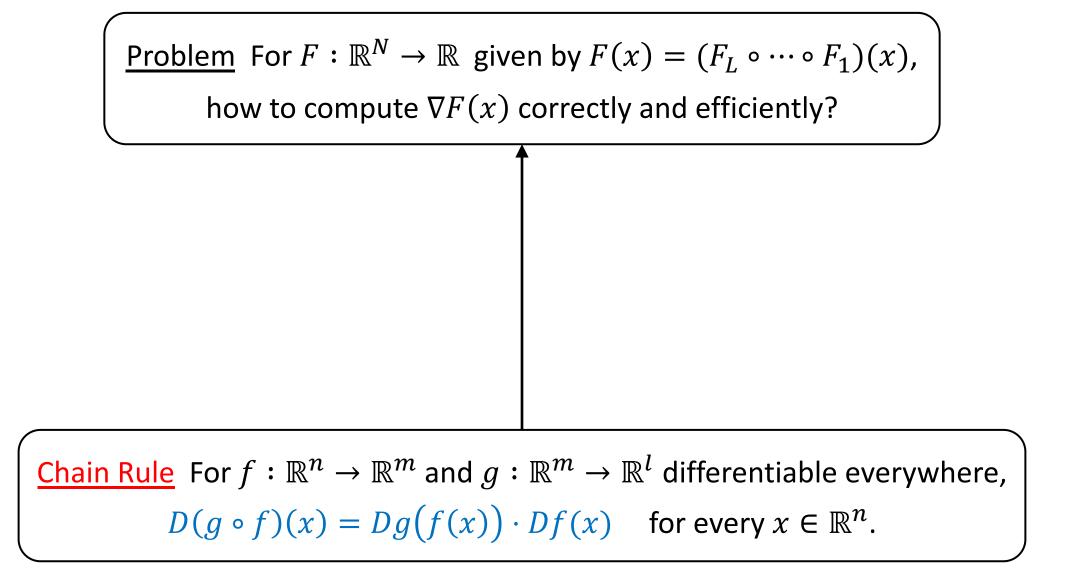
On Correctness of Automatic Differentiation for Non-Differentiable Functions

NeurIPS 2020 (Spotlight)

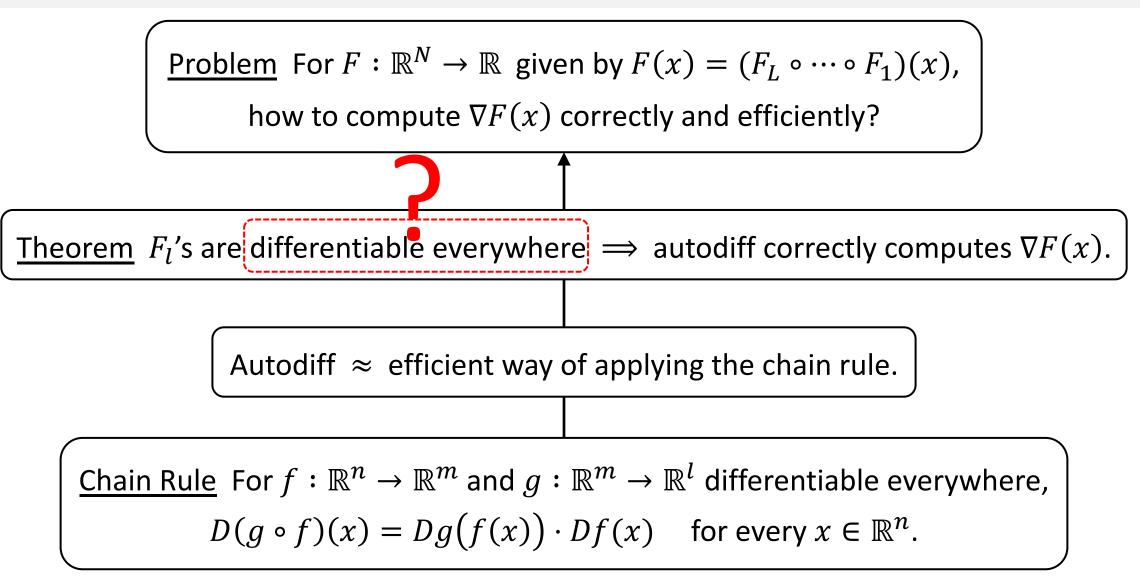
<u>Problem</u> For $F : \mathbb{R}^N \to \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$,

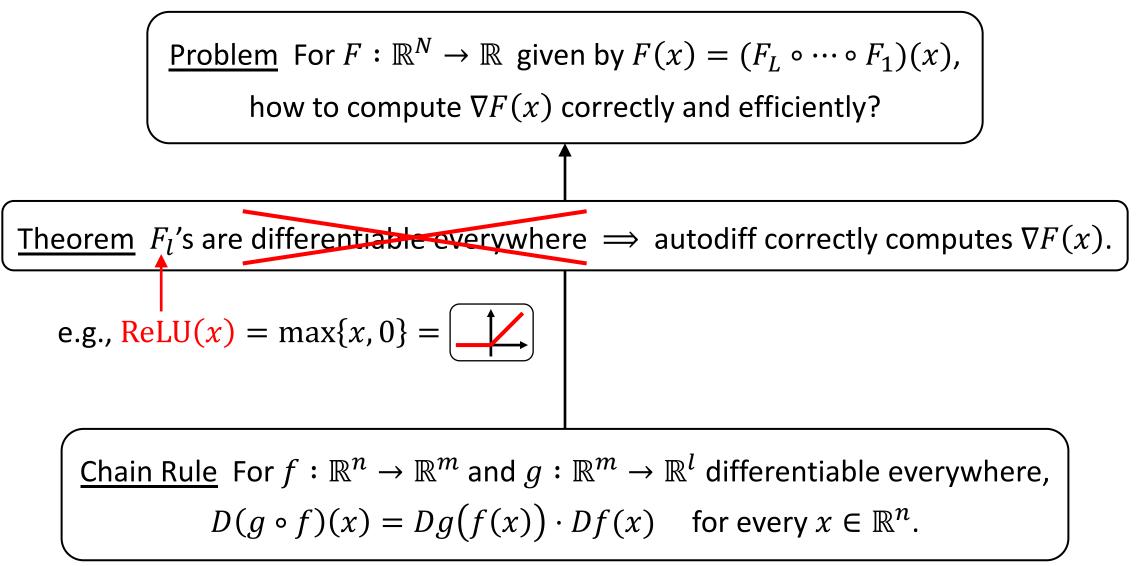
how to compute $\nabla F(x)$ correctly and efficiently?

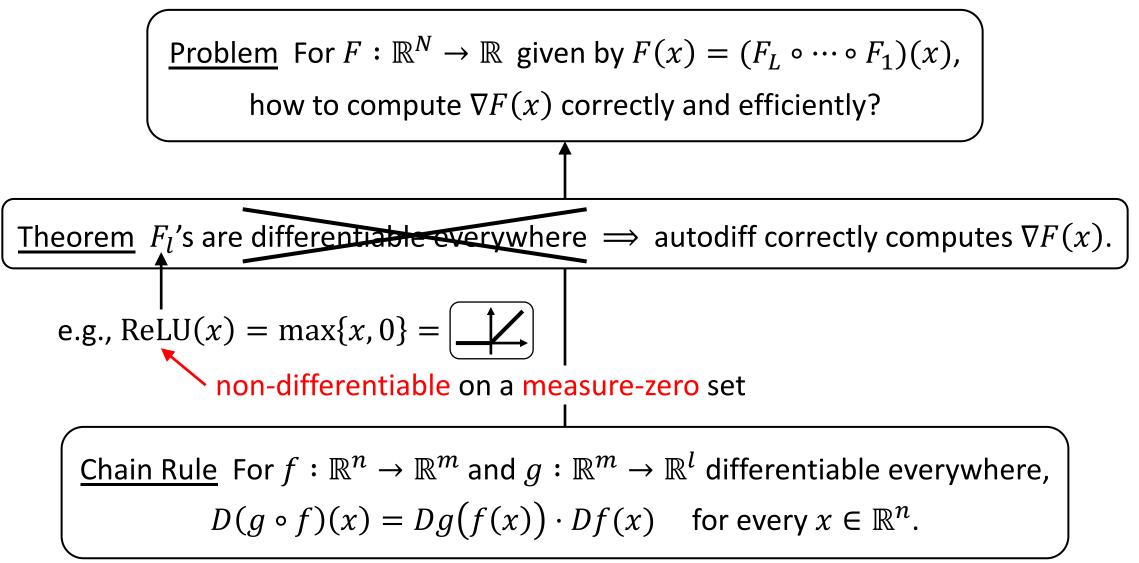


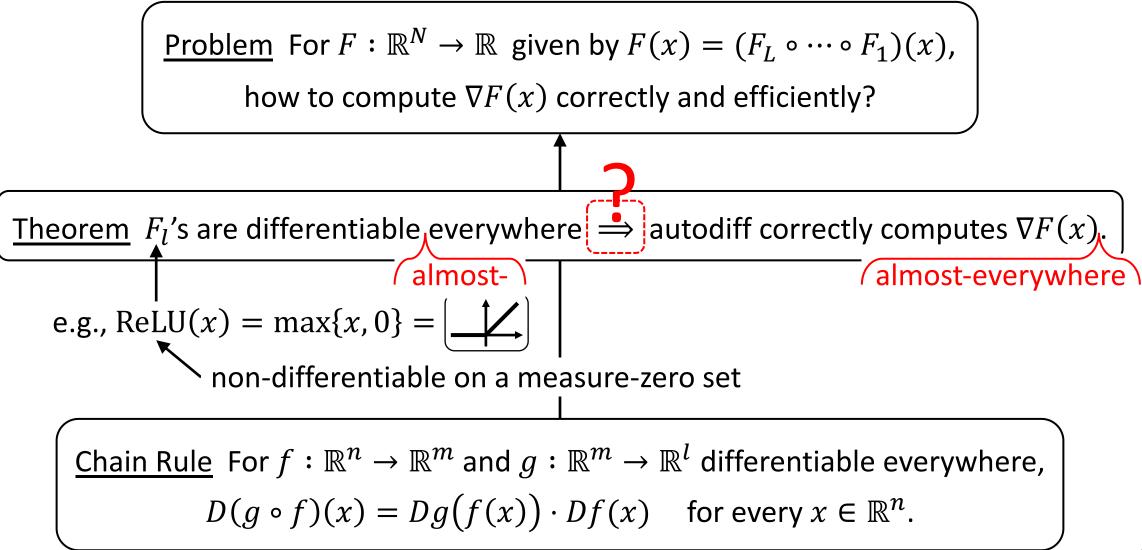
Problem For $F : \mathbb{R}^N \to \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently? Autodiff \approx efficient way of applying the chain rule. <u>Chain Rule</u> For $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere, $D(g \circ f)(x) = Dg(f(x)) \cdot Df(x)$ for every $x \in \mathbb{R}^n$.

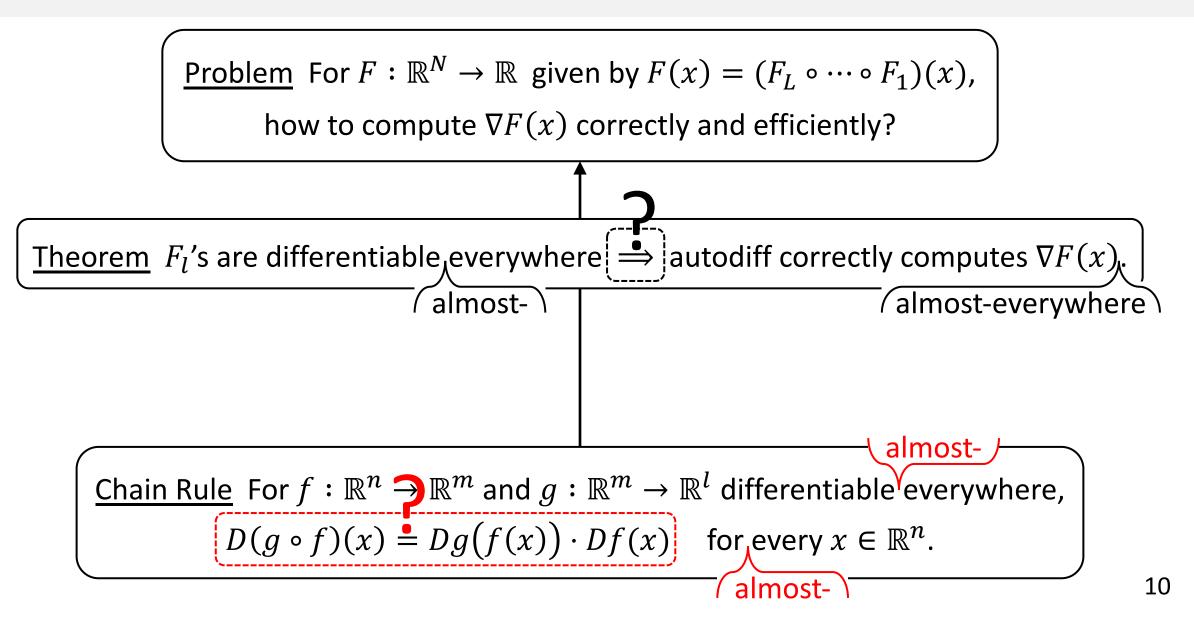
$\begin{array}{c} \hline \underline{\text{Problem}} & \text{For } F : \mathbb{R}^N \to \mathbb{R} \text{ given by } F(x) = (F_L \circ \cdots \circ F_1)(x), \\ & \text{how to compute } \nabla F(x) \text{ correctly and efficiently?} \end{array}$
$\left(\underline{\text{Theorem } F_l}' \text{s are differentiable everywhere } \Rightarrow \text{ autodiff correctly computes } \nabla F(x). \right)$
Autodiff \approx efficient way of applying the chain rule.
Chain Rule For $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere,
$D(g \circ f)(x) = Dg(f(x)) \cdot Df(x)$ for every $x \in \mathbb{R}^n$.

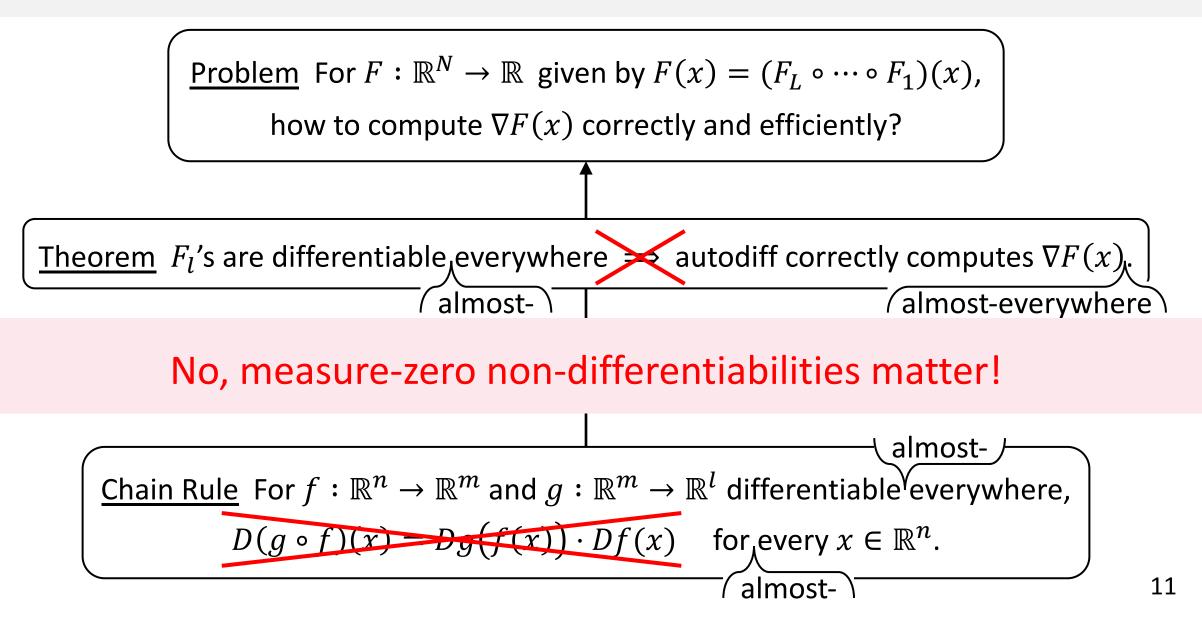


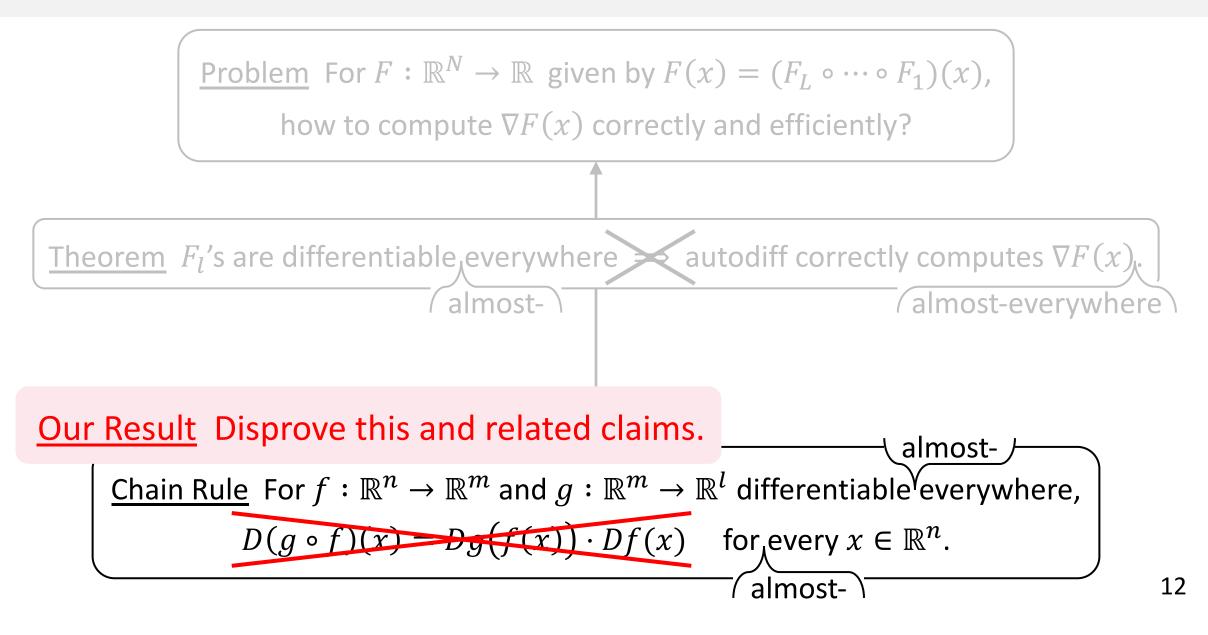








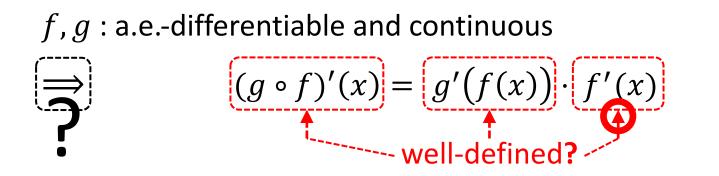




<u>Claim 1</u> For any $f, g : \mathbb{R} \to \mathbb{R}$,

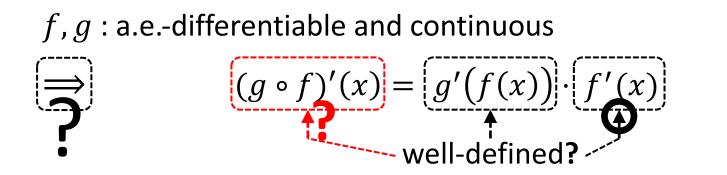
f, g: a.e.-differentiable and continuous $(g \circ f)'(x) = g'(f(x)) \cdot f'(x) \quad \text{for a.e. } x \in \mathbb{R}.$

<u>Claim 1</u> For any $f, g : \mathbb{R} \to \mathbb{R}$,



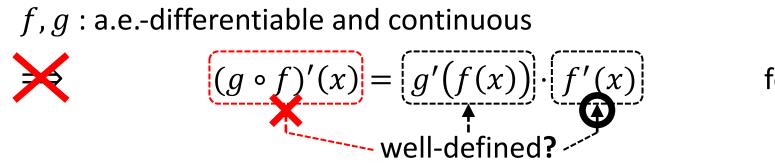
for a.e. $x \in \mathbb{R}$.

<u>Claim 1</u> For any $f, g : \mathbb{R} \to \mathbb{R}$,



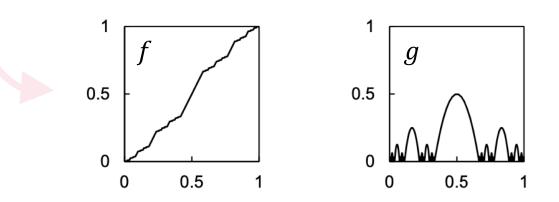
for a.e. $x \in \mathbb{R}$.

<u>Claim 1</u> For any $f, g : \mathbb{R} \to \mathbb{R}$,



for a.e. $x \in \mathbb{R}$.

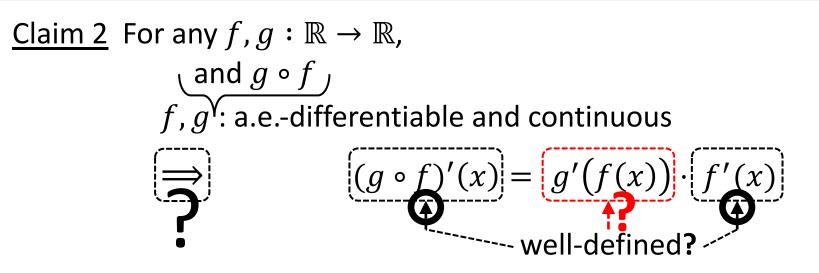
<u>Counterexample</u> Involves the Cantor function.



Claim 2 For any
$$f, g : \mathbb{R} \to \mathbb{R}$$
,
and $g \circ f$
 $f, g': a.e.-differentiable and continuous$
 $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$ for a.e. $x \in \mathbb{R}$.

Claim 2 For any
$$f, g: \mathbb{R} \to \mathbb{R}$$
,
and $g \circ f$
 $f, g': a.e.-differentiable and continuous $(g \circ f)'(x) = \boxed{g'(f(x))} \cdot f'(x)$
well-defined?$

for a.e. $x \in \mathbb{R}$.



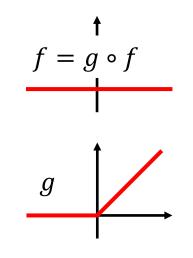
for a.e. $x \in \mathbb{R}$.

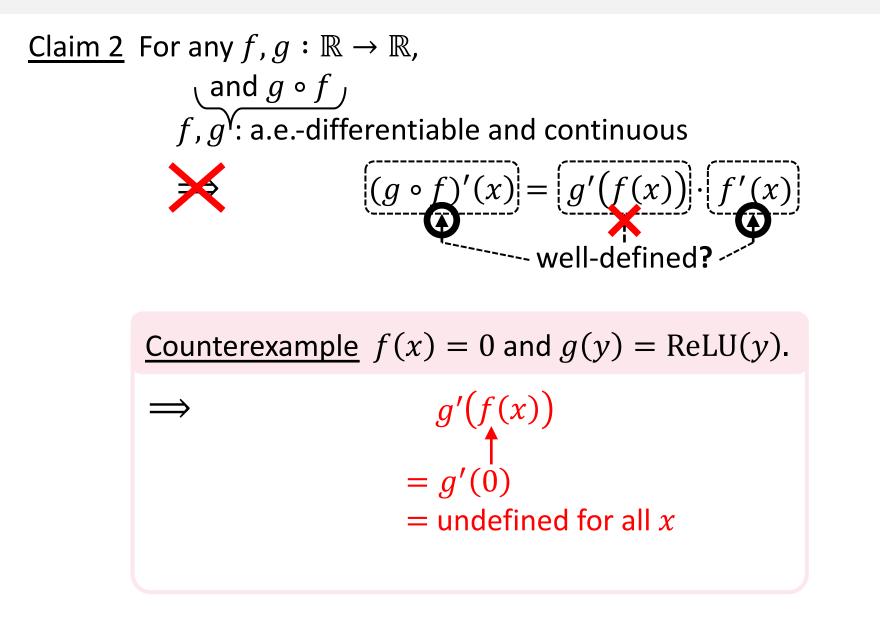
Claim 2 For any
$$f, g: \mathbb{R} \to \mathbb{R}$$
,
and $g \circ f$,
 $f, g:$ a.e.-differentiable and continuous \cdots (*)
 $(g \circ f)'(x) = [g'(f(x))] \cdot [f'(x)]$
well-defined?

for a.e. $x \in \mathbb{R}$.

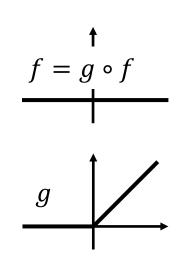
<u>Counterexample</u> f(x) = 0 and g(y) = ReLU(y).

$$\Rightarrow$$
 easy to check that (*) holds.





for a.e. $x \in \mathbb{R}$.



Claim 2 For any
$$f, g : \mathbb{R} \to \mathbb{R}$$
,
and $g \circ f$,
 $f, g': a.e.-differentiable and continuous$
 $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$
well-defined?
Counterexample $f(x) = 0$ and $g(y) = \operatorname{ReLU}(y)$.
 $\Rightarrow (g \circ f)'(x) g'(f(x)) f'(x)$
 $= 0 = g'(0) = 0$
 $= undefined for all x$

for a.e.
$$x \in \mathbb{R}$$
.

$$f = g \circ f$$

for a.e.
$$x \in \mathbb{R}$$
.

$$f = g \circ f$$

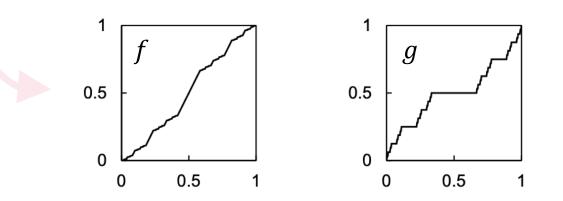
Claim 2 For any
$$f, g: \mathbb{R} \to \mathbb{R}$$
,
and $g \circ f$,
 $f, g: a.e.-differentiable and continuous$
 $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$ for a.e. $x \in \mathbb{R}$.
Counterexample $f(x) = 0$ and $g(y) = \operatorname{ReLU}(y)$.
 $\Rightarrow (g \circ f)'(x) = dg(f(x)) \cdot f'(x)$ for all $x \in \mathbb{R}$.
 $f = g \circ f$
 $f = g \circ f$
 $g = 0$
 $dg(y) = \begin{cases} 7 & \text{for } y = 0 \\ g'(y) & \text{for } y \neq 0 \end{cases}$

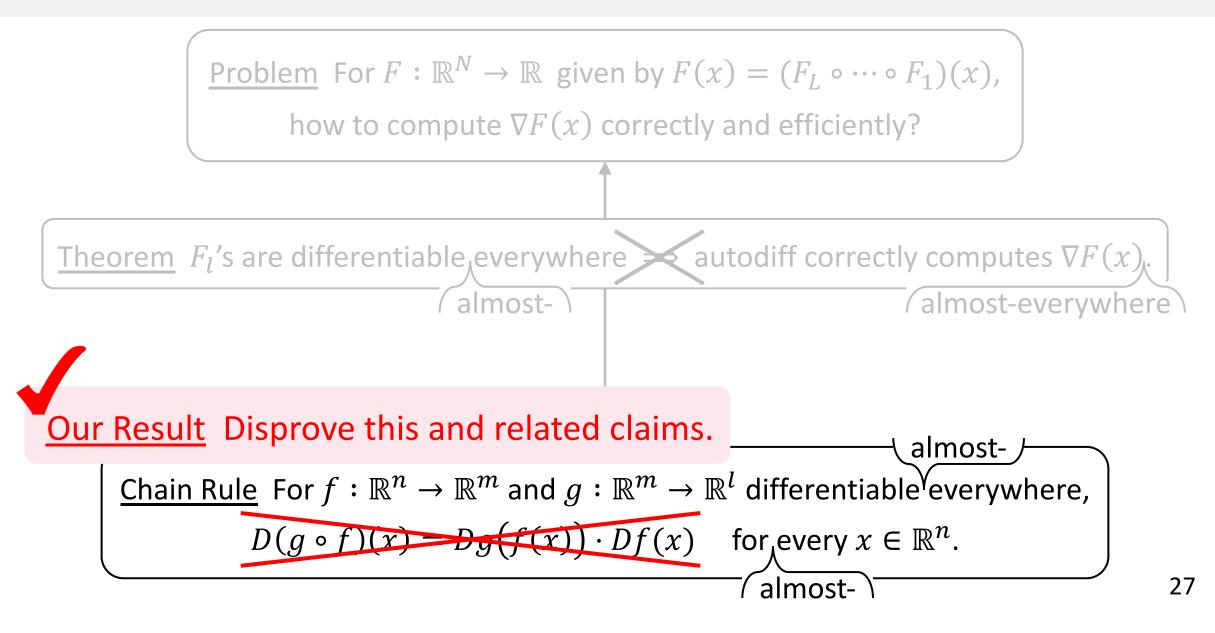
f

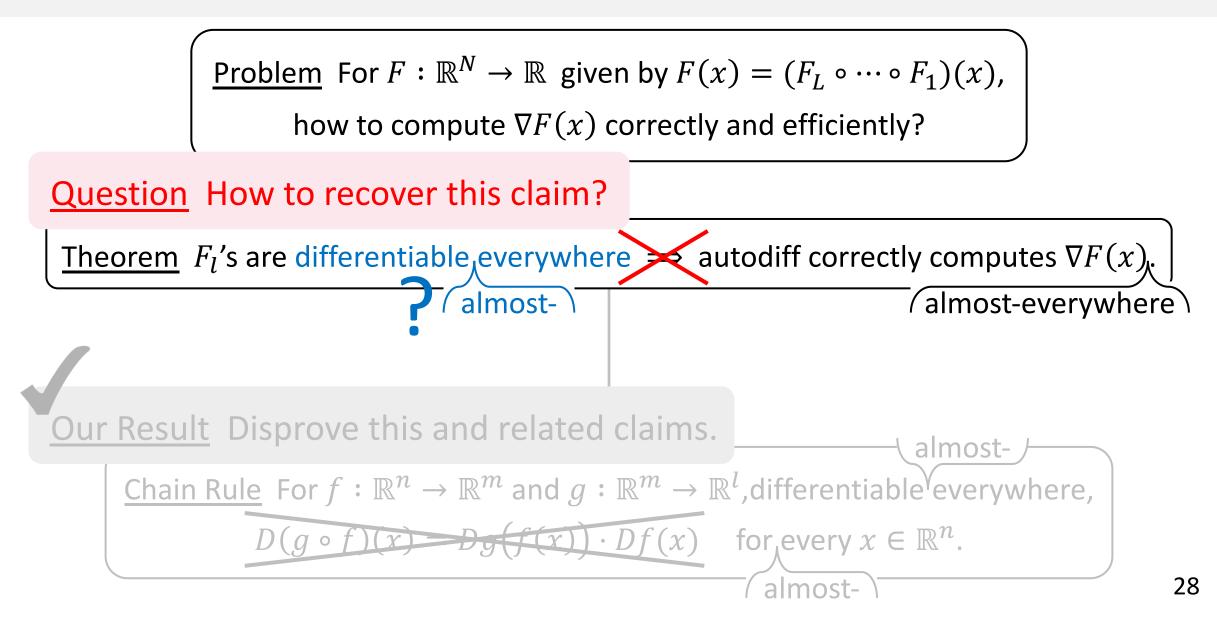
Claim 3 For any
$$f, g: \mathbb{R} \to \mathbb{R}$$
,
and $g \circ f$,
 $f, g': a.e.-differentiable and continuous$
 $(g \circ f)'(x) = dg(f(x)) \cdot df(x)$ for a.e. $x \in \mathbb{R}$.
 $\exists df, dg: \mathbb{R} \to \mathbb{R}$ such that $df \stackrel{a.e.}{=} f', dg \stackrel{a.e.}{=} g'$, and

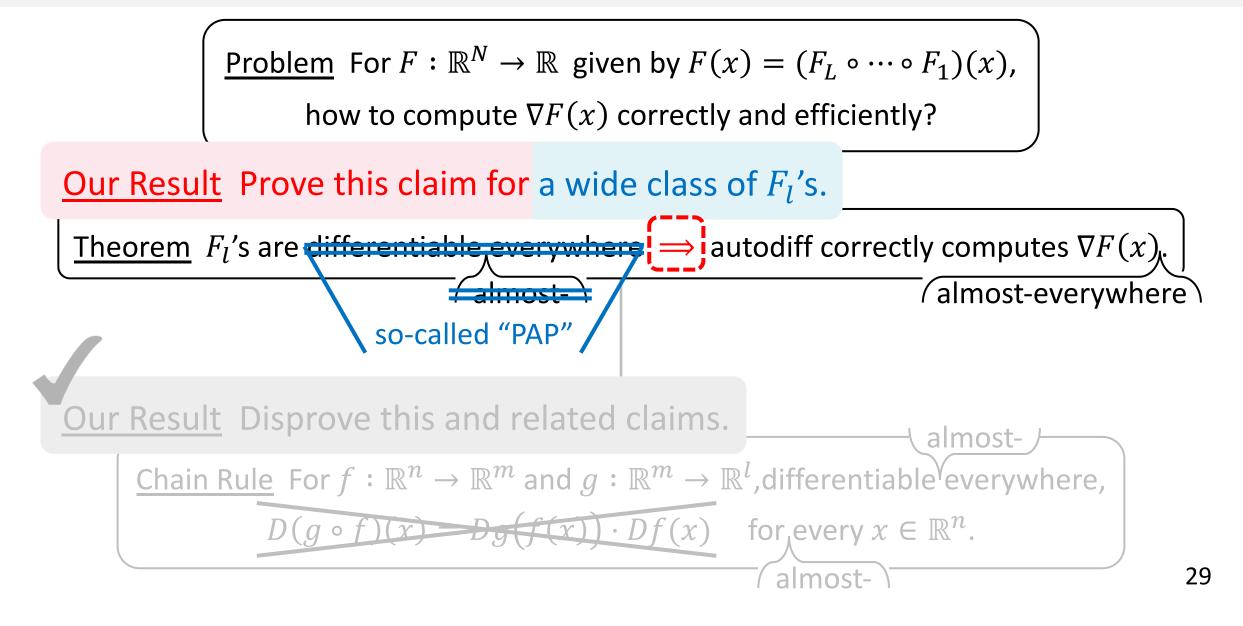
Claim 3 For any
$$f, g: \mathbb{R} \to \mathbb{R}$$
,
and $g \circ f$,
 $f, g': a.e.-differentiable and continuous
 $(g \circ f)'(x) \to dg(f(x)) \cdot df(x)$ for a.e. $x \in \mathbb{R}$.
 $\exists df, dg: \mathbb{R} \to \mathbb{R}$ such that $df \stackrel{a.e.}{=} f', dg \stackrel{a.e.}{=} g'$, and$

<u>Counterexample</u> Involves the Cantor function again.





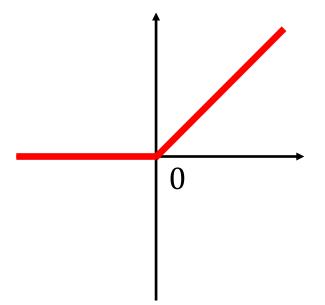




<u>Definition</u> $f : \mathbb{R}^n \to \mathbb{R}^m$ is PAP (= <u>P</u>iecewise <u>A</u>nalytic under <u>A</u>nalytic <u>P</u>artition) roughly iff f can be "decomposed" into $f_1 \Big|_{A_1'} f_2 \Big|_{A_2'} \cdots$ such that $f_i : \mathbb{R}^n \to \mathbb{R}^m$ is analytic and $A_i \subseteq \mathbb{R}^n$ is "analytic".

<u>Definition</u> $f : \mathbb{R}^n \to \mathbb{R}^m$ is PAP (= <u>P</u>iecewise <u>A</u>nalytic under <u>A</u>nalytic <u>P</u>artition) roughly iff f can be "decomposed" into $f_1|_{A_1}, f_2|_{A_2}, \cdots$ such that $f_i : \mathbb{R}^n \to \mathbb{R}^m$ is analytic and $A_i \subseteq \mathbb{R}^n$ is "analytic".

Example $f(x) = \operatorname{ReLU}(x)$.

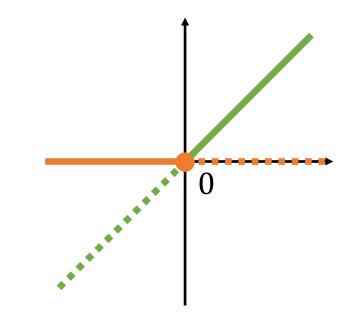


<u>Definition</u> $f : \mathbb{R}^n \to \mathbb{R}^m$ is PAP (= <u>P</u>iecewise <u>A</u>nalytic under <u>A</u>nalytic <u>P</u>artition) roughly iff f can be "decomposed" into $f_1|_{A_1}, f_2|_{A_2}, \cdots$ such that

 $f_i : \mathbb{R}^n \to \mathbb{R}^m$ is analytic and $A_i \subseteq \mathbb{R}^n$ is "analytic".

Example $f(x) = \operatorname{ReLU}(x)$.

• $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \le 0\}),$ $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}).$

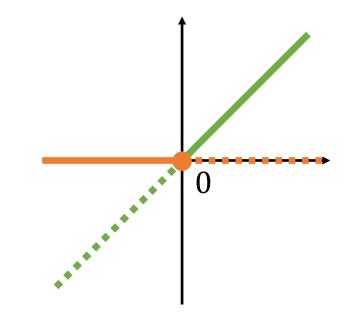


<u>Definition</u> $f : \mathbb{R}^n \to \mathbb{R}^m$ is PAP (= <u>P</u>iecewise <u>A</u>nalytic under <u>A</u>nalytic <u>P</u>artition) roughly iff f can be "decomposed" into $f_1|_{A_1}, f_2|_{A_2}, \cdots$ such that

 $f_i : \mathbb{R}^n \to \mathbb{R}^m$ is analytic and $A_i \subseteq \mathbb{R}^n$ is "analytic".

Example $f(x) = \operatorname{ReLU}(x)$.

• $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \le 0\}),$ $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}).$ analytic functions

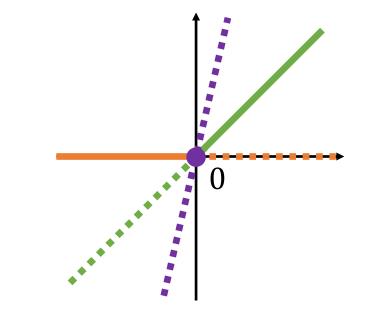


<u>Definition</u> $f : \mathbb{R}^n \to \mathbb{R}^m$ is PAP (= <u>P</u>iecewise <u>A</u>nalytic under <u>A</u>nalytic <u>P</u>artition) roughly iff f can be "decomposed" into $f_1|_{A_1}, f_2|_{A_2}, \cdots$ such that

 $f_i : \mathbb{R}^n \to \mathbb{R}^m$ is analytic and $A_i \subseteq \mathbb{R}^n$ is "analytic".

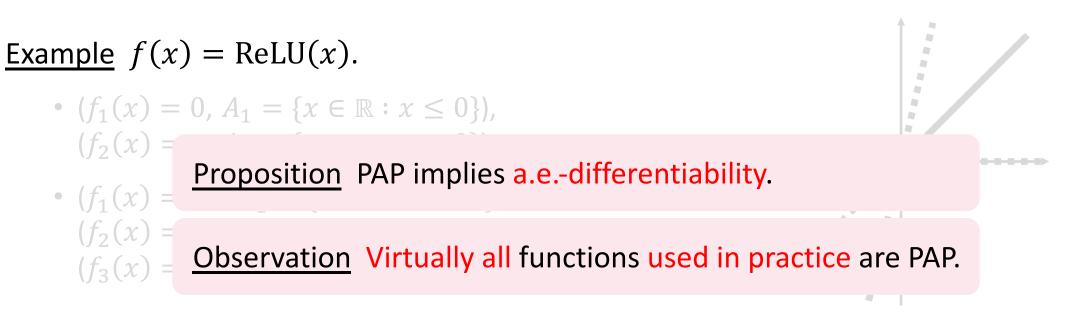
Example $f(x) = \operatorname{ReLU}(x)$.

- $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \le 0\}),$ $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}).$
- $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}),$ $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}),$ $(f_3(x) = \underline{7x}, A_3 = \{x \in \mathbb{R} : x = 0\}).$



<u>Definition</u> $f : \mathbb{R}^n \to \mathbb{R}^m$ is PAP (= <u>P</u>iecewise <u>A</u>nalytic under <u>A</u>nalytic <u>P</u>artition) roughly iff f can be "decomposed" into $f_1|_{A_1}, f_2|_{A_2}, \cdots$ such that

 $f_i : \mathbb{R}^n \to \mathbb{R}^m$ is analytic and $A_i \subseteq \mathbb{R}^n$ is "analytic".



analytic functions
Example
$$f(x) = \operatorname{ReLU}(x)$$
.
• $(f_1(x) = 0) A_1 = \{x \in \mathbb{R} : x \le 0\}), (f_2(x) = x) A_2 = \{x \in \mathbb{R} : x > 0\}).$
• $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x > 0\}).$
• $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x > 0\}), (f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}), (f_3(x) = 7x, A_3 = \{x \in \mathbb{R} : x = 0\}).$

analytic functions

$$(f_1'(x) = 0, A_1 = \{x \in \mathbb{R} : x \le 0\}), (f_2'(x) = 1, A_2 = \{x \in \mathbb{R} : x > 0\}).$$

$$(f_1(x) = 0) A_1 = \{x \in \mathbb{R} : x \le 0\}), (f_2(x) = x) A_2 = \{x \in \mathbb{R} : x > 0\}).$$

$$(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x > 0\}).$$

$$(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x > 0\}), (f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}), (f_3(x) = 7x, A_3 = \{x \in \mathbb{R} : x = 0\}).$$

analytic functions

$$\begin{array}{c} (f_1'(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\}), \\ (f_2'(x) = 1, A_2 = \{x \in \mathbb{R} : x > 0\}). \end{array}$$

$$\begin{array}{c} (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\}), \\ (f_2(x) = x), A_2 = \{x \in \mathbb{R} : x > 0\}). \end{array}$$

$$\begin{array}{c} (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x > 0\}). \\ (f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}). \end{array}$$

$$\begin{array}{c} (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}), \\ (f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}). \end{array}$$

$$\begin{array}{c} (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}), \\ (f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}). \end{array}$$

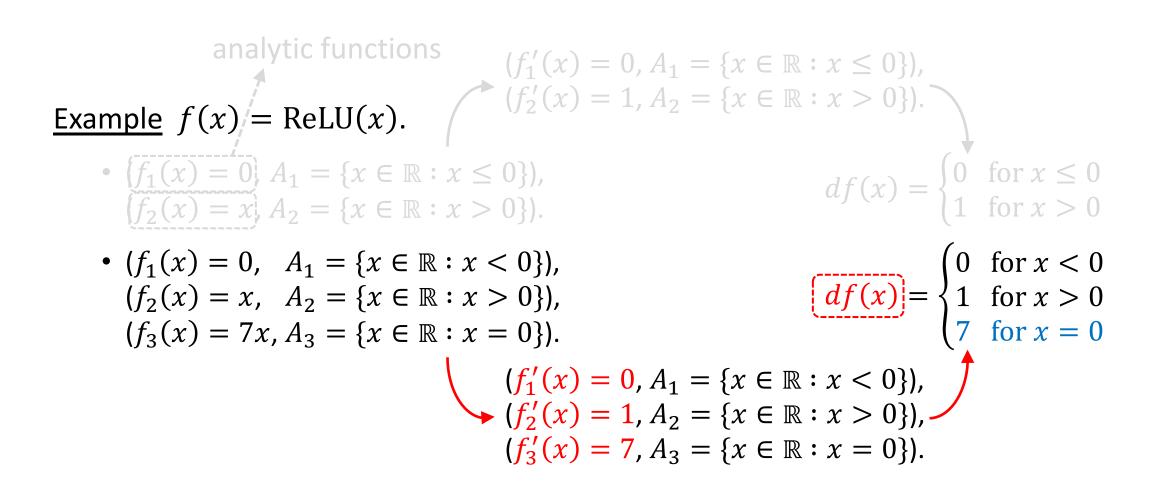
$$\begin{array}{c} (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}), \\ (f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}). \end{array}$$

$$\begin{array}{c} (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}), \\ (f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}). \end{array}$$

$$\begin{array}{c} (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}), \\ (f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}). \end{array}$$

$$\begin{array}{c} (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}), \\ (f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}). \end{array}$$

$$\begin{array}{c} (f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}), \\ (f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}). \end{array}$$



<u>Proposition</u> Intensional derivatives satisfy the chain rule.

<u>Proposition</u> Any intensional derivative $\stackrel{a.e.}{=}$ standard derivative.

Example
$$f(x) = \operatorname{ReLU}(x)$$
.
• $(f_1(x) = 0) A_1 = \{x \in \mathbb{R} : x \le 0\}),$
 $(f_2(x) = x) A_2 = \{x \in \mathbb{R} : x > 0\}).$
• $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x > 0\}).$
• $(f_1(x) = x, A_2 = \{x \in \mathbb{R} : x < 0\}),$
 $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}),$
 $(f_3(x) = 7x, A_3 = \{x \in \mathbb{R} : x = 0\}).$
 $(f_1'(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}),$
 $(f_2'(x) = 1, A_2 = \{x \in \mathbb{R} : x < 0\}),$
 $(f_2'(x) = 1, A_2 = \{x \in \mathbb{R} : x > 0\}),$
 $(f_2'(x) = 1, A_2 = \{x \in \mathbb{R} : x > 0\}),$

 $(f'_3(x) = 7, A_3 = \{x \in \mathbb{R} : x = 0\}).$

<u>Proposition</u> Intensional derivatives satisfy the chain rule.

<u>Proposition</u> Any intensional derivative $\stackrel{a.e.}{=}$ standard derivative.

Example
$$f(x) = \operatorname{ReLU}(x)$$
.
• $(f_1(x) = 0) A_1 = \{x \in \mathbb{R} : x \le 0\}),$
• $(f_1(x) = 0) A_1 = \{x \in \mathbb{R} : x \le 0\}),$
 $df(x) = \begin{cases} 0 & \text{for } x \le 0 \\ 0 & 0 \end{cases}$

 $(f_{2}(x) = x) A_{2} = \{x \in \mathbb{R} : x > 0\} \quad \bigstar$ $(f_{1}(x) = (f_{1}(x) = (f_{2}(x) = x)) \quad (f_{2}(x) = x) \quad$

High-Level Messages

• Measure-zero non-differentiabilities often bring us unexpected subtleties, when we try to establish formal correctness of ML algorithms (e.g., autodiff).

High-Level Messages

- Measure-zero non-differentiabilities often bring us unexpected subtleties, when we try to establish formal correctness of ML algorithms (e.g., autodiff).
- PAP functions and intensional derivatives would play an important role, when we try to deal with such subtleties (e.g., arising from other ML algorithms).