
On Correctness of Automatic Differentiation
for Non-Differentiable Functions

Wonyeol Lee1,* Hangyeol Yu1,** Xavier Rival2 Hongseok Yang1

1KAIST, South Korea 2INRIA/ENS/CNRS, France
*now at Stanford, USA **now at Riiid!, South Korea

NeurIPS 2020 (Spotlight)

Autodiff

2

Problem For ! ∶ ℝ$ → ℝ given by ! & = (!) ∘ ⋯∘ !,)(&),
how to compute ∇! & correctly and efficiently?

Autodiff

3

Chain Rule For ! ∶ ℝ$ → ℝ& and ' ∶ ℝ& → ℝ(,differentiable everywhere,
) ' ∘ ! + =)' ! + ⋅)!(+) for every + ∈ ℝ$.

Problem For 1 ∶ ℝ2 → ℝ given by 1 + = (13 ∘ ⋯∘ 15)(+),
how to compute ∇1 + correctly and efficiently?

Autodiff

4

Autodiff ≈ efficient way of applying the chain rule.

Chain Rule For " ∶ ℝ% → ℝ' and (∶ ℝ' → ℝ),differentiable everywhere,
* (∘ " , = *(" , ⋅ *"(,) for every , ∈ ℝ%.

Problem For 2 ∶ ℝ3 → ℝ given by 2 , = (24 ∘ ⋯∘ 26)(,),
how to compute ∇2 , correctly and efficiently?

Autodiff

5

Theorem !"’s are differentiable everywhere ⟹ autodiff correctly computes ∇! % .

Autodiff ≈ efficient way of applying the chain rule.

Problem For ! ∶ ℝ) → ℝ given by ! % = (!- ∘ ⋯∘ !0)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 2 ∶ ℝ3 → ℝ4 and 5 ∶ ℝ4 → ℝ",differentiable everywhere,
6 5 ∘ 2 % = 65 2 % ⋅ 62(%) for every % ∈ ℝ3.

Autodiff in Practice

6

Theorem !"’s are differentiable everywhere ⟹ autodiff correctly computes ∇! % .

Autodiff ≈ efficient way of applying the chain rule.

Problem For ! ∶ ℝ) → ℝ given by ! % = (!- ∘ ⋯∘ !0)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 2 ∶ ℝ3 → ℝ4 and 5 ∶ ℝ4 → ℝ",differentiable everywhere,
6 5 ∘ 2 % = 65 2 % ⋅ 62(%) for every % ∈ ℝ3.

?

Autodiff in Practice

7

Theorem !"’s are differentiable everywhere ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ(→ ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

e.g., ReLU % = max %, 0 =

Autodiff in Practice

8

Theorem !"’s are differentiable everywhere ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ(→ ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

e.g., ReLU % = max %, 0 =
non-differentiable on a measure-zero set

Autodiff in Practice

9

Theorem !"’s are differentiable everywhere ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ(→ ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

e.g., ReLU % = max %, 0 =
non-differentiable on a measure-zero set

almost-everywhere

?
almost-

Autodiff in Practice

10

Theorem !"’s are differentiable everywhere ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ(→ ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

almost-

?
almost-everywhere

?
almost-

almost-

Our Results

11

Theorem !"’s are differentiable everywhere ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ(→ ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

almost- almost-everywhere

almost-

almost-

No, measure-zero non-differentiabilities matter!

Our Results

12

Theorem !"’s are differentiable everywhere ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ(→ ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

almost- almost-everywhere

almost-

almost-Our Result Disprove this and related claims.

⟹ (# ∘ %)' (= *# % (⋅ *%(() for a.e. (∈ ℝ.

Subtleties in Chain Rule (1)

13

Claim 1 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous

#' %'

?

⟹ (# ∘ %)' (= *# % (⋅ *%(() for a.e. (∈ ℝ.

Subtleties in Chain Rule (1)

14

Claim 1 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous

#' %'

well-defined??

well-defined?

⟹ (# ∘ %)' (= *# % (⋅ *%(() for a.e. (∈ ℝ.

Subtleties in Chain Rule (1)

15

Claim 1 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous

#' %'

? ?

⟹ (# ∘ %)' (= *# % (⋅ *%(() for a.e. (∈ ℝ.

Subtleties in Chain Rule (1)

16

Claim 1 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous

#' %'

well-defined?

% #

Counterexample Involves the Cantor function.

⟹ (# ∘ %)' (= *# % (⋅ *%(() for a.e. (∈ ℝ.

Subtleties in Chain Rule (2)

17

Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

?

⟹ (# ∘ %)' (= *# % (⋅ *%(() for a.e. (∈ ℝ.

Subtleties in Chain Rule (2)

18

Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

? well-defined?

⟹ (# ∘ %)' (= *# % (⋅ *%(() for a.e. (∈ ℝ.

Subtleties in Chain Rule (2)

19

Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

? ?
well-defined?

⟹ easy to check that ∗ holds.

⟹ ($ ∘ &)() = +$ &) ⋅ +&()) for a.e.) ∈ ℝ.

Subtleties in Chain Rule (2)

20

Claim 2 For any &, $ ∶ ℝ → ℝ,

&, $: a.e.-differentiable and continuous ⋯ ∗
and $ ∘ &

$(&(

Counterexample &) = 0 and $ 4 = ReLU 4 .

well-defined?? ?

& = $ ∘ &

$

⟹ (# ∘ %)' (= *# % (⋅ *%(()

⟹ (# ∘ %)' (= *# % (⋅ *%(() for a.e. (∈ ℝ.

Subtleties in Chain Rule (2)

21

Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

Counterexample % (= 0 and # 2 = ReLU 2 .

= #' 0
= undefined for all (

#' %'

well-defined?

% = # ∘ %

#

⟹ (# ∘ %)' (= *# % (⋅ *%(()

⟹ (# ∘ %)' (= *# % (⋅ *%(() for a.e. (∈ ℝ.

Subtleties in Chain Rule (2)

22

Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

Counterexample % (= 0 and # 2 = ReLU 2 .

= 0= 0 = #' 0
= undefined for all (

#' %'

well-defined?

% = # ∘ %

#

⟹ (# ∘ %)' (= *# % (⋅ *%(()

⟹ (# ∘ %)' (= *# % (⋅ *%(() for a.e. (∈ ℝ.

Subtleties in Chain Rule (2)

23

Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

Counterexample % (= 0 and # 2 = ReLU 2 .
%'

= 0= 0
*# 2 = 87 for 2 = 0

#' 2 for 2 ≠ 0

well-defined?

% = # ∘ %

#

⟹ (# ∘ %)' (= *# % (⋅ *%(() for all (∈ ℝ.

⟹ (# ∘ %)' (= *# % (⋅ *%(() for a.e. (∈ ℝ.

Subtleties in Chain Rule (2)

24

Claim 2 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

#' %'

Counterexample % (= 0 and # 2 = ReLU 2 .

*# 2 = 87 for 2 = 0
#' 2 for 2 ≠ 0

%'

= 0= 0

well-defined?

% = # ∘ %

#

⟹ (# ∘ %)' (= *# % (⋅ *%(() for a.e. (∈ ℝ.

Subtleties in Chain Rule (3)

25

Claim 3 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous

? ∃ *%, *# ∶ ℝ → ℝ such that *% = %', *# = #', anda.e. a.e.

and # ∘ %

⟹ (# ∘ %)' (= *# % (⋅ *%(() for a.e. (∈ ℝ.

Subtleties in Chain Rule (3)

26

Claim 3 For any %, # ∶ ℝ → ℝ,

%, # : a.e.-differentiable and continuous
and # ∘ %

∃ *%, *# ∶ ℝ → ℝ such that *% = %', *# = #', anda.e. a.e.

Counterexample Involves the Cantor function again.

% #

Our Results

27

Theorem !"’s are differentiable everywhere ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ(→ ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

almost- almost-everywhere

almost-

almost-Our Result Disprove this and related claims.

Our Results

28

Theorem !"’s are differentiable everywhere ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ(→ ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

almost- almost-everywhere

almost-

almost-Our Result Disprove this and related claims.

Question How to recover this claim?

?

Our Results

29

Theorem !"’s are differentiable everywhere ⟹ autodiff correctly computes ∇! % .

Problem For ! ∶ ℝ(→ ℝ given by ! % = (!, ∘ ⋯∘ !/)(%),
how to compute ∇! % correctly and efficiently?

Chain Rule For 1 ∶ ℝ2 → ℝ3 and 4 ∶ ℝ3 → ℝ",differentiable everywhere,
5 4 ∘ 1 % = 54 1 % ⋅ 51(%) for every % ∈ ℝ2.

almost- almost-everywhere

almost-

almost-

Our Result Prove this claim for a wide class of 1"’s.a wide class of !"’s.

Our Result Disprove this and related claims.

so-called “PAP”

Definition ! ∶ ℝ$ → ℝ& is PAP (= Piecewise Analytic under Analytic Partition)
roughly iff ! can be “decomposed” into !' , !(, ⋯ such that

!* ∶ ℝ$ → ℝ& is analytic and +* ⊆ ℝ$ is “analytic”.

PAP Functions

30

+' +(

Definition ! ∶ ℝ$ → ℝ& is PAP (= Piecewise Analytic under Analytic Partition)
roughly iff ! can be “decomposed” into !' , !(, ⋯ such that

!* ∶ ℝ$ → ℝ& is analytic and +* ⊆ ℝ$ is “analytic”.

Example ! - = ReLU - .

PAP Functions

31

0

+' +(

Definition ! ∶ ℝ$ → ℝ& is PAP (= Piecewise Analytic under Analytic Partition)
roughly iff ! can be “decomposed” into !' , !(, ⋯ such that

!* ∶ ℝ$ → ℝ& is analytic and +* ⊆ ℝ$ is “analytic”.

Example ! - = ReLU - .
• (!' - = 0, +' = {- ∈ ℝ ∶ - ≤ 0}),

(!(- = -, +(= {- ∈ ℝ ∶ - > 0}).

PAP Functions

32

0

+' +(

Definition ! ∶ ℝ$ → ℝ& is PAP (= Piecewise Analytic under Analytic Partition)
roughly iff ! can be “decomposed” into !' , !(, ⋯ such that

!* ∶ ℝ$ → ℝ& is analytic and +* ⊆ ℝ$ is “analytic”.

Example ! - = ReLU - .
• (!' - = 0, +' = {- ∈ ℝ ∶ - ≤ 0}),

(!(- = -, +(= {- ∈ ℝ ∶ - > 0}).

PAP Functions

33

analytic functions
0

+' +(

Definition ! ∶ ℝ$ → ℝ& is PAP (= Piecewise Analytic under Analytic Partition)
roughly iff ! can be “decomposed” into !' , !(, ⋯ such that

!* ∶ ℝ$ → ℝ& is analytic and +* ⊆ ℝ$ is “analytic”.

Example ! - = ReLU - .
• (!' - = 0, +' = {- ∈ ℝ ∶ - ≤ 0}),

(!(- = -, +(= {- ∈ ℝ ∶ - > 0}).
• (!' - = 0, +' = {- ∈ ℝ ∶ - < 0}),

(!(- = -, +(= {- ∈ ℝ ∶ - > 0}),
(!: - = 7-, +: = {- ∈ ℝ ∶ - = 0}).

PAP Functions

34

0

+' +(

Definition ! ∶ ℝ$ → ℝ& is PAP (= Piecewise Analytic under Analytic Partition)
roughly iff ! can be “decomposed” into !' , !(, ⋯ such that

!* ∶ ℝ$ → ℝ& is analytic and +* ⊆ ℝ$ is “analytic”.

Example ! - = ReLU - .
• (!' - = 0, +' = {- ∈ ℝ ∶ - ≤ 0}),

(!(- = -, +(= {- ∈ ℝ ∶ - > 0}).
• (!' - = 0, +' = {- ∈ ℝ ∶ - < 0}),

(!(- = -, +(= {- ∈ ℝ ∶ - > 0}),
(!: - = 7-, +: = {- ∈ ℝ ∶ - = 0}).

PAP Functions

35

+' +(

Proposition PAP implies a.e.-differentiability.

Observation Virtually all functions used in practice are PAP.

Example ! " = ReLU " .
• (!(" = 0, *(= {" ∈ ℝ ∶ " ≤ 0}),

(!1 " = ", *1 = {" ∈ ℝ ∶ " > 0}).
• (!(" = 0, *(= {" ∈ ℝ ∶ " < 0}),

(!1 " = ", *1 = {" ∈ ℝ ∶ " > 0}),
(!4 " = 7", *4 = {" ∈ ℝ ∶ " = 0}).

Intensional Derivatives

36

analytic functions

Example ! " = ReLU " .
• (!(" = 0, *(= {" ∈ ℝ ∶ " ≤ 0}),

(!1 " = ", *1 = {" ∈ ℝ ∶ " > 0}).
• (!(" = 0, *(= {" ∈ ℝ ∶ " < 0}),

(!1 " = ", *1 = {" ∈ ℝ ∶ " > 0}),
(!4 " = 7", *4 = {" ∈ ℝ ∶ " = 0}).

Intensional Derivatives

37

(!(6 " = 0, *(= {" ∈ ℝ ∶ " ≤ 0}),
(!16 " = 1, *1 = {" ∈ ℝ ∶ " > 0}).

analytic functions

Example ! " = ReLU " .
• (!(" = 0, *(= {" ∈ ℝ ∶ " ≤ 0}),

(!1 " = ", *1 = {" ∈ ℝ ∶ " > 0}).
• (!(" = 0, *(= {" ∈ ℝ ∶ " < 0}),

(!1 " = ", *1 = {" ∈ ℝ ∶ " > 0}),
(!4 " = 7", *4 = {" ∈ ℝ ∶ " = 0}).

Intensional Derivatives

38

(!(6 " = 0, *(= {" ∈ ℝ ∶ " ≤ 0}),
(!16 " = 1, *1 = {" ∈ ℝ ∶ " > 0}).

8! " = 90 for " ≤ 0
1 for " > 0

intensional derivative of !

analytic functions

Example ! " = ReLU " .
• (!(" = 0, *(= {" ∈ ℝ ∶ " ≤ 0}),

(!1 " = ", *1 = {" ∈ ℝ ∶ " > 0}).
• (!(" = 0, *(= {" ∈ ℝ ∶ " < 0}),

(!1 " = ", *1 = {" ∈ ℝ ∶ " > 0}),
(!4 " = 7", *4 = {" ∈ ℝ ∶ " = 0}).

Intensional Derivatives

39

(!(6 " = 0, *(= {" ∈ ℝ ∶ " ≤ 0}),
(!16 " = 1, *1 = {" ∈ ℝ ∶ " > 0}).

8! " = 90 for " ≤ 0
1 for " > 0

(!(6 " = 0, *(= {" ∈ ℝ ∶ " < 0}),
(!16 " = 1, *1 = {" ∈ ℝ ∶ " > 0}),
(!46 " = 7, *4 = {" ∈ ℝ ∶ " = 0}).

8! " = =
0 for " < 0
1 for " > 0
7 for " = 0

analytic functions

analytic functions

Example ! " = ReLU " .
• (!(" = 0, *(= {" ∈ ℝ ∶ " ≤ 0}),

(!1 " = ", *1 = {" ∈ ℝ ∶ " > 0}).
• (!(" = 0, *(= {" ∈ ℝ ∶ " < 0}),

(!1 " = ", *1 = {" ∈ ℝ ∶ " > 0}),
(!4 " = 7", *4 = {" ∈ ℝ ∶ " = 0}).

Intensional Derivatives

40

(!(6 " = 0, *(= {" ∈ ℝ ∶ " ≤ 0}),
(!16 " = 1, *1 = {" ∈ ℝ ∶ " > 0}).

8! " = 90 for " ≤ 0
1 for " > 0

(!(6 " = 0, *(= {" ∈ ℝ ∶ " < 0}),
(!16 " = 1, *1 = {" ∈ ℝ ∶ " > 0}),
(!46 " = 7, *4 = {" ∈ ℝ ∶ " = 0}).

8! " = =
0 for " < 0
1 for " > 0
7 for " = 0

Proposition Any intensional derivative = standard derivative.

Proposition Intensional derivatives satisfy the chain rule.

a.e.

analytic functions

Example ! " = ReLU " .
• (!(" = 0, *(= {" ∈ ℝ ∶ " ≤ 0}),

(!1 " = ", *1 = {" ∈ ℝ ∶ " > 0}).
• (!(" = 0, *(= {" ∈ ℝ ∶ " < 0}),

(!1 " = ", *1 = {" ∈ ℝ ∶ " > 0}),
(!4 " = 7", *4 = {" ∈ ℝ ∶ " = 0}).

Intensional Derivatives

41

6! " = 70 for " ≤ 0
1 for " > 0

(!(< " = 0, *(= {" ∈ ℝ ∶ " < 0}),
(!1< " = 1, *1 = {" ∈ ℝ ∶ " > 0}),
(!4< " = 7, *4 = {" ∈ ℝ ∶ " = 0}).

6! " = =
0 for " < 0
1 for " > 0
3 for " = 0

Theorem For PAP functions,
what autodiff computes is an intensional derivative,
and thus autodiff correctly computes gradients a.e.

(!(< " = 0, *(= {" ∈ ℝ ∶ " ≤ 0}),
(!1< " = 1, *1 = {" ∈ ℝ ∶ " > 0}).

Proposition Any intensional derivative = standard derivative.

Proposition Intensional derivatives satisfy the chain rule.

a.e.

High-Level Messages

• Measure-zero non-differentiabilities often bring us unexpected subtleties,
when we try to establish formal correctness of ML algorithms (e.g., autodiff).

42

High-Level Messages

• Measure-zero non-differentiabilities often bring us unexpected subtleties,
when we try to establish formal correctness of ML algorithms (e.g., autodiff).

• PAP functions and intensional derivatives would play an important role,
when we try to deal with such subtleties (e.g., arising from other ML algorithms).

43

