to the hyperplane ∂Sl,1. Every probabilistic model written in a first-order probabilistic
programming language satisfies the relaxed condition, if the model does not contain a loop and uses
only a fixed finite number of random variables and the branch condition of each if statement in the
model is linear in the latent variable z; in such a case, L is the number of if statements in the model.

Under the new condition, how can we estimate BouContrθ? A naive approach is to estimate the
k-th surface integral for each k (in some way) and sum them up. However, with L hyperplanes, the
number K of regions can grow as fast as O (Ln), implying that the naive approach is slow. Even
worse the boundaries f−1θ (∂Rk) do not satisfy the condition of Theorem 3, and just estimating the
surface integral over each f−1θ (∂Rk) may be difficult.

A solution is to transform the original formulation of BouContrθ such that it can be expressed as the
sum of surface integrals over ∂Sl,1’s. The transformation is based on the following derivation:

BouContrθ =

K∑
k=1

∫
f−1
θ (∂Rk)

(
q(ε)hk(ε, θ)V (ε, θ)

)
• dΣ

=

L∑
l=1

∫
∂Sl,1

(
q(ε)V (ε, θ)

K∑
k=1

1
[
ε ∈ f−1θ (Rk)

]
(σk)lhk(ε, θ)

)
• dΣ (4)

where T denotes the closure of T ⊂ Rn, and dΣ in (4) is the normal vector pointing outward with
respect to Sl,1. Since {f−1θ (Rk)}k are obtained by partitioning Rn with {∂Sl,1}l, we can rearrange
the sum of K surface integrals over complicated boundaries f−1θ (∂Rk), into the sum of L surface
integrals over the hyperplanes ∂Sl,1 as above. Although the expression inside the summation over k
in (4) looks complicated, for almost all ε, the indicator function is nonzero for exactly two k’s: k1
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with (σk1)l = 1 and k−1 with (σk−1)l = −1. So, we can efficiently estimate the l-th surface integral
in (4) using Theorem 3, and call this estimate BouContr(θ,l)

∧
′. Then, our estimator for the gradient of

ELBOθ in this more general case computes:

∇θELBOθ
∧

′ , RepGradθ

∧
+

L∑
l=1

BouContr(θ,l)
∧

′. (5)

The estimator is unbiased because of Theorems 1 and 3 and Equation 4:

Corollary 5. E
[
∇θELBOθ
∧

′
]

= ∇θELBOθ.

4 Experimental Evaluation

We experimentally compare our gradient estimator (OURS) to the score estimator (SCORE), an
unbiased gradient estimator that is applicable to non-differentiable models, and the reparameterization
estimator (REPARAM), a biased gradient estimator that computes only RepGradθ

∧
(discussed in

Section 3). REPARAM is biased in our experiments because it is applied to non-differentiable models.

We implemented a black-box variational inference engine that accepts a probabilistic model written
in a simple probabilistic programming language (which supports basic constructs such as sample,
observe, and if statements) and performs variational inference using one of the three aforemen-
tioned gradient estimators. Our implementation2 is written in Python and uses autograd [18],
an automatic differentiation package for Python, to automatically compute the gradient term in
RepGradθ

∧
for an arbitrary probabilistic model.

Benchmarks. We evaluate our estimator on three models for small sequential data:

• temperature [33] models the random dynamics of a controller that attempts to keep the temper-
ature of a room within specified bounds. The controller’s state has a continuous part for the room
temperature and a discrete part that records the on or off of an air conditioner. At each time step,
the value of this discrete part decides which of two different random state updates is employed,
and incurs the non-differentiability of the model’s density. We use a synthetically-generated
sequence of 21 noisy measurements of temperatures, and perform posterior inference on the
sequence of the controller’s states given these noisy measurements. This model consists of a
41-dimensional latent variable and 80 if statements.
• textmsg [1] is a model for the numbers of per-day SNS messages over the period of 74 days

(skipping every other day). It allows the SNS-usage pattern to change over the period, and this
change causes non-differentiability. Finding the posterior distribution over this change is the
goal of the inference problem in this case. We use the data from [1]. This model consists of a
3-dimensional latent variable and 37 if statements.

• influenza [32] is a model for the US influenza mortality data in 1969. The mortality rate in each
month depends on whether the dominant influenza virus is of type 1 or 2, and finding this type
information from a sequence of observed mortality rates is the goal of the inference. The virus
type is the cause of non-differentiability in this example. This model consists of a 37-dimensional
latent variable and 24 if statements.

Experimental setup. We optimize the ELBO objective using Adam [11] with two stepsizes: 0.001
and 0.01. We run Adam for 10000 iterations and at each iteration, we compute each estimator using
N ∈ {1, 8, 16} Monte Carlo samples. For OURS, we use a single subsample l (drawn uniformly
at random from {1, · · · , L}) to estimate the summation in (5), and use N Monte Carlo samples to
compute BouContr(θ,l)
∧

′. While maximizing ELBO, we measure two things: the variance of estimated
gradients of ELBO, and ELBO itself. Since each gradient is not scalar, we measure two kinds of
variance of the gradient, as in [23]: Avg(V(·)), the average variance of each of its components, and
V(‖ · ‖2), the variance of its l2-norm. To estimate the variances and the ELBO objective, we use 16
and 1000 Monte Carlo samples, respectively.

2 Code is available at https://github.com/wonyeol/reparam-nondiff.

6

https://github.com/wonyeol/reparam-nondiff


Estimator Type of Variance temperature textmsg influenza

REPARAM Avg(V(·)) 4.45 × 10−9 2.91× 10−2 4.38 × 10−3

V(‖ · ‖2) 2.45 × 10−8 2.92× 10−2 2.12 × 10−3

OURS Avg(V(·)) 1.85× 10−6 2.77 × 10−2 4.89× 10−3

V(‖ · ‖2) 7.59× 10−5 2.46 × 10−2 2.36× 10−3

(a) stepsize = 0.001

Estimator Type of Variance temperature textmsg influenza

REPARAM Avg(V(·)) 3.88× 10−11 5.03 × 10−4 2.46 × 10−3

V(‖ · ‖2) 6.11 × 10−11 1.02× 10−3 1.26 × 10−3

OURS Avg(V(·)) 1.24 × 10−11 5.07× 10−4 2.80× 10−3

V(‖ · ‖2) 8.05× 10−11 8.12 × 10−4 1.40× 10−3

(b) stepsize = 0.01

Table 1: Ratio of {REPARAM,OURS}’s average variance to SCORE’s for N = 1. The values for
SCORE are all 1, so omitted. The optimization trajectories used to compute the above variances are
shown in Figure 1.

Estimator temperature textmsg influenza

SCORE 21.7 4.9 18.7

REPARAM 46.1 15.4 251.4

OURS 79.2 24.9 269.8

Table 2: Computation time (in ms) per iteration for N = 1.

Results. Table 1 compares the average variance of each estimator for N = 1, where the average
is taken over a single optimization trajectory. The table clearly shows that during the optimization
process, OURS has several orders of magnitude (sometimes < 10−10 times) smaller variances
than SCORE. Since OURS computes additional terms when compared with REPARAM, we expect
that OURS would have larger variances than REPARAM, and this is confirmed by the table. It is
noteworthy, however, that for most benchmarks, the averaged variances of OURS are very close
to those of REPARAM. This suggests that the additional term BouContrθ in our estimator often
introduces much smaller variances than the reparameterization term RepGradθ.

Figure 1 shows the ELBO objective, for different estimators with different N ’s, as a function of the
iteration number. As expected, using a larger N makes all estimators converge faster in a more stable
manner. In all three benchmarks, OURS outperforms (or performs similarly to) the other two and
converges stably, and REPARAM beats SCORE. Increasing the stepsize to 0.01 makes SCORE unstable
in temperature and textmsg. It is also worth noting that REPARAM converges to sub-optimal
values in temperature (possibly because REPARAM is biased).

Table 2 shows the computation time per iteration of each approach for N = 1. Our implementation
performs the worst in this wall-time comparison, but the gap between OURS and REPARAM is not
huge: the computation time of OURS is less than 1.72 times that of REPARAM in all benchmarks.
Furthermore, we want to point out that our implementation is an early unoptimized prototype, and
there are several rooms to improve in the implementation. For instance, it currently constructs Python
functions dynamically, and computes the gradients of these functions using autograd. But this
dynamic approach is costly because autograd is not optimized for such dynamically constructed
functions; this can also be observed in the bad performance of REPARAM, particularly in influenza,
that employs the same strategy of dynamically constructing functions and taking their gradients. So
one possible optimization is to avoid this gradient computation of dynamically constructed functions
by building the functions statically during compilation.
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(a) temperature (stepsize = 0.001)
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(b) temperature (stepsize = 0.01)
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Figure 1: The ELBO objective as a function of the iteration number. {dotted, dashed, solid} lines
represent {N = 1, N = 8, N = 16}.

5 Related Work

A common example of a model with a non-differentiable density is the one that uses discrete random
variables, typically together with continuous random variables.3 Coming up with an efficient algo-
rithm for stochastic variational inference for such a model has been an active research topic. Maddison
et al. [20] and Jang et al. [10] proposed continuous relaxations of discrete random variables that con-
vert non-differentiable variational objectives to differentiable ones and make the reparameterization
trick applicable. Also, a variety of control variates for the standard score estimator [35, 27, 36, 28]
for the gradients of variational objectives have been developed [28, 7, 8, 34, 6, 23], some of which
use biased yet differentiable control variates such that the reparameterization trick can be used to
correct the bias [7, 34, 6].

Our work extends this line of research by adding a version of the reparameterization trick that can
be applied to models with discrete random variables. For instance, consider a model p(x, z) with
z discrete. By applying the Gumbel-Max reparameterization [9, 21] to z, we transform p(x, z) to
p(x, z, c), where c is sampled from the Gumbel distribution and z in p(x, z, c) is defined determin-

3 Another common example of such a model is the one that uses if statements whose branch conditions
contain continuous random variables, which is the main focus of our work.

8



istically from c using the arg max operation. Since arg max can be written as if statements, we
can express p(x, z, c) in the form of (3) to which our reparameterization gradient can be applied.
Investigating the effectiveness of this approach for discrete random variables is an interesting topic
for future research.

The reparameterization trick was initially used with normal distribution [13, 30], but its scope was
soon extended to other common distributions, such as gamma, Dirichlet, and beta [14, 31, 26].
Techniques for constructing normalizing flow [29, 12] can also be viewed as methods for creating
distributions in a reparameterized form. In the paper, we did not consider these recent developments
and mainly focused on the reparameterization with normal distribution. One interesting future avenue
is to further develop our approach for these other reparameterization cases. We expect that the main
challenge will be to find an effective method for handling the surface integrals in Theorem 1.

6 Conclusion

We have presented a new estimator for the gradient of the standard variational objective, ELBO.
The key feature of our estimator is that it can keep variance under control by using a form of the
reparameterization trick even when the density of a model is not differentiable. The estimator
splits the space of the latent random variable into a lower-dimensional subspace where the density
may fail to be differentiable, and the rest where the density is differentiable. Then, it estimates
the contributions of both parts to the gradient separately, using a version of manifold sampling for
the former and the reparameterization trick for the latter. We have shown the unbiasedness of our
estimator using a theorem for interchanging integration and differentiation under moving domain [3]
and the divergence theorem. Also, we have experimentally demonstrated the promise of our estimator
using three time-series models. One interesting future direction is to investigate the possibility of
applying our ideas to recent variational objectives [24, 17, 19, 16, 25], which are based on tighter
lower bounds of marginal likelihood than the standard ELBO.

When viewed from a high level, our work suggests a heuristic of splitting the latent space into a bad
yet tiny subspace and the remaining good one, and solving an estimation problem in each subspace
separately. The latter subspace has several good properties and so it may allow the use of efficient
estimation techniques that exploit those properties. The former subspace is, on the other hand, tiny
and the estimation error from the subspace may, therefore, be relatively small. We would like to
explore this heuristic and its extension in different contexts, such as stochastic variational inference
with different objectives [24, 17, 19, 16, 25].
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Supplementary Material: Reparameterization
Gradient for Non-differentiable Models

A Proof of Theorem 1

Using reparameterization, we can write ELBOθ as follows:

ELBOθ = Eq(ε)

[
log

∑K
k=1 1[fθ(ε) ∈ Rk] · rk(fθ(ε))

qθ(fθ(ε))

]

= Eq(ε)

[
K∑
k=1

1[fθ(ε) ∈ Rk] · log
rk(fθ(ε))

qθ(fθ(ε))

]
(6)

=

K∑
k=1

Eq(ε)
[
1[fθ(ε) ∈ Rk] · hk(ε, θ)

]
.

In (6), we can move the summation and the indicator function out of log since the regions {Rk}1≤k≤K
are disjoint. We then compute the gradient of ELBOθ as follows:

∇θELBOθ

=

K∑
k=1

∇θEq(ε)
[
1[fθ(ε) ∈ Rk] · hk(ε, θ)

]
=

K∑
k=1

∇θ
∫
f−1
θ (Rk)

q(ε)hk(ε, θ)dε

=

K∑
k=1

∫
f−1
θ (Rk)

(
q(ε)∇θhk(ε, θ) +∇ε •

(
q(ε)hk(ε, θ)V (ε, θ)

))
dε (7)

= Eq(ε)

[
K∑
k=1

1[fθ(ε)∈Rk] · ∇θhk(ε, θ)

]
+

K∑
k=1

∫
f−1
θ (Rk)

∇ε •
(
q(ε)hk(ε, θ)V (ε, θ)

)
dε

= Eq(ε)

[
K∑
k=1

1[fθ(ε)∈Rk] · ∇θhk(ε, θ)

]
︸ ︷︷ ︸

RepGradθ

+
K∑
k=1

∫
f−1
θ (∂Rk)

(
q(ε)hk(ε, θ)V (ε, θ)

)
• dΣ︸ ︷︷ ︸

BouContrθ

(8)

where ∇ε •U denotes the column vector whose i-th component is ∇ε ·Ui, the divergence of Ui
with respect to ε. (8) is the formula that we wanted to prove.

The two non-trivial steps in the above derivation are (7) and (8). First, (7) is a direct consequence of
the following theorem, existing yet less well-known, on exchanging integration and differentiation
under moving domain:
Theorem 6. LetDθ ⊂ Rn be a smoothly parameterized region. That is, there exist open sets Ω ⊂ Rn
and Θ ⊂ R, and twice continuously differentiable ε̂ : Ω×Θ→ Rn such that Dθ = ε̂(Ω, θ) for each
θ ∈ Θ. Suppose that ε̂(·, θ) is a C1-diffeomorphism for each θ ∈ Θ. Let f : Rn × R → R be a
differentiable function such that f(·, θ) ∈ L1(Dθ) for each θ ∈ Θ. If there exists g : Ω → R such
that g ∈ L1(Ω) and

∣∣∇θ(f(ε̂, θ)
∣∣ ∂ε̂
∂ω

∣∣)∣∣ ≤ g(ω) for any θ ∈ Θ and ω ∈ Ω, then

∇θ
∫
Dθ

f(ε, θ)dε =

∫
Dθ

(
∇θf +∇ε · (fv)

)
(ε, θ)dε.

Here v(ε, θ) denotes ∇θε̂(ω, θ)
∣∣
ω=ε̂−1

θ (ε)
, the velocity of the particle ε at time θ.
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The statement of Theorem 6 (without detailed conditions as we present above) and the sketch of
its proof can be found in [3]. One subtlety in applying Theorem 6 to our case is that Rk (which
corresponds to Ω in the theorem) may not be open, so the theorem may not be immediately applicable.
However, since the boundary ∂Rk has Lebesgue measure zero in Rn, ignoring the reparameterized
boundary f−1θ (∂Rk) in the integral of (7) does not change the value of the integral. Hence, we apply
Theorem 6 to Dθ = int(f−1θ (Rk)) (which is possible because Ω = int(Rk) is now open), and this
gives us the desired result. Here int(T ) denotes the interior of T .

Second, to prove (8), it suffices to show that∫
V

∇ε •U(ε)dε =

∫
∂V

U(ε) • dΣ

where U(ε) = q(ε)hk(ε, θ)V (ε, θ) and V = f−1θ (Rk). To prove this equality, we apply the
divergence theorem:
Theorem 7 (Divergence theorem). Let V be a compact subset of Rn that has a piecewise smooth
boundary ∂V . If F is a differentiable vector field defined on a neighborhood of V , then∫

V

(∇ · F ) dV =

∫
∂V

F · dΣ

where dΣ is the outward pointing normal vector of the boundary ∂V .

In our case, the region V = f−1θ (Rk) may not be compact, so we cannot directly apply Theorem 7
to U . To circumvent the non-compactness issue, we assume that q(ε) is in S(Rn), the Schwartz
space on Rn. That is, assume that every partial derivative of q(ε) of any order decays faster than
any polynomial. This assumption is reasonable in that the probability density of many important
probability distributions (e.g., the normal distribution) is in S(Rn). Since q ∈ S(Rn), there exists a
sequence of test functions {φj}j∈N such that each φj has compact support and {φj}j∈N converges to
q in S(Rn), which is a well-known result in functional analysis. Since each φj has compact support,
so does U j(ε) , φj(ε)hk(ε, θ)V (ε, θ). By applying Theorem 7 to U j , we have∫

V

∇ε •U j(ε)dε =

∫
∂V

U j(ε) • dΣ.

Because {φj}j∈N converges to q in S(Rn), taking the limit j →∞ on the both sides of the equation
gives us the desired result.

B Proof of Theorem 3

Theorem 3 is a direct consequence of the following theorem called “area formula”:
Theorem 8 (Area formula). Suppose that g : Rn−1 → Rn is injective and Lipschitz. If A ⊂ Rn−1
is measurable andH : Rn → Rn is measurable, then∫

g(A)

H(ε) · dΣ =

∫
A

(
H(g(ζ)) · n(ζ)

)
|Jg(ζ)| dζ

where Jg(ζ) = det
[
∂g(ζ)
∂ζ1

∣∣∂g(ζ)
∂ζ2

∣∣ · · · ∣∣ ∂g(ζ)∂ζn−1

∣∣n(ζ)
]
, and n(ζ) is the unit normal vector of the

hypersurface g(A) at g(ζ) such that it has the same direction as dΣ.

A more general version of Theorem 8 can be found in [2]. In our case, the hypersurface g(A)
for the surface integral on the LHS is given by {ε | a · ε = c}, so we use A = Rn−1 and
g(ζ) =

(
ζ1, . . . , ζj−1,

1
aj

(c−a−j ·ζ), ζj , . . . , ζn−1
)ᵀ

and apply Theorem 8 withH(ε) = q(ε)F (ε).
In this settings, n(ζ) and |Jg(ζ)| are calculated as

n(ζ) = sgn(−aj)
|aj |
‖a‖2

(a1

aj
, . . . ,

aj−1
aj

, 1,
aj+1

aj
, . . . ,

an
aj

)ᵀ
and |Jg(ζ)| = ‖a‖2|aj |

,

and this gives us the desired result.
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