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Automatic Differentiation Subtleties in Chain Rule Our Main Result (2)

- ™ « Clam1 Forany f,g:R - R,
Problem For F: RY - R given by F(x) = (F, o -+ o F;)(x),
how to compute VF(x) correctly and efficiently? f, g : a.e.-differentiable and continuous

- T J = (GoN@=9g(fx) f'(x) forae. x€R.

---

F;’s are so-called “PAP”- = autodiff correctly computes VF(x) a.e.

PAP Functions

Proposition Claim 1 does NOT hold since (g o f)'(x) can be undefined for a.e x.

[ Theorem F,’s are differentiable everywhere = autodiff correctly computes VF (x). ]

Counterexample Involves the Cantor function.

Definition f : R™ - R™ is PAP (= Piecewise Analytic under Analytic Partition)
roughly iff f can be “decomposed” into f1|A , [ - such that
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[ Autodiff =~ efficient way of applying the chain rule. J f g
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Chain Rule For f : R® -» R™ and g : R™ - R! differentiable everywhere,

o — : f n.
} D(g°f)(x) =Dg(f(x))-Df(x) foreveryx € R ) . Claim2 Forany f.q: R o R

de geof )
f,g': a.e.-differentiable and continuous
= (GoN@=g(fx) f'(x) forae. x€R.

Automatic Differentiation in Practice

Proposition Claim 2 does NOT hold since g'(f(x)) can be undefined for a.e x.
Counterexample f(x) = 0 and g(y) = ReLU(y).

4 )
Problem For F: RY - R given by F(x) = (F, o -0 F))(x),
how to compute VF (x) correctly and efficiently?

Observation For the counterexample, an extended derivative dg of g satisfies:

- S S eeeeccccscscccc—e——————
! (g2 ) @) = dg(£(0) - £/} forall x € R
—- T T
[Theorem F,’s are differentiable everywherei ___.autodiff correctly computes VF (x). ] =0 =0
al t- - /\ 7 fory=20
‘ almost- ( almost-everywhere dg(y) = y

B {g’(y) fory # 0

e.g., ReLU(x) = max{x, 0} =

\ non-differentiable on a measure-zero set

- \ almost- ) ~ « Claim3 Forany f,g: R - R,
Chain Rule For f : R”?» R™ and g : R™ — R! differentiable'everywhere, ndgof)
% _D_(g__]_”)_(_x_)_—_ﬂg_(_f_(zcz)__l_)f_(a_c)_l forjgvery x € R”. y ng( a.e.-differentiable and continuous
-almost- y :H(g o ) (x) = dg(f(x)) - df (x) fora.e.x€R.
ddf,dg : R - R such that df = f dg = g,and\
Proposition Claim 3 does NOT hold since the equality can fail to hold for a.e x.
Our Main Result (1) Counterexample Involves the Cantor function.
r:z f Y
1 i'sdo NOT hold: measure-zero non-differentiabilities do matter! 05 | 05 |
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fi : R® > R™ is analytic and 4; € R" is “analytic”.

Example f(x) = ReLU(x).

(fz(x) =7x, A3 = {x € R: x = 0}).

Proposition PAP implies a.e.-differentiability.
Observation Virtually all functions used in practice are PAP.

Intensional Derivatives

Example f(x) = ReLU(x).

(fi(x) =0, A, ={x€eR:x<0}),
(Lb(x)=x, A, ={x€eR:x>0}),
(fs(x) =7x,A; = {x € R: x = 0}).

(fl’(x}=0,z41={x€IR1=X<0}),/A
(f2(x) =1,4; ={x e R: x> 0}),
(f:(x) =7,A;3 ={x ER: x = 0}).

0 forx <0
df(x) =41 forx >0

7 forx =0

Proposition Intensional derivatives satisfy the chain rule.
Proposition Any intensional derivative <" standard derivative.

Main Theorem

Theorem For PAP functions,
« what autodiff computes is an intensional derivative,
« and thus autodiff correctly computes gradients a.e.




