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Problem For ! ∶ ℝ$ → ℝ given by ! & = (!) ∘ ⋯∘ !,)(&),
how to compute ∇! & correctly and efficiently?
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Chain Rule For ! ∶ ℝ$ → ℝ& and ' ∶ ℝ& → ℝ(,differentiable everywhere,
) ' ∘ ! + = )' ! + ⋅ )!(+) for every + ∈ ℝ$.

Problem For 1 ∶ ℝ2 → ℝ given by 1 + = (13 ∘ ⋯∘ 15)(+),
how to compute ∇1 + correctly and efficiently?



Autodiff

4

Autodiff ≈ efficient way of applying the chain rule.

Chain Rule For " ∶ ℝ% → ℝ' and ( ∶ ℝ' → ℝ),differentiable everywhere,
* ( ∘ " , = *( " , ⋅ *"(,) for every , ∈ ℝ%.

Problem For 2 ∶ ℝ3 → ℝ given by 2 , = (24 ∘ ⋯∘ 26)(,),
how to compute ∇2 , correctly and efficiently?
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Theorem !"’s are differentiable everywhere  ⟹ autodiff correctly computes ∇! % .

Autodiff  ≈ efficient way of applying the chain rule.

Problem For ! ∶ ℝ) → ℝ given by ! % = (!- ∘ ⋯∘ !0)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 2 ∶ ℝ3 → ℝ4 and 5 ∶ ℝ4 → ℝ",differentiable everywhere,
6 5 ∘ 2 % = 65 2 % ⋅ 62(%) for every % ∈ ℝ3.
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Theorem !"’s are differentiable everywhere  ⟹ autodiff correctly computes ∇! % .

Autodiff  ≈ efficient way of applying the chain rule.

Problem For ! ∶ ℝ) → ℝ given by ! % = (!- ∘ ⋯∘ !0)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 2 ∶ ℝ3 → ℝ4 and 5 ∶ ℝ4 → ℝ",differentiable everywhere,
6 5 ∘ 2 % = 65 2 % ⋅ 62(%) for every % ∈ ℝ3.
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Problem For ! ∶ ℝ( → ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

e.g., ReLU % = max %, 0 =
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Theorem !"’s are differentiable everywhere  ⟹ autodiff correctly computes ∇! % .
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e.g., ReLU % = max %, 0 =
non-differentiable on a measure-zero set 
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Theorem !"’s are differentiable everywhere  ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ( → ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

e.g., ReLU % = max %, 0 =
non-differentiable on a measure-zero set 

almost-everywhere

?
almost-
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Theorem !"’s are differentiable everywhere  ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ( → ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

almost-

?
almost-everywhere

?
almost-

almost-
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Theorem !"’s are differentiable everywhere  ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ( → ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

almost- almost-everywhere

almost-

almost-

No, measure-zero non-differentiabilities matter!
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Theorem !"’s are differentiable everywhere  ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ( → ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

almost- almost-everywhere

almost-

almost-Our Result Disprove this and related claims.



⟹ (# ∘ %)' ( = *# % ( ⋅ *%(() for a.e. ( ∈ ℝ.

Subtleties in Chain Rule (1)
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Claim 1 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous

#' %'

?
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Claim 1 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous

#' %'

well-defined??



well-defined?

⟹ (# ∘ %)' ( = *# % ( ⋅ *%(() for a.e. ( ∈ ℝ.
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Claim 1 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous

#' %'

? ?
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Claim 1 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous

#' %'

well-defined?

% #

Counterexample Involves the Cantor function.
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Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

?
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Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

? well-defined?
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Subtleties in Chain Rule (2)
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Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

? ?
well-defined?



⟹ easy to check that ∗ holds. 

⟹ ($ ∘ &)( ) = +$ & ) ⋅ +&()) for a.e. ) ∈ ℝ.

Subtleties in Chain Rule (2)
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Claim 2 For any &, $ ∶ ℝ → ℝ,

&, $ : a.e.-differentiable and continuous ⋯ ∗
and $ ∘ &

$( &(

Counterexample & ) = 0 and $ 4 = ReLU 4 .

well-defined?? ?

& = $ ∘ &

$
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Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

Counterexample % ( = 0 and # 2 = ReLU 2 .

= #' 0
= undefined for all (

#' %'

well-defined?

% = # ∘ %

#
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Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

Counterexample % ( = 0 and # 2 = ReLU 2 .

= 0= 0 = #' 0
= undefined for all (

#' %'

well-defined?

% = # ∘ %

#
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Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

Counterexample % ( = 0 and # 2 = ReLU 2 .
%'

= 0= 0
*# 2 = 87 for 2 = 0

#' 2 for 2 ≠ 0

well-defined?

% = # ∘ %

#



⟹ (# ∘ %)' ( = *# % ( ⋅ *%(() for all ( ∈ ℝ.

⟹ (# ∘ %)' ( = *# % ( ⋅ *%(() for a.e. ( ∈ ℝ.
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Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

Counterexample % ( = 0 and # 2 = ReLU 2 .

*# 2 = 87 for 2 = 0
#' 2 for 2 ≠ 0

%'

= 0= 0

well-defined?

% = # ∘ %

#
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Claim 3 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous

? ∃ *%, *# ∶ ℝ → ℝ such that  *% = %', *# = #', anda.e. a.e.

and # ∘ %
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Claim 3 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

∃ *%, *# ∶ ℝ → ℝ such that  *% = %', *# = #', anda.e. a.e.

Counterexample Involves the Cantor function again.

% #
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Theorem !"’s are differentiable everywhere  ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ( → ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

almost- almost-everywhere

almost-

almost-Our Result Disprove this and related claims.
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Theorem !"’s are differentiable everywhere  ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ( → ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

almost- almost-everywhere

almost-

almost-Our Result Disprove this and related claims.

Question How to recover this claim? 

?
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Theorem !"’s are differentiable everywhere  ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ( → ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

almost- almost-everywhere

almost-

almost-

Our Result Prove this claim for a wide class of 1"’s.a wide class of !"’s.

Our Result Disprove this and related claims.

so-called “PAP”



Definition ! ∶ ℝ$ → ℝ& is PAP (= Piecewise Analytic under Analytic Partition)
roughly iff ! can be “decomposed” into !' , !( , ⋯ such that

!* ∶ ℝ$ → ℝ& is analytic and +* ⊆ ℝ$ is “analytic”.

PAP Functions
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+' +(
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analytic functions
0

+' +(
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+' +(

Proposition PAP implies a.e.-differentiability.

Observation Virtually all functions used in practice are PAP.



Example ! " = ReLU " .
• (!( " = 0, *( = {" ∈ ℝ ∶ " ≤ 0}),

(!1 " = ", *1 = {" ∈ ℝ ∶ " > 0}).
• (!( " = 0,   *( = {" ∈ ℝ ∶ " < 0}),

(!1 " = ",   *1 = {" ∈ ℝ ∶ " > 0}),
(!4 " = 7", *4 = {" ∈ ℝ ∶ " = 0}).

Intensional Derivatives
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analytic functions
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(!(6 " = 0, *( = {" ∈ ℝ ∶ " ≤ 0}),
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intensional derivative of !

analytic functions
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Proposition Intensional derivatives satisfy the chain rule.

a.e.
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Example ! " = ReLU " .
• (!( " = 0, *( = {" ∈ ℝ ∶ " ≤ 0}),
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6! " = 70 for " ≤ 0
1 for " > 0

(!(< " = 0, *( = {" ∈ ℝ ∶ " < 0}),
(!1< " = 1, *1 = {" ∈ ℝ ∶ " > 0}),
(!4< " = 7, *4 = {" ∈ ℝ ∶ " = 0}).

6! " = =
0 for " < 0
1 for " > 0
3 for " = 0

Theorem For PAP functions,
what autodiff computes is an intensional derivative, 
and thus autodiff correctly computes gradients a.e.

(!(< " = 0, *( = {" ∈ ℝ ∶ " ≤ 0}),
(!1< " = 1, *1 = {" ∈ ℝ ∶ " > 0}).

Proposition Any intensional derivative  = standard derivative.

Proposition Intensional derivatives satisfy the chain rule.

a.e.



High-Level Messages

• Measure-zero non-differentiabilities often bring us unexpected subtleties,
when we try to establish formal correctness of ML algorithms (e.g., autodiff).
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High-Level Messages

• Measure-zero non-differentiabilities often bring us unexpected subtleties,
when we try to establish formal correctness of ML algorithms (e.g., autodiff).

• PAP functions and intensional derivatives would play an important role,
when we try to deal with such subtleties (e.g., arising from other ML algorithms).
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