
Definition ! ∶ ℝ$ → ℝ& is PAP (= Piecewise Analytic under Analytic Partition)
roughly iff ! can be “decomposed” into !' , !( , ⋯ such that

!* ∶ ℝ$ → ℝ& is analytic and +* ⊆ ℝ$ is “analytic”.

Example ! - = ReLU - .

(!' - = 0,   +' = {- ∈ ℝ ∶ - < 0}),
(!( - = -,   +( = {- ∈ ℝ ∶ - > 0}),
(!9 - = 7-, +9 = {- ∈ ℝ ∶ - = 0}).

Proposition PAP implies a.e.-differentiability.
Observation Virtually all functions used in practice are PAP.

Proposition Claim 1 does NOT hold since (< ∘ !)? - can be undefined for a.e -.
Counterexample Involves the Cantor function.
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Theorem @A ’s are differentiable everywhere  ⟹ autodiff correctly computes ∇@ - .

Autodiff  ≈ efficient way of applying the chain rule.

Problem For @ ∶ ℝE → ℝ given by @ - = (@F ∘ ⋯ ∘ @')(-),
how to compute G@ - correctly and efficiently?

Chain Rule For ! ∶ ℝ$ → ℝ& and < ∶ ℝ& → ℝA,differentiable everywhere,
H < ∘ ! - = H< ! - ⋅ H!(-) for every - ∈ ℝ$.

Theorem @A ’s are differentiable everywhere  ⟹ autodiff correctly computes ∇@ - .

Problem For @ ∶ ℝE → ℝ given by @ - = (@F ∘ ⋯ ∘ @')(-),
how to compute ∇@ - correctly and efficiently?

Chain Rule For ! ∶ ℝ$ → ℝ& and < ∶ ℝ& → ℝA,differentiable everywhere,
H < ∘ ! - = H< ! - ⋅ H!(-) for every - ∈ ℝ$.
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e.g., ReLU - = max -, 0 =

non-differentiable on a measure-zero set 

Our Main Result (1)

‘’s do NOT hold: measure-zero non-differentiabilities do matter!?

! <

• Claim 1 For any !, < ∶ ℝ → ℝ,

⟹ (< ∘ !)? - = <′ ! - ⋅ !? - for a.e. - ∈ ℝ.
!, < : a.e.-differentiable and continuous
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Example ! - = ReLU - .

(!' - = 0,   +' = {- ∈ ℝ ∶ - < 0}),
(!( - = -,   +( = {- ∈ ℝ ∶ - > 0}),
(!9 - = 7-, +9 = {- ∈ ℝ ∶ - = 0}).

Proposition Intensional derivatives satisfy the chain rule.
Proposition Any intensional derivative  = standard derivative.

(!'? - = 0, +' = {- ∈ ℝ ∶ - < 0}),
(!(? - = 1, +( = {- ∈ ℝ ∶ - > 0}),
(!9? - = 7, +9 = {- ∈ ℝ ∶ - = 0}).

P! - = Q
0 for - < 0
1 for - > 0
7 for - = 0

PAP Functions

Intensional Derivatives

a.e.

• Claim 2 For any !, < ∶ ℝ → ℝ,

⟹ (< ∘ !)? - = <′ ! - ⋅ !? - for a.e. - ∈ ℝ.
!, < : a.e.-differentiable and continuous

and < ∘ !

Proposition Claim 2 does NOT hold since <? ! - can be undefined for a.e -.
Counterexample ! - = 0 and < U = ReLU U .

Observation For the counterexample, an extended derivative P< of < satisfies:

• Claim 3 For any !, < ∶ ℝ → ℝ,

⟹ (< ∘ !)? - = P< ! - ⋅ P! - for a.e. - ∈ ℝ.
!, < : a.e.-differentiable and continuous

and < ∘ !

∃ P!, P< ∶ ℝ → ℝ such that  P! = !?, P< = <?, anda.e. a.e.

Proposition Claim 3 does NOT hold since the equality can fail to hold for a.e -.
Counterexample Involves the Cantor function.

! <

P< U = X
7 for U = 0
<? U for U ≠ 0

= 0= 0

Our Main Result (2)

(< ∘ !)? - = P< ! - ⋅ !′(-) for all - ∈ ℝ.

@A’s are so-called “PAP” ⟹ autodiff correctly computes ∇@ - a.e.

Main Theorem
Theorem For PAP functions,

• what autodiff computes is an intensional derivative,
• and thus autodiff correctly computes gradients a.e.


