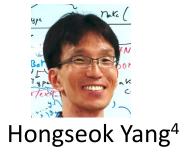
On Correctness of Automatic Differentiation for Non-Differentiable Functions*



¹Stanford, USA ³INRIA/ENS/CNRS, France

²Riiid Al Research, South Korea ⁴KAIST, South Korea

```
Problem For h: \mathbb{R}^N \to \mathbb{R} given by h(x) = (h_L \circ \cdots \circ h_1)(x), how to compute \nabla h(x) correctly and efficiently?
```

<u>Problem</u> For $h: \mathbb{R}^N \to \mathbb{R}$ given by $h(x) = (h_L \circ \cdots \circ h_1)(x)$, how to compute $\nabla h(x)$ correctly and efficiently?

Chain Rule For $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere, $D(g \circ f)(x) = Dg(f(x)) \cdot Df(x)$ for every $x \in \mathbb{R}^n$.

```
Problem For h: \mathbb{R}^N \to \mathbb{R} given by h(x) = (h_L \circ \cdots \circ h_1)(x), how to compute \nabla h(x) correctly and efficiently?
```

Autodiff \approx efficient way of applying the chain rule.

Chain Rule For $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere, $D(g \circ f)(x) = Dg(f(x)) \cdot Df(x)$ for every $x \in \mathbb{R}^n$.

Problem For $h: \mathbb{R}^N \to \mathbb{R}$ given by $h(x) = (h_L \circ \cdots \circ h_1)(x)$, how to compute $\nabla h(x)$ correctly and efficiently?

Theorem h_l 's are differentiable everywhere \Rightarrow autodiff correctly computes $\nabla h(x)$.

Autodiff \approx efficient way of applying the chain rule.

Chain Rule For $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere, $D(g \circ f)(x) = Dg(f(x)) \cdot Df(x)$ for every $x \in \mathbb{R}^n$.

What about in practice?

Theorem h_l 's are differentiable everywhere \implies autodiff correctly computes $\nabla h(x)$.

Discrepancy between theory and practice.

<u>Theorem</u> h_l 's are differentiable everywhere \Rightarrow autodiff correctly computes $\nabla h(x)$.

e.g.,
$$ReLU(x) = if x \ge 0$$
 then x else $0 =$

Discrepancy between theory and practice.

Theorem h_l 's are differentiable everywhere \Rightarrow autodiff correctly computes $\nabla h(x)$.

e.g.,
$$\operatorname{ReLU}(x) = \operatorname{if} x \ge 0$$
 then x else $0 =$

non-differentiable on a measure-zero set

measure = generalization of length, area, ...

Belief: Measure-zero non-differentiability would not matter.

Theorem h_l 's are differentiable everywhere \Rightarrow autodiff correctly computes $\nabla h(x)$.

e.g.,
$$ReLU(x) = if \ x \ge 0$$
 then x else $0 = \underbrace{ }$ non-differentiable on a measure-zero set

measure = generalization of length, area, ...

Our Questions: Part 1

7

Belief: Measure-zero non-differentiability would not matter.

Theorem h_l 's are differentiable everywhere \Rightarrow autodiff correctly computes $\nabla h(x)$.

e.g.,
$$\operatorname{ReLU}(x) = \operatorname{if} x \ge 0$$
 then x else $0 =$

non-differentiable on a measure-zero set

Our Questions: Part 1

7

Belief: Measure-zero non-differentiability would not matter.

Theorem h_l 's are differentiable everywhere \Rightarrow autodiff correctly computes $\nabla h(x)$.

almoste.g., $\text{ReLU}(x) = \text{if } x \geq 0 \text{ then } x \text{ else } 0 =$

almost-everywhere = except for a measure-zero set.

Our Questions: Part 1

Belief: Measure-zero non-differentiability would not matter.

Theorem h_l 's are differentiable everywhere almost \uparrow almost-everywhere

Chain Rule For $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere, $D(g \circ f)(x) = Dg(f(x)) \cdot Df(x) \quad \text{for every } x \in \mathbb{R}^n.$

almost- *J*

Our Results: Part 1

Measure-zero non-differentiabilities do matter!

Theorem h_l 's are differentiable everywhere autodiff correctly computes $\nabla h(x)$.

almost
Chain Rule For $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere, $D(g \circ f)(x) \to Dg(f(x)) \cdot Df(x)$ for every $x \in \mathbb{R}^n$.

Our Results: Part 1

Measure-zero non-differentiabilities do matter!

Theorem h_l 's are differentiable everywhere autodiff correctly computes $\nabla h(x)$.

almostalmostalmost-everywhere

Our Result This and related claims are false!

Chain Rule For $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere, $D(g \circ f)(x) = Dg(f(x)) \cdot Df(x)$ for every $x \in \mathbb{R}^n$.

almost- /

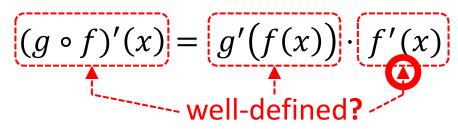
Claim 1 For any $f, g : \mathbb{R} \to \mathbb{R}$,

f, g: a.e.-differentiable and continuous

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

Claim 1 For any $f, g : \mathbb{R} \to \mathbb{R}$,

f, g: a.e.-differentiable and continuous



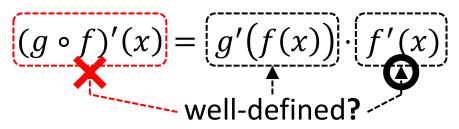
Claim 1 For any $f, g : \mathbb{R} \to \mathbb{R}$,

f,g: a.e.-differentiable and continuous



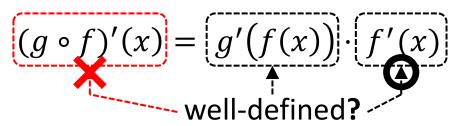
Claim 1 For any $f, g : \mathbb{R} \to \mathbb{R}$,

f, g: a.e.-differentiable and continuous



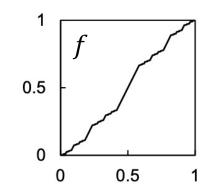
Claim 1 For any $f, g : \mathbb{R} \to \mathbb{R}$,

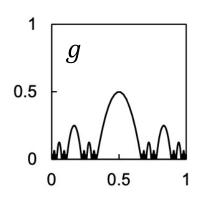
f,g: a.e.-differentiable and continuous



for a.e. $x \in \mathbb{R}$.

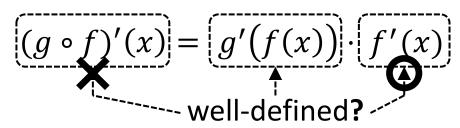
<u>Counterexample</u> Involves the <u>Cantor function</u>.

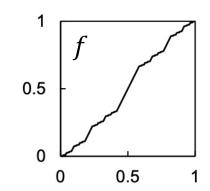


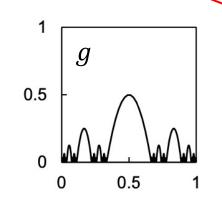


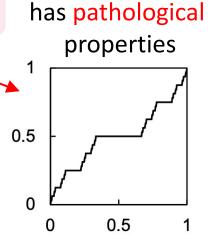
Claim 1 For any $f, g : \mathbb{R} \to \mathbb{R}$,

f,g: a.e.-differentiable and continuous



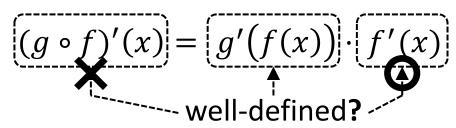






Claim 1 For any $f, g : \mathbb{R} \to \mathbb{R}$,

f,g: a.e.-differentiable and continuous



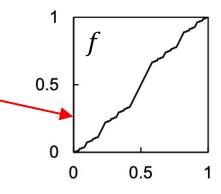
for a.e. $x \in \mathbb{R}$.

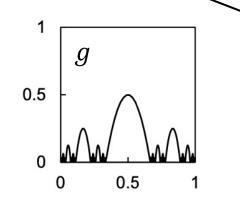
<u>Counterexample</u> Involves the Cantor function.

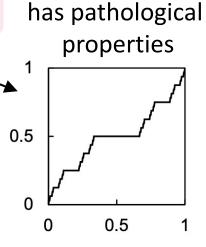
f is a bijection:

- continuous, a.e.-diff'l.
- positive-measure set

 ⇒ measure-zero set.





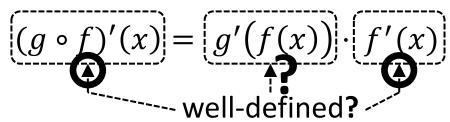


```
Claim 2 For any f,g:\mathbb{R}\to\mathbb{R}, and g\circ f f,g': a.e.-differentiable and continuous (g\circ f)'(x)=g'\big(f(x)\big)\cdot f'(x) \qquad \text{for a.e. } x\in\mathbb{R}.
```

Claim 2 For any $f,g:\mathbb{R}\to\mathbb{R}$, and $g\circ f$ f,g': a.e.-differentiable and continuous $(g\circ f)'(x)=(g'(f(x)))\cdot f'(x)$ for a.e. $x\in\mathbb{R}$.

Claim 2 For any $f,g:\mathbb{R}\to\mathbb{R}$, and $g\circ f$ f,g: a.e.-differentiable and continuous $(g\circ f)'(x)=g'(f(x))\cdot f'(x)$ for a.e. $x\in\mathbb{R}$. well-defined?

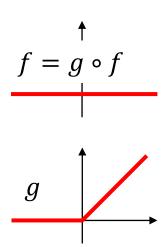
Claim 2 For any $f,g:\mathbb{R}\to\mathbb{R}$, and $g\circ f$ f,g: a.e.-differentiable and continuous \cdots (*)



for a.e. $x \in \mathbb{R}$.

Counterexample f(x) = 0 and g(y) = ReLU(y).

 \implies easy to check that (*) holds.

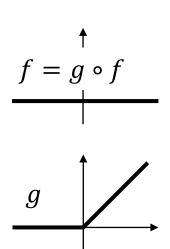


Claim 2 For any $f, g: \mathbb{R} \to \mathbb{R}$, and $g \circ f$ f, g: a.e.-differentiable and continuous

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$
well-defined?

for a.e. $x \in \mathbb{R}$.

Counterexample f(x) = 0 and g(y) = ReLU(y). $\Rightarrow \qquad \qquad g'(f(x))$ = g'(0) = undefined for all x



Claim 2 For any $f, g: \mathbb{R} \to \mathbb{R}$, and $g \circ f$ f, g: a.e.-differentiable and continuous

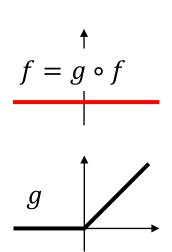
$$(g \circ f)'(x) = g'(f(x)) \cdot [f'(x)]$$
well-defined?

Counterexample
$$f(x) = 0$$
 and $g(y) = \text{ReLU}(y)$.

$$\Rightarrow (g \circ f)'(x) \qquad g'(f(x)) \qquad f'(x)$$

$$= 0 \qquad = g'(0) \qquad = 0$$

$$= \text{undefined for all } x$$



Claim 2 For any $f,g:\mathbb{R}\to\mathbb{R}$, and $g\circ f$ f,g: a.e.-differentiable and continuous

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$
well-defined?

Counterexample
$$f(x) = 0$$
 and $g(y) = \text{ReLU}(y)$.

$$\Rightarrow (g \circ f)'(x) \quad dg(f(x)) \quad f'(x)$$

$$= 0 \qquad \qquad = 0$$

$$dg(y) = \begin{cases} 7 & \text{for } y = 0 \\ g'(y) & \text{for } y \neq 0 \end{cases}$$

$$f = g \circ f$$

Claim 2 For any $f, g: \mathbb{R} \to \mathbb{R}$, and $g \circ f$ f, g: a.e.-differentiable and continuous

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$
well-defined?

Counterexample
$$f(x) = 0$$
 and $g(y) = \text{ReLU}(y)$.

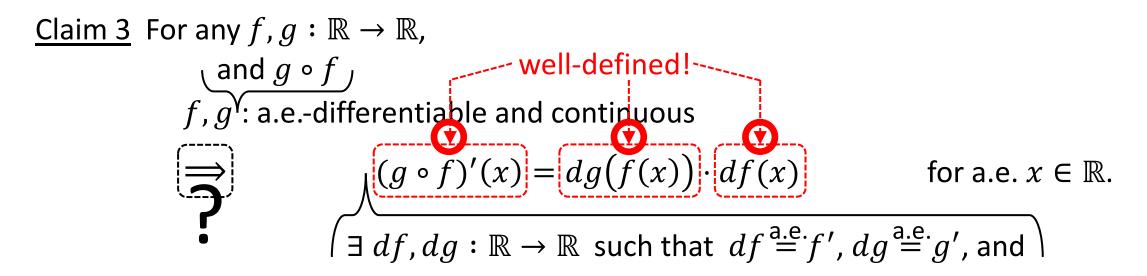
$$\Rightarrow (g \circ f)'(x) = dg(f(x)) \times f'(x) \text{ for all } x \in \mathbb{R}.$$

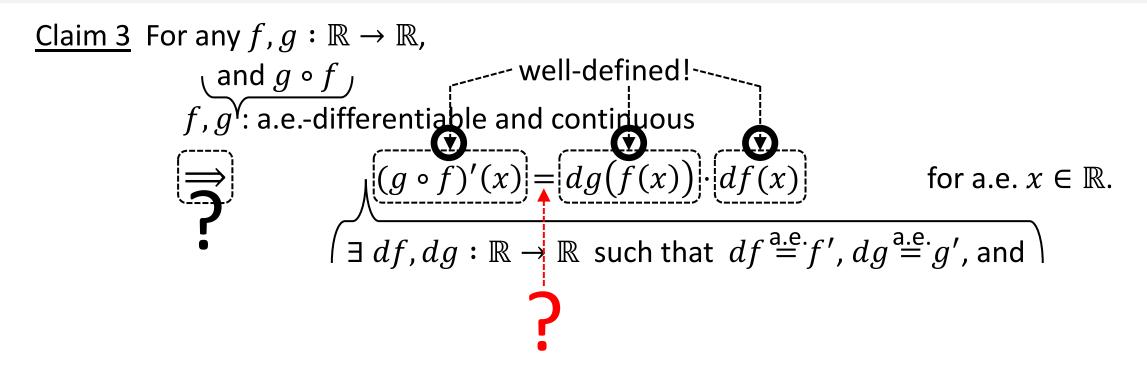
$$= 0 \qquad = 0$$

$$dg(y) = \begin{cases} 7 & \text{for } y = 0 \\ g'(y) & \text{for } y \neq 0 \end{cases}$$

$$f = g \circ f$$

```
Claim 3 For any f,g:\mathbb{R}\to\mathbb{R}, and g\circ f f,g': a.e.-differentiable and continuous (g\circ f)'(x)=dg(f(x))\cdot df(x) \qquad \text{for a.e. } x\in\mathbb{R}. \exists \ df, dg:\mathbb{R}\to\mathbb{R} \text{ such that } df\stackrel{\text{a.e.}}{=}f', dg\stackrel{\text{a.e.}}{=}g', \text{ and}
```





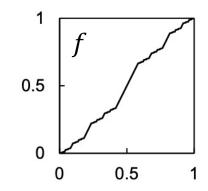
Subtlety 3: Wrong Equation for $(g \circ f)'$

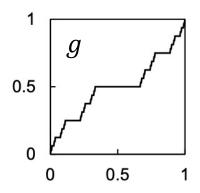
Claim 3 For any $f,g:\mathbb{R}\to\mathbb{R}$, and $g\circ f$ f,g: a.e.-differentiable and continuous

$$(g \circ f)'(x) \longrightarrow dg(f(x)) \cdot df(x) \qquad \text{for a.e. } x \in \mathbb{R}.$$

$$\exists df, dg : \mathbb{R} \to \mathbb{R} \text{ such that } df \stackrel{\text{a.e.}}{=} f', dg \stackrel{\text{a.e.}}{=} g', \text{ and}$$

Counterexample Involves the Cantor function again.

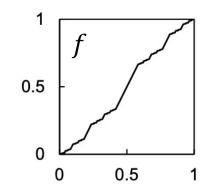


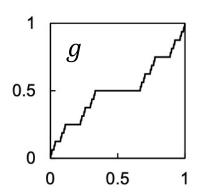


Subtlety 3: Wrong Equation for $(g \circ f)'$

Claim 3 For any $f,g:\mathbb{R}\to\mathbb{R}$, and $g\circ f$ f,g': a.e.-differentiable and continuous $(g\circ f)'(x) \wedge dg(f(x)) \cdot df(x) \qquad \text{for a.e. } x\in\mathbb{R}.$ Show $(g\circ f)'(x)\neq 0$ and f'(x)=0 for positive-measure x.

Counterexample Involves the Cantor function again.





Our Results: Part 1

Theorem h_l 's are differentiable everywhere autodiff correctly computes $\nabla h(x)$.

(almost-)

Our Result This and related claims are false!

Chain Rule For $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere, $D(g \circ f)(x) = Dg(f(x)) \cdot Df(x) \quad \text{for every } x \in \mathbb{R}^n.$

almost- /

Our Results: Part 1

Our Result Autodiff has been used without correctness guarantee!

Theorem h_l 's are differentiable everywhere autodiff correctly computes $\nabla h(x)$.

almost-everywhere

Our Result This and related claims are false!

```
Chain Rule For f: \mathbb{R}^n \to \mathbb{R}^m and g: \mathbb{R}^m \to \mathbb{R}^l, differentiable everywhere, D(g \circ f)(x) = Dg(f(x)) \cdot Df(x) \quad \text{for every } x \in \mathbb{R}^n.
```

almost- /

Can we recover the correctness theorem?

Theorem h_l 's are differentiable everywhere autodiff correctly computes $\nabla h(x)$.

(almost-)

Our Result This and related claims are false!

Chain Rule For $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^l$, differentiable everywhere, $D(g \circ f)(x) = Dg(f(x)) \cdot Df(x)$ for every $x \in \mathbb{R}^n$.

Can we recover the correctness theorem?

What do the outputs of autodiff even mean?

(e.g., ReLU'(0) = 0 in TensorFlow, PyTorch, ...)

```
Chain Rule For f: \mathbb{R}^n \to \mathbb{R}^m and g: \mathbb{R}^m \to \mathbb{R}^l, differentiable everywhere, D(g \circ f)(x) = Dg(f(x)) \cdot Df(x) \quad \text{for every } x \in \mathbb{R}^n.
```

Can we recover the correctness theorem?

What do the outputs of autodiff even mean?

They are not Clarke-subdifferentials [KL18]:

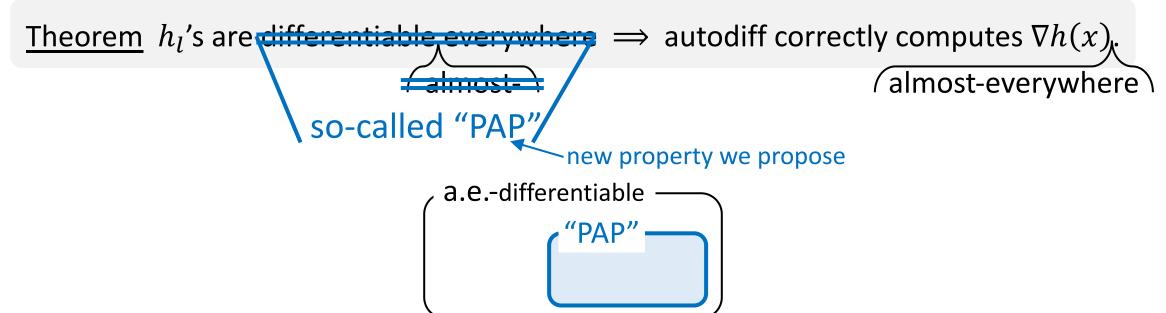
•
$$\partial^c f(x) := \operatorname{conv} \Big\{ \lim_{n \to 0} Df(x_n) \mid x_n \to x \text{ and } \exists Df(x_n) \Big\}.$$

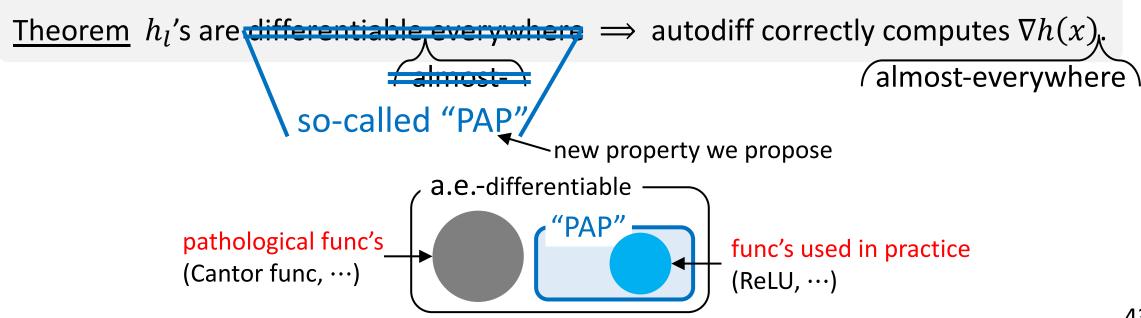
Can we recover the correctness theorem?

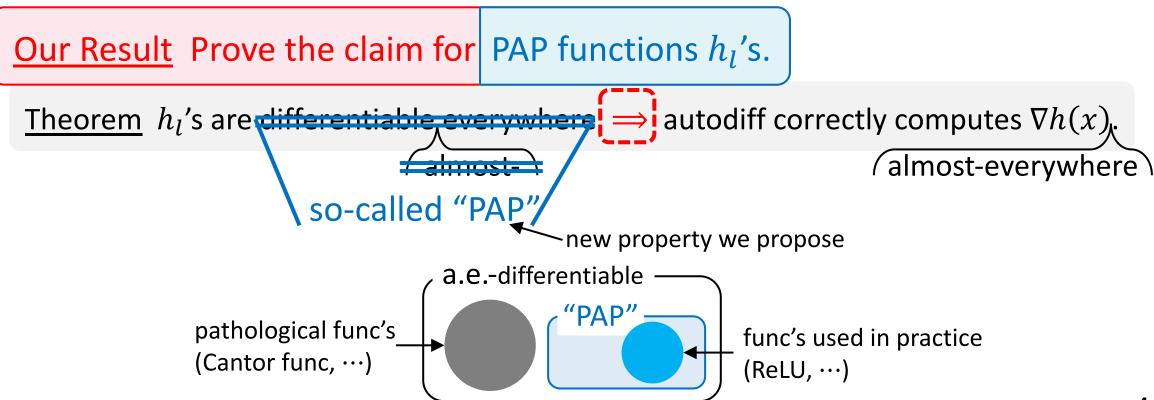
What do the outputs of autodiff even mean?

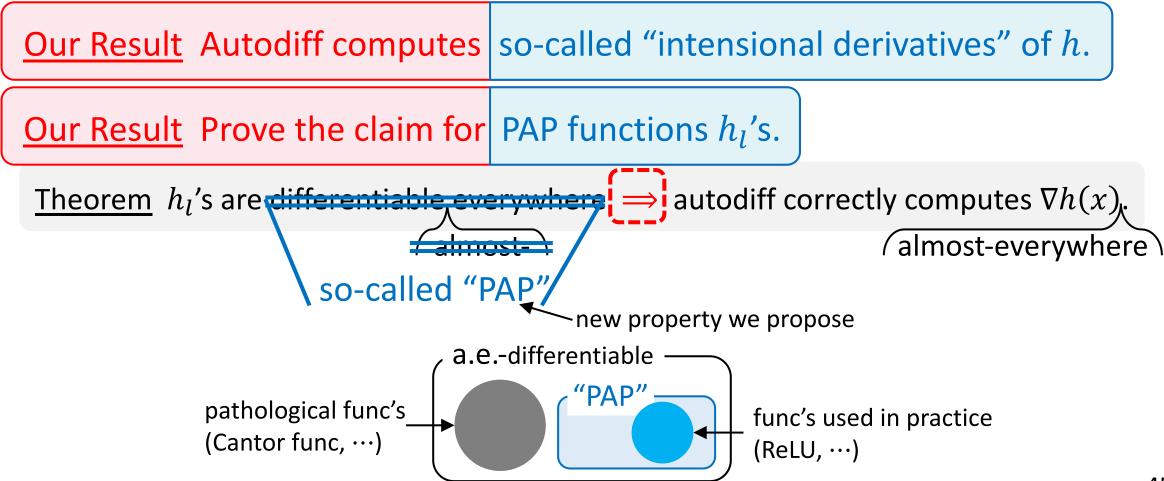
They are not Clarke-subdifferentials [KL18]:

- $\partial^c f(x) := \operatorname{conv} \Big\{ \lim_{n \to 0} Df(x_n) \mid x_n \to x \text{ and } \exists Df(x_n) \Big\}.$
- f(x) = ReLU(x) ReLU(-x): $\partial^c f(0) = \{1\} \not\ni 0 = f'(0)$ (by autodiff).









piecewise analytic under analytic partition

<u>Definition</u> $f: \mathbb{R}^n \to \mathbb{R}^m$ is called PAP if f can be "decomposed" into

$$f_1\Big|_{A_1}$$
, $f_2\Big|_{A_2}$, ...

such that

 $f_i: \mathbb{R}^n \to \mathbb{R}^m$ and $A_i \subseteq \mathbb{R}^n$ are "analytic".

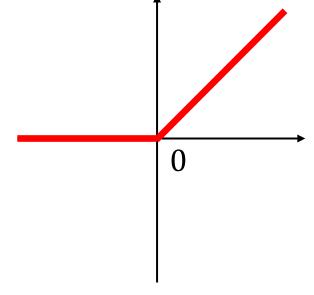
<u>Definition</u> $f: \mathbb{R}^n \to \mathbb{R}^m$ is called PAP if f can be "decomposed" into

$$f_1\big|_{A_1}$$
, $f_2\big|_{A_2}$, ...

such that

$$f_i: \mathbb{R}^n \to \mathbb{R}^m$$
 and $A_i \subseteq \mathbb{R}^n$ are "analytic".

Example f(x) = ReLU(x).



<u>Definition</u> $f: \mathbb{R}^n \to \mathbb{R}^m$ is called PAP if f can be "decomposed" into

$$f_1\Big|_{A_1}$$
, $f_2\Big|_{A_2}$, ...

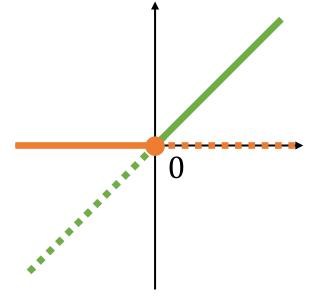
such that

 $f_i: \mathbb{R}^n \to \mathbb{R}^m$ and $A_i \subseteq \mathbb{R}^n$ are "analytic".

Example f(x) = ReLU(x).

•
$$(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \le 0\}),$$

 $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}).$



<u>Definition</u> $f: \mathbb{R}^n \to \mathbb{R}^m$ is called PAP if f can be "decomposed" into

$$f_1\big|_{A_1}$$
, $f_2\big|_{A_2}$, ...

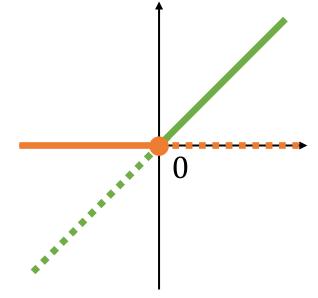
such that

$$f_i: \mathbb{R}^n \to \mathbb{R}^m$$
 and $A_i \subseteq \mathbb{R}^n$ are "analytic".

Example f(x) = ReLU(x).

•
$$(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \le 0\}),$$

 $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}).$
analytic functions



<u>Definition</u> $f: \mathbb{R}^n \to \mathbb{R}^m$ is called PAP if f can be "decomposed" into

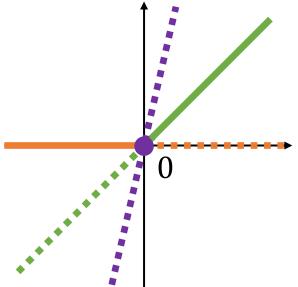
$$f_1\Big|_{A_1}$$
, $f_2\Big|_{A_2}$, ...

such that

 $f_i: \mathbb{R}^n \to \mathbb{R}^m$ and $A_i \subseteq \mathbb{R}^n$ are "analytic".

Example f(x) = ReLU(x).

- $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \le 0\}),$ $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}).$
- $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}),$ $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}),$ $(f_3(x) = 7x) A_3 = \{x \in \mathbb{R} : x = 0\}).$



can be a subset of \mathbb{R}^n

<u>Definition</u> $f: \mathbb{R}^n \to \mathbb{R}^m$ is called PAP if f can be "decomposed" into

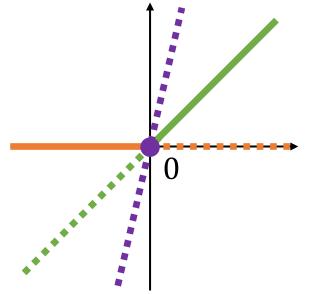
$$f_1\Big|_{A_1}$$
, $f_2\Big|_{A_2}$, ...

such that

 $f_i: \mathbb{R}^n \to \mathbb{R}^m$ and $A_i \subseteq \mathbb{R}^n$ are "analytic".

Example f(x) = ReLU(x).

- $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \le 0\}),$ $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}).$
- $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : [x < 0]\}),$ $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}),$ $(f_3(x) = 7x) A_3 = \{x \in \mathbb{R} : [x = 0]\}).$



<u>Definition</u> $f: \mathbb{R}^n \to \mathbb{R}^m$ is called PAP if f can be "decomposed" into

$$f_1\big|_{A_1}$$
, $f_2\big|_{A_2}$, ...

such that

 $f_i: \mathbb{R}^n \to \mathbb{R}^m$ and $A_i \subseteq \mathbb{R}^n$ are "analytic".

Observation PAP functions include all functions used in practice.

<u>Proposition</u> PAP functions are a.e.-differentiable.

•
$$(f_1(x) - 0, A_1 - (x \in \mathbb{R} : x < 0)),$$

 $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}),$
 $(f_3(x) = 7x, A_3 = \{x \in \mathbb{R} : x = 0\}).$

<u>Definition</u> $f: \mathbb{R}^n \to \mathbb{R}^m$ is called PAP if f can be "decomposed" into

$$f_1\Big|_{A_1}$$
, $f_2\Big|_{A_2}$, ...

such that

 $f_i: \mathbb{R}^n \to \mathbb{R}^m$ and $A_i \subseteq \mathbb{R}^n$ are "analytic".

Observation PAP functions include all functions used in practice.

<u>Proposition</u> PAP functions are a.e.-differentiable.

For any non-constant, analytic function $g : \mathbb{R}^n \to \mathbb{R}$, $\{x \in \mathbb{R}^n | g(x) = 0\}$ has measure zero.

<u>Definition</u> $f: \mathbb{R}^n \to \mathbb{R}^m$ is called PAP if f can be "decomposed" into

$$f_1\big|_{A_1}$$
, $f_2\big|_{A_2}$, ...

such that

 $f_i: \mathbb{R}^n \to \mathbb{R}^m$ and $A_i \subseteq \mathbb{R}^n$ are "analytic".

Observation PAP functions include all functions used in practice.

<u>Proposition</u> PAP functions are a.e.-differentiable.

<u>Definition</u> PAP functions have "intensional derivatives".

analytic functions Example f(x) = ReLU(x). • $f_1(x) = 0$, $A_1 = \{x \in \mathbb{R} : x \le 0\}$, $f_2(x) = x$, $A_2 = \{x \in \mathbb{R} : x > 0\}$). • $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}$, $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\})$,

 $(f_3(x) = 7x, A_3 = \{x \in \mathbb{R} : x = 0\}).$

```
analytic functions (f_1'(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\}),
(f_2'(x) = 1, A_2 = \{x \in \mathbb{R} : x > 0\}).
• (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\}),
(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x \leq 0\}).
• (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\}).
• (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\}).
• (f_2(x) = x, A_2 = \{x \in \mathbb{R} : x \leq 0\}),
(f_3(x) = 7x, A_3 = \{x \in \mathbb{R} : x = 0\}).
```



```
(f_1'(x) = 0, A_1 = \{x \in \mathbb{R} : x \le 0\}),
Example f(x) = \text{ReLU}(x). (f_2'(x) = 1, A_2 = \{x \in \mathbb{R} : x > 0\}).
       • (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\}),
                                                                                                                df(x) = \begin{cases} 0 & \text{for } x \le 0 \\ 1 & \text{for } x > 0 \end{cases}
          (f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}).
                                                                                                                df(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x > 0 \\ 7 & \text{for } x = 0 \end{cases}
       • (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}),
          (f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}),
           (f_3(x) = 7x, A_3 = \{x \in \mathbb{R} : x = 0\}).
                                                             (f_1'(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}),

(f_2'(x) = 1, A_2 = \{x \in \mathbb{R} : x > 0\}),
                                                                  (f_3'(x) = 7, A_3 = \{x \in \mathbb{R} : x = 0\}).
```

<u>Proposition</u> Intensional derivative is a total function.

<u>Proposition</u> Intensional derivatives always satisfy the chain rule.

<u>Proposition</u> Intensional derivative is a total function.

<u>Proposition</u> Intensional derivatives always satisfy the chain rule.

<u>Proposition</u> Intensional derivative = standard derivative.

 $\{x \in \mathbb{R}^n \mid df(x) \neq Df(x)\}$ is contained in a countable union of the zero-sets of (non-const) analytic func's.

<u>Proposition</u> Intensional derivative is a total function.

<u>Proposition</u> Intensional derivatives always satisfy the chain rule.

<u>Proposition</u> Intensional derivative $\stackrel{\text{a.e.}}{=}$ standard derivative.

Theorem For any $h = h_L \circ \cdots \circ h_1$ with PAP h_l , autodiff computes an intensional derivative of h, and thus computes the correct gradient of h a.e.

if autodiff uses an intensional derivative of h_l for "D" h_l , igr
angle

Theorem For any $h=h_L\circ\cdots\circ h_1$ with PAP h_l , autodiff computes an intensional derivative of h, and thus computes the correct gradient of h a.e.

In TensorFlow and PyTorch,

• "D"relu(x) = 0 for $x \le 0$; 1 for x > 0.

, if autodiff uses an intensional derivative of h_l for "D" h_l , $ar{f}$

Theorem For any $h = h_L \circ \cdots \circ h_1$ with PAP h_l , † autodiff computes an intensional derivative of h, and thus computes the correct gradient of h a.e.

In TensorFlow and PyTorch,

- "D" relu(x) = 0 for $x \le 0$; 1 for x > 0.
- "D" sqrt(x) = ∞ for x = 0; $1/2\sqrt{x}$ for x > 0.

if autodiff uses an intensional derivative of h_l for "D" h_l , $ar{l}$

Theorem For any $h = h_L \circ \cdots \circ h_1$ with PAP h_l , † autodiff computes an intensional derivative of h, and thus computes the correct gradient of h a.e.

In TensorFlow and PyTorch,

- "D" relu(x) = 0 for $x \le 0$; 1 for x > 0.
- "D" sqrt(x) = ∞ for x = 0; $1/2\sqrt{x}$ for x > 0. XFor f(x) = sqrt(mult(x, 0)), they compute f'(x) = NaN for all x.

 \langle if autodiff uses an intensional derivative of h_l for "D" h_l , \int

Theorem For any $h = h_L \circ \cdots \circ h_1$ with PAP h_l , † autodiff computes an intensional derivative of h, and thus computes the correct gradient of h a.e.

In TensorFlow and PyTorch,

- "D"relu(x) = 0 for $x \le 0$; 1 for x > 0. "D"sqrt(x) = $\sqrt[7]{}$ for x = 0; $1/2\sqrt{x}$ for x > 0. For $f(x) = \operatorname{sqrt}(\operatorname{mult}(x, 0))$, they compute $f'(x) = \operatorname{NaN}(x)$ for all x.

if autodiff uses an intensional derivative of h_l for "D" h_l ,

Theorem For any $h = h_L \circ \cdots \circ h_1$ with PAP h_L autodiff computes an intensional derivative of h, and thus computes the correct gradient of h a.e.

Intensional Derivatives: Remarks

First-order → higher-order.

- (First-order) intensional derivative = PAP function.
- Extended to higher-order derivatives. Enjoy the same properties.

Intensional Derivatives: Remarks

First-order → higher-order.

- (First-order) intensional derivative = PAP function.
- Extended to higher-order derivatives. Enjoy the same properties.

Difference from Clarke-subdifferentials.

- Intentional derivative: $\partial^i f \in \mathcal{P}([\mathbb{R}^n \to \mathbb{R}^{m \times n}])$.
- Clarke-subdifferential: $\partial^c f \in [\mathbb{R}^n \to \mathcal{P}(\mathbb{R}^{m \times n})]$.
 - → Difficult to extend to higher-order derivatives.

We often have discrepancy between theory and practice of ML algorithms.

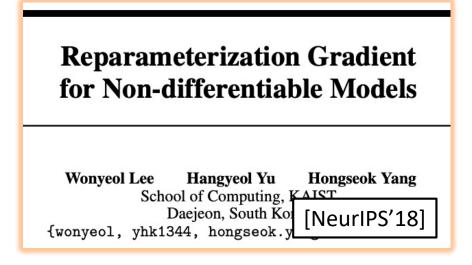
But our theoretical understanding on such discrepancy is still limited.

ML Algorithm	Theory	Practice
Autodiff	differentiable func's	a.edifferentiable func's

We often have discrepancy between theory and practice of ML algorithms. But our theoretical understanding on such discrepancy is still limited.

ML Algorithm	Theory	Practice
Autodiff and many more	differentiable func's	a.edifferentiable func's

Algorithm for estimating $\nabla_{\theta} \int f_{\theta}(z) dz$



We often have discrepancy between theory and practice of ML algorithms. But our theoretical understanding on such discrepancy is still limited.

ML Algorithm	Theory	Practice
Autodiff and many more	differentiable func's	a.edifferentiable func's
Variational inference,	func's with finite integrals (and other nice properties)	func's with infinite integrals (or some bad properties)

Towards Verified Stochastic Variational Inference for Probabilistic Programs

WONYEOL LEE, School of Computing, KAIST, South Korea HANGYEOL YU, School of Computing, KAIST, South Korea

XAVIER RIVAL, INRIA Paris, Département d'Informatique of ENS, and CNRS/PSL UI HONGSEOK YANG, School of Computing, KAIST, South Korea

[POPL'20]

We often have discrepancy between theory and practice of ML algorithms. But our theoretical understanding on such discrepancy is still limited.

ML Algorithm	Theory	Practice
Autodiff and many more	differentiable func's	a.edifferentiable func's
Variational inference,	func's with finite integrals (and other nice properties)	func's with infinite integrals (or some bad properties)
Most algorithms	func's on reals	func's on floating-points

Verifying Bit-Manipulations of Floating-Point

Wonyeol Lee Rahul Sharma Alex Aiken

[PLDI'16] Stanford University, USA

{wonyeol, sharmar, aiken}@cs.stanford.edu

On Automatically Proving the Correctness of math.h Implementations

WONYEOL LEE*, Stanford University, USA RAHUL SHARMA, Microsoft Research, India ALEX AIKEN, Stanford University, USA

[POPL'18]

Comments? Questions?