Smoothness Analysis for Probabilistic Programs

Wonyeol Lee CMU (→ POSTECH)

Joint work with: Xavier Rival, Hongseok Yang, Hangyeol Yu Slides based on: [POPL'23], [NeurIPS'18]

PROBPROG 2024

Smoothness Analysis for Probabilistic Programs

Part 1

Wonyeol Lee CMU (→ POSTECH)

Joint work with: Xavier Rival, Hongseok Yang, Hangyeol Yu Slides based on: [POPL'23], [NeurIPS'18]

PROBPROG 2024

Wonyeol Lee CMU (→ POSTECH)

Joint work with: Xavier Rival, Hongseok Yang, Hangyeol Yu Slides based on: [POPL'23], [NeurIPS'18]

PROBPROG 2024

f is "smooth"

- In mathematics, *f* is infinitely differentiable.
- In optimization, ∇f is Lipschitz continuous.

f is "smooth"

- In mathematics, f is infinitely differentiable.
- In optimization, ∇f is Lipschitz continuous.
- In this talk, f is "well-behaved."
- Examples:
 - differentiable, infinitely differentiable, ...
 - continuous, Lipschitz continuous, ...
 - locally bounded, measurable, ...

→ Part 1: Smoothness in Probabilistic Programming [NeurIPS'18]

Part 2: Smoothness Analysis of Programs [POPL'23]

• Example:

def p(): # model
z = pyro.sample("z", Normal(0., 5.))
if (z > 0): pyro.sample("x", Normal(1., 1.), obs=0.)
else: pyro.sample("x", Normal(-2., 1.), obs=0.)

Written in Pyro language.

Describes a probabilistic model to be inferred.

• Example:

• Example:

• Example:

• Example:

Variational Inference: Details

• Goal: Given a model p(z, x) and a guide $q_{\theta}(z)$,

minimize
$$\mathcal{L}(\theta) \triangleq \mathbb{E}_{q_{\theta}(z)} \left[\log \frac{q_{\theta}(z)}{p(z,x)} \right]$$
 over $\theta \in \mathbb{R}^{n}$.
= dist (p, q_{θ}) + const

Variational Inference: Details

• Goal: Given a model p(z, x) and a guide $q_{\theta}(z)$,

minimize
$$\mathcal{L}(\theta) \triangleq \mathbb{E}_{q_{\theta}(z)} \left[\log \frac{q_{\theta}(z)}{p(z,x)} \right]$$
 over $\theta \in \mathbb{R}^{n}$.
= dist (p, q_{θ}) + const

• Typical approach: Apply a gradient descent algorithm.

$$\theta_{t+1} = \theta_t - \eta \cdot \nabla_{\theta} \mathcal{L}(\theta_t).$$

Variational Inference: Details

• Goal: Given a model p(z, x) and a guide $q_{\theta}(z)$,

minimize
$$\mathcal{L}(\theta) \triangleq \mathbb{E}_{q_{\theta}(z)} \left[\log \frac{q_{\theta}(z)}{p(z,x)} \right]$$
 over $\theta \in \mathbb{R}^{n}$.
= dist (p, q_{θ}) + const

• Typical approach: Apply a gradient descent algorithm.

$$\theta_{t+1} = \theta_t - \eta \cdot \widehat{\nabla_{\theta} \mathcal{L}(\theta_t)}.$$
Difficult to compute exactly.
So we usually estimate it.

• Score estimator (≈ basic):

$$\widehat{\nabla_{\theta} \mathcal{L}(\theta)} = \cdots \qquad \text{for } \mathbf{z} \sim q_{\theta}.$$

• Pathwise gradient estimator (≈ more accurate):

$$\widehat{\nabla_{\theta} \mathcal{L}(\theta)} = \cdots \qquad \text{for } \mathbf{z} \sim \mathbf{r}.$$

• Score estimator (≈ basic):

$$\widehat{\nabla_{\theta} \mathcal{L}(\theta)} = \log \frac{q_{\theta}(z)}{p(z,x)} \times \nabla_{\theta} (\log q_{\theta}(z)) \quad \text{for } z \sim q_{\theta}.$$

• Pathwise gradient estimator (≈ more accurate):

$$\widehat{\nabla_{\theta} \mathcal{L}(\theta)} = \nabla_{\theta} \left(\log \frac{q_{\theta}(t_{\theta}(z))}{p(t_{\theta}(z), x)} \right) \quad \text{for } z \sim r.$$

• Score estimator (≈ basic):

$$\widehat{\nabla_{\theta} \mathcal{L}(\theta)} = \log \frac{q_{\theta}(z)}{p(z,x)} \times \nabla_{\theta}(\log q_{\theta}(z)) \quad \text{for } z \sim q_{\theta}.$$

- Required: $q_{\theta}(z)$ should be differentiable in θ ,
- Pathwise gradient estimator (≈ more accurate):

$$\widehat{\nabla_{\theta} \mathcal{L}(\theta)} = \nabla_{\theta} \left(\log \frac{q_{\theta}(t_{\theta}(z))}{p(t_{\theta}(z), x)} \right) \qquad \text{for } z \sim r.$$

• Required: $q_{\theta}(z)$ and p(z, x) should be differentiable in θ and z,

• Score estimator (≈ basic):

$$\widehat{\nabla_{\theta} \mathcal{L}(\theta)} = \log \frac{q_{\theta}(z)}{p(z,x)} \times \nabla_{\theta}(\log q_{\theta}(z)) \qquad \text{for } z \sim q_{\theta}.$$

- Required: $q_{\theta}(z)$ should be differentiable in θ ,
- Pathwise gradient estimator (≈ more accurate):

$$\widehat{\nabla_{\theta} \mathcal{L}(\theta)} = \nabla_{\theta} \left(\log \frac{q_{\theta}(t_{\theta}(z))}{p(t_{\theta}(z), x)} \right) \qquad \text{for } z \sim r.$$

- Required: $q_{\theta}(z)$ and p(z, x) should be differentiable in θ and z, \cdots .
- Soundness: $\mathbb{E}_{z}[\widehat{\nabla_{\theta}\mathcal{L}(\theta)}] = \nabla_{\theta}\mathcal{L}(\theta)$ if all requirements are satisfied.

expressed by programs (with if-else, ...)

• Score estimator (≈ basic):

$$\widehat{\nabla_{\theta} \mathcal{L}(\theta)} = \log \frac{q_{\theta}(z)}{p(z,x)} \times \nabla_{\theta}(\log q_{\theta}(z)) \qquad \text{for } z \sim q_{\theta}$$

- Required: $q_{\theta}(z)$ should be differentiable in θ ,
- Pathwise gradient estimator (≈ more accurate):

$$\widehat{\nabla_{\theta} \mathcal{L}(\theta)} = \nabla_{\theta} \left(\log \frac{q_{\theta}(t_{\theta}(z))}{p(t_{\theta}(z), x)} \right) \qquad \text{for } z \sim r.$$

- Required: $q_{\theta}(z)$ and p(z, x) should be differentiable in θ and z, \cdots .
- Soundness: $\mathbb{E}_{z}[\widehat{\nabla_{\theta}\mathcal{L}(\theta)}] = \nabla_{\theta}\mathcal{L}(\theta)$ if all requirements are satisfied.

expressed by programs (with if-else, ...)

• Score estimator (≈ basic):

 ∇_{θ}

$$\widehat{\nabla_{\theta} \mathcal{L}(\theta)} = \log \frac{q_{\theta}(z)}{p(z,x)} \times \nabla_{\theta}(\log q_{\theta}(z)) \qquad \text{for } z \sim q_{\theta}$$

- Required: $q_{\theta}(z)$ should be differentiable in θ ,
- Pathwise gradient estimator (≈ more accurate):

for $z \sim r$.

- Required: $q_{\theta}(z)$ and p(z, x) should be differentiable in θ and z, \cdots .
- Soundness: $\mathbb{E}_{z}[\widehat{\nabla_{\theta}\mathcal{L}(\theta)}] \stackrel{*}{=} \nabla_{\theta}\mathcal{L}(\theta)$ if all requirements are satisfied.

Still holds?

• Score estimator (≈ basic one):

 ∇_{θ}

We studied this question in [NeurIPS'18]. Answer: No!

- Required: $q_{\theta}(z)$ should be differentiable in θ ,
- Pathwise gradient estimator (≈ more accurate):

for $z \sim r$.

- Required: $q_{\theta}(z)$ and p(z, x) should be differentiable in θ and z, \cdots .
- Soundness: $\mathbb{E}_{z}[\widehat{\nabla_{\theta}\mathcal{L}(\theta)}] \stackrel{\bullet}{=} \nabla_{\theta}\mathcal{L}(\theta)$ if all requirements are satisfied.

Still holds?

• Previous example:

• Previous example:

 $q_{\theta}(z)$: differentiable in θ and z. p(z, x): non-differentiable in z.

• Previous example:

 $q_{\theta}(z)$: differentiable in θ and z. p(z, x): non-differentiable in z.

 \Rightarrow

Score estimator: sound.

Pathwise gradient estimator: unsound.

$$\widehat{\nabla_{\theta} \mathcal{L}(\theta)} = 0 \text{ for all } \theta.$$

• Previous example:

If
$$f$$
 is non-differentiable in θ , then in general

$$\nabla_{\theta} \int f_{\theta}(t) dt \neq \int \nabla_{\theta} f_{\theta}(t) dt$$
.

 $q_{\theta}(z)$: differentiable in θ and z. p(z, x): non-differentiable in z.

• Previous example:

 $q_{\theta}(z)$: differentiable in θ and z. p(z, x): non-differentiable in z.

Score estimator: correct.

Pathwise gradient estimator: incorrect.

 $\widehat{\nabla_{\theta} \mathcal{L}(\theta)} = 0$ for all θ . Pyro computes this.

How to maximize the use of path. grad. estimator, while remaining **sound** for **general** programs?

How to maximize the use of path. grad. estimator, while remaining **sound** for **general** programs?

Our **automatic** approach [POPL'23]. (≈ [Lew+23])

- **1. Smoothness analysis:** Identify differentiable parts of a model/guide.
- 2. Selective application: Apply path. grad. est. only to these parts.

Part 1: Smoothness in Probabilistic Programming [NeurIPS'18]

→ Part 2: Smoothness Analysis of Programs [POPL'23]

Why Need Smoothness?

probabilistic model

We can apply more efficient inference algorithms.

$$\begin{array}{c|c} \nabla_{\boldsymbol{\theta}} \mathbb{E}_{p(\mathbf{x};\boldsymbol{\theta})} \left[f(\mathbf{x}) \right] \\ = \mathbb{E}_{p(\boldsymbol{\epsilon})} \left[\nabla_{\boldsymbol{\theta}} f(g(\boldsymbol{\epsilon};\boldsymbol{\theta})) \right] \\ \text{pathwise gradient estimator} \end{array} \quad \begin{array}{c} \frac{dq_i}{dt} &= \frac{\partial H}{\partial p_i} \\ \frac{dp_i}{dt} &= -\frac{\partial H}{\partial q_i} \\ \text{Hamiltonian Monte Carlo} \end{array} \quad \begin{array}{c} \bullet \bullet \bullet \bullet \\ \end{array}$$

Why Need Smoothness?

Why Need Smoothness?

Smoothness = differentiability. Programs = deterministic, imperative programs.

```
P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})
```

Smoothness = differentiability. F real-valued eterministic, imperative programs.

$$P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$$

•
$$\llbracket P \rrbracket$$
 : $\mathbb{R}^3 \to \mathbb{R}^3$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ \exp(x) \\ \operatorname{sgn}(x) \end{pmatrix}$

Smoothness = differentiability. Programs = deterministic, imperative programs.

 $P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$

•
$$\llbracket P \rrbracket$$
 : $\mathbb{R}^3 \to \mathbb{R}^3$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ \exp(x) \\ \operatorname{sgn}(x) \end{pmatrix}$

• $P \vdash y$ is differentiable in x

$$\iff$$
 ...

Smoothness = differentiability. Programs = deterministic, imperative programs.

 $P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$

•
$$\llbracket P \rrbracket$$
 : $\mathbb{R}^3 \to \mathbb{R}^3$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ \exp(x) \\ \operatorname{sgn}(x) \end{pmatrix}$

• $P \vdash y$ is differentiable in x

$$\begin{pmatrix} x \\ y_0 \\ z_0 \end{pmatrix} \stackrel{\llbracket P \rrbracket}{\mapsto} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

for all $y_0, z_0 \in \mathbb{R}$.

Smoothness = differentiability. Programs = deterministic, imperative programs.

 $P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$

•
$$\llbracket P \rrbracket$$
 : $\mathbb{R}^3 \to \mathbb{R}^3$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ \exp(x) \\ \operatorname{sgn}(x) \end{pmatrix}$

• P \vdash y is differentiable in x

$$\Rightarrow f: \mathbb{R} \to \mathbb{R}$$
$$\begin{pmatrix} x \\ y_0 \\ z_0 \end{pmatrix} \stackrel{[P]}{\mapsto} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

for all $y_0, z_0 \in \mathbb{R}$.

Smoothness = differentiability. Programs = deterministic, imperative programs.

 $P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$

•
$$\llbracket P \rrbracket$$
 : $\mathbb{R}^3 \to \mathbb{R}^3$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ \exp(x) \\ \operatorname{sgn}(x) \end{pmatrix}$

• $P \vdash y$ is differentiable in x

 $\Leftrightarrow f: \mathbb{R} \to \mathbb{R} \quad \text{is differentiable} \quad \text{for all } y_0, z_0 \in \mathbb{R}. \\ \begin{pmatrix} x \\ y_0 \\ z_0 \end{pmatrix} \stackrel{\mathbb{P}}{\mapsto} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$

Smoothness = differentiability. Programs = deterministic, imperative programs.

 $P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$

•
$$\llbracket P \rrbracket$$
 : $\mathbb{R}^3 \to \mathbb{R}^3$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ \exp(x) \\ \operatorname{sgn}(x) \end{pmatrix}$

• **P** \vdash y is differentiable in x.

. . .

P \nvDash z is differentiable in x.

Smoothness = differentiability. Programs = deterministic, imperative programs.

 $P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$

It is surprisingly **subtle** to find out such smoothness properties (1) **automatically**, (2) **soundly**, and (3) **precisely enough**.

Want to check differentiability of a program in a **compositional way.**

Case for seq-composition: ...

Case for if-else: …

Case for while: \cdots

• • •

Want to check differentiability of a program in a **compositional way.**

Case for seq-composition: Given P, P³ and $U, V \subseteq Var$,

 $\forall u \in U, \forall v \in V. \quad \mathsf{P}; \mathsf{P}' \vdash u \text{ is differentiable in } v$?

Case for if-else: …

Based on the chain rule:

 $\exists T \subseteq Var.$ $\forall u \in U, \forall t \in T.$ $P' \vdash u$ is differentiable in t $\forall t \in T, \forall v \in V.$ $P \vdash t$ is differentiable in v

Based on the chain rule:

Looks sound by chain rule. Previously proposed & studied (e.g., [CACM'12] for continuity).

 $\exists T \subseteq \text{Var.} \quad \forall u \in U, \forall t \in T. \quad P' \vdash u \text{ is differentiable in } t \\ \forall t \in T, \forall v \in V. \quad P \vdash t \text{ is differentiable in } v \quad \bullet \\ \mathsf{Seq}$

Based on the chain rule:

Looks sound by chain rule. Previously proposed & studied (e.g., [CACM'12] for continuity).

 $\exists T \subseteq \text{Var.} \quad \forall u \in U, \forall t \in T. \quad P' \vdash u \text{ is differentiable in } t \\ \forall t \in T, \forall v \in V. \quad P \vdash t \text{ is differentiable in } v \quad \checkmark \\ \text{Seq}$

 $\forall u \in U, \forall v \in V.$ P; P' $\vdash u$ is differentiable in v

Is this rule indeed sound?

 $P;P' \triangleq (y:=sgn(x); z:=x+y).$

 $\forall u \in U, \forall t \in T. \qquad P' \vdash u \text{ is differentiable in } t \\ \forall t \in T, \forall v \in V. \qquad P \vdash t \text{ is differentiable in } v \\ \hline F = U \quad \forall t \in U, \forall v \in V. \qquad P \quad \forall t \in V. \qquad F \in U \\ \hline F = U \quad \forall t \in V. \qquad F \in V. \\ \hline F = U \quad \forall t \in V. \qquad F \in V. \\ \hline F = U \quad \forall t \in U \quad \forall t \in V. \\ \hline F = U \quad \forall t \in U \quad \forall t \in U \quad \forall t \in U. \\ \hline F = U \quad \forall t \in U \quad \forall t \in U \\ \hline F = U \quad \forall t \in U \\ \hline F = U \quad \forall t \in U \quad$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{\mathbb{P}} \begin{pmatrix} x \\ \mathsf{sgn}(x) \\ z \end{pmatrix}, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{\mathbb{P}} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

P;P' \triangleq (y:=sgn(x); z:=x+y). $U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}$.

 $\bigvee \forall u \in U, \forall t \in T. \qquad P' \vdash u \text{ is differentiable in } t$ $\forall t \in T, \forall v \in V. \qquad P \vdash t \text{ is differentiable in } v$ Seq

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{} \mathbb{P}^{\mathbb{I}} \begin{pmatrix} x \\ sgn(x) \\ z \end{pmatrix}, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{} \mathbb{P}^{\mathbb{I}} \begin{pmatrix} x \\ y \\ x + y \end{pmatrix}$$

 $\mathsf{P};\mathsf{P}' \triangleq (\mathsf{y}:=\mathsf{sgn}(\mathsf{x}) ; \mathsf{z}:=\mathsf{x}+\mathsf{y}). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$

✓ $\forall u \in U, \forall t \in T.$ P' ⊢ u is differentiable in t
✓ $\forall t \in T, \forall v \in V.$ P ⊢ t is differentiable in v
Seq

 $\mathsf{P};\mathsf{P}' \triangleq (\mathsf{y}:=\mathsf{sgn}(\mathsf{x}) ; \mathsf{z}:=\mathsf{x}+\mathsf{y}). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$

✓ $\forall u \in U, \forall t \in T.$ P' ⊢ u is differentiable in t
✓ $\forall t \in T, \forall v \in V.$ P ⊢ t is differentiable in v
Seq

 $\forall u \in U, \forall v \in V.$ P; P' $\vdash u$ is differentiable in v

This rule is unsound! But why?

 $\mathsf{P};\mathsf{P}' \triangleq (\mathsf{y}:=\mathsf{sgn}(\mathsf{x}) ; \mathsf{z}:=\mathsf{x}+\mathsf{y}). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$

 \checkmark $\forall u \in U, \forall t \in T.$ $P' \vdash u$ is differentiable in t \checkmark $\forall t \in T, \forall v \in V.$ $P \vdash t$ is differentiable in v

 $\forall u \in U, \forall v \in V. P; P' \vdash u$ is differentiable in v

Seq

 $\mathsf{P};\mathsf{P}' \triangleq (\mathsf{y}:=\mathsf{sgn}(\mathsf{x}) ; \mathsf{z}:=\mathsf{x}+\mathsf{y}). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$

✓ $\forall u \in U, \forall t \in T.$ P' ⊢ u is differentiable in t
✓ $\forall t \in T, \forall v \in V.$ P ⊢ t is differentiable in v
Seq

 $\mathsf{P};\mathsf{P}' \triangleq (\mathsf{y}:=\mathsf{sgn}(\mathsf{x}) ; \mathsf{z}:=\mathsf{x}+\mathsf{y}). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$

 $\mathsf{P};\mathsf{P}' \triangleq (\mathsf{y}:=\mathsf{sgn}(\mathsf{x}); \mathsf{z}:=\mathsf{x}+\mathsf{y}). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$

 $\forall u \in U, \forall t \in T. \qquad P^{\prime} \vdash u \text{ is differentiable in } t \\ \forall t \in T, \forall v \in V. \qquad P \vdash t \text{ is differentiable in } v \\ \hline \end{bmatrix}$

 $\forall u \in U, \forall v \in V. P; P' \vdash u$ is differentiable in v

Lesson: Need to consider dependency between variables.

non-differentiable

used

Possible Fix

 $P;P' \triangleq (y:=sgn(x) ; z:=x+y). \quad U \triangleq \{z\}, \forall T \triangleq \{x\}, \forall V \triangleq \{x\}.$ $\forall u \in U, \forall t \in T, P' \vdash u \text{ is differentiable in } t$ $\forall t \in T, \forall v \in V. \quad P \vdash t \text{ is differentiable in } v$ $\forall u \in U, \forall v \in V. \quad P;P' \vdash u \text{ is differentiable in } v$ $(x) \quad (x) \quad (x)$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{\mathbb{P}} \begin{pmatrix} x \\ \operatorname{sgn}(x) \\ z \end{pmatrix} \xrightarrow{\mathbb{P}'} \begin{pmatrix} x \\ \operatorname{sgn}(x) \\ x + \operatorname{sgn}(x) \end{pmatrix}$$

Possible Fix

$$P;P' \triangleq (y:=sgn(x) ; z:=x+y). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$$

$$\forall u \in U, \forall t \in T! \quad P' \vdash u \text{ is differentiable in } t$$

$$\forall t \in T, \forall v \in V. \quad P \vdash t \text{ is differentiable in } v$$

$$\forall u \in U, \forall v \in V. \quad P;P' \vdash u \text{ is differentiable in } v$$
Seq'

Possible Fix

$$P; P' \triangleq (y:=sgn(x) ; z:=x+y). \quad U \triangleq \{z\}, \forall T \triangleq \{x\}, V \triangleq \{x\}.$$

$$\forall u \in U, \forall t \in T. \quad P' \vdash u \text{ is differentiable in } t$$

$$\forall t \in T, \forall v \in V. \quad P \vdash t \text{ is differentiable in } v$$

$$\forall u \in U, \forall v \in V. \quad P; P' \vdash u \text{ is differentiable in } v$$

$$Seq'$$

$$(x)$$

$$(x)$$

$$(y)$$

$$(x)$$

$$($$

This rule now looks sound. Right...?

1.00

 $\mathsf{P};\mathsf{P}' \triangleq (y:=x \; ; \; z:=f(x,y)) \text{ for } f(x,y) \triangleq \begin{cases} xy/(x^2+y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

 $\forall u \in U, \ \forall t \in \text{Var. P'} \vdash u \text{ is differentiable in } t \\ \forall t \in \text{Var}, \forall v \in V. P \vdash t \text{ is differentiable in } v \\ \hline \text{Seq'}$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{} \mathbb{P} \begin{pmatrix} x \\ x \\ z \end{pmatrix} \begin{pmatrix} x \\ x \\ z \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{} \mathbb{P} \begin{pmatrix} x \\ y \\ \mathbb{P} \end{bmatrix}$$

P;P' \triangleq (y:=x; z:=f(x,y)) for $f(x,y) \triangleq \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ $U \triangleq \{z\}, V \triangleq \{x\}.$

 $\checkmark \forall u \in U, \forall t \in Var. P' \vdash u \text{ is differentiable in } t$ $\forall t \in Var, \forall v \in V. P \vdash t \text{ is differentiable in } v$ Seq'

P;P' \triangleq (y:=x; z:=f(x,y)) for $f(x,y) \triangleq \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ $U \triangleq \{z\}, V \triangleq \{x\}.$

✓ $\forall u \in U, \forall t \in Var. P' \vdash u$ is differentiable in t
✓ $\forall t \in Var, \forall v \in V. P \vdash t$ is differentiable in v
Seq'

P;P' ≜ (y:=x; z:=f(x,y)) for $f(x,y) \triangleq \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ $U \triangleq \{z\}, V \triangleq \{x\}.$

✓ $\forall u \in U, \forall t \in Var. P' \vdash u$ is differentiable in t✓ $\forall t \in Var, \forall v \in V. P \vdash t$ is differentiable in vSeq'

 $\forall u \in U, \forall v \in V.$ P; P' $\vdash u$ is differentiable in v

This rule is still unsound! But why?

P;P' \triangleq (y:=x; z:=f(x,y)) for $f(x,y) \triangleq \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ $U \triangleq \{z\}, V \triangleq \{x\}.$

 $\bigvee \forall u \in U, \forall t \in Var. P' \vdash u \text{ is differentiable in } t$ $\forall t \in Var, \forall v \in V. P \vdash t \text{ is differentiable in } v$ Seq'

 $(\dots / (\dots 2 + \dots 2) \text{ if } (r \cdot v) \neq (0,0)$ $P;P' \triangleq (y: U \triangleq \{z\}, V \triangleq \{z\}, V \equiv \{z\}, V \in \{z\},$ = (0,0). g, h are partially differentiable $\implies g \circ h$ does so. assumed implicitly, \checkmark $\forall u \in U, \forall t \in Var. P' \vdash u$ is differentiable in t but invalid. ✓ $\forall t \in Var, \forall v \in V.$ P $\vdash t$ is differentiable in v Seq' $\forall u \in U, \forall v \in V.$ P; P' $\vdash u$ is differentiable in v $\begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} \text{id, id} \end{pmatrix} \begin{pmatrix} x \\ x \end{pmatrix} f \begin{pmatrix} x \\ x \end{pmatrix} \\ 1[x \neq 0] \cdot \frac{1}{2} \end{pmatrix}$ partially differentiable

Lesson: Need to identify & check assumptions on target smoothness.

It is subtle to do smoothness analysis, soundly (and precisely).

→ Our approach for smoothness analysis

Our Approach: Smoothness Property

 $P \vdash U$ is ϕ -smooth in V ($U, V \subseteq Var$)

Our Approach: Smoothness Property

 $P \vdash U$ is ϕ -smooth in V ($U, V \subseteq$ Var)

- $\phi \subseteq \{f : \mathbb{R}^n \to \mathbb{R}^m\}$: any set of functions we consider "smooth".
 - E.g., {*f* : partially differentiable}.
- $\phi \subseteq \{f : \mathbb{R}^n \to \mathbb{R}^m\}$: any set of functions we consider "smooth".
 - E.g., $\{f: partially differentiable\}, \{f: jointly differentiable\}, \{f: continuous\}, \cdots$.

- $\phi \subseteq \{f : \mathbb{R}^n \to \mathbb{R}^m\}$: any set of functions we consider "smooth".
 - E.g., $\{f: partially differentiable\}, \{f: jointly differentiable\}, \{f: continuous\}, \cdots$.
- $P \vdash \{x, y\}$ is ϕ -smooth in $\{y, z\}$
 - $\iff \cdots$

- $\phi \subseteq \{f : \mathbb{R}^n \to \mathbb{R}^m\}$: any set of functions we consider "smooth".
 - E.g., $\{f: partially differentiable\}, \{f: jointly differentiable\}, \{f: continuous\}, \cdots$.

- $\phi \subseteq \{f : \mathbb{R}^n \to \mathbb{R}^m\}$: any set of functions we consider "smooth".
 - E.g., $\{f: partially differentiable\}, \{f: jointly differentiable\}, \{f: continuous\}, \cdots$.

- $\phi \subseteq \{f : \mathbb{R}^n \to \mathbb{R}^m\}$: any set of functions we consider "smooth".
 - E.g., $\{f: partially differentiable\}, \{f: jointly differentiable\}, \{f: continuous\}, \cdots$.
- P $\vdash \{x, y\}$ is ϕ -smooth in $\{y, z\}$ $\iff f : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \in \phi$ for any $x_0 \in \mathbb{R}$. $\begin{pmatrix} x_0 \\ y \\ z \end{pmatrix} \stackrel{[P]}{\mapsto} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$

• Invariants: $P \vdash V$ is dependent at most on $d_P(V)$. $P \vdash V$ is ϕ -smooth in $s_P(V)$.

- Invariants: $P \vdash V$ is dependent at most on $d_P(V)$. $P \vdash V$ is ϕ -smooth in $s_P(V)$.
- Rules: $d_{P;P'}(V) \triangleq d_P(d_{P'}(V)).$

- Invariants: $P \vdash V$ is dependent at most on $d_P(V)$. $P \vdash V$ is ϕ -smooth in $s_P(V)$.
- Rules: $d_{\mathbf{P};\mathbf{P}'}(V) \triangleq d_{\mathbf{P}}(d_{\mathbf{P}'}(V)).$ $s_{\mathbf{P};\mathbf{P}'}(V) \triangleq s_{\mathbf{P}}(d_{\mathbf{P}'}(V)) \cap d_{\mathbf{P}}(s_{\mathbf{P}'}(V)^{c})^{c}.$

• Invariants: $P \vdash V$ is dependent at most on $d_P(V)$. $P \vdash V$ is ϕ -smooth in $s_P(V)$.

• Rules: $d_{\mathbf{P};\mathbf{P}'}(V) \triangleq d_{\mathbf{P}}(d_{\mathbf{P}'}(V)).$ $s_{\mathbf{P};\mathbf{P}'}(V) \triangleq s_{\mathbf{P}}(d_{\mathbf{P}'}(V)) \cap d_{\mathbf{P}}(s_{\mathbf{P}'}(V)^c)^c.$ $u \in u \in \land u \in$

Our Approach: Smoothness Analysis (Details)

• Invariants: $P \vdash V$ is dependent at most on $d_P(V)$.

 $d_{\mathbf{p},\mathbf{p}'}(V) \triangleq d_{\mathbf{p}}(d_{\mathbf{p}'}(V)).$

 $P \vdash V$ is ϕ -smooth in $s_P(V)$.

• Rules:

$$s_{P;P'}(V) \triangleq s_P(d_{P'}(V)) \cap d_P(s_{P'}(V)^c)^c.$$

Our Approach: Smoothness Analysis (Details)

<u>Theorem</u> Our ϕ -smoothness analysis is sound if ϕ satisfies five assumptions:

- •••
- ...
- ...
- ...
- •••

<u>Theorem</u> Our ϕ -smoothness analysis is sound if ϕ satisfies five assumptions:

- Composition: $\forall f : \mathbb{R}^n \to \mathbb{R}^m, g : \mathbb{R}^m \to \mathbb{R}^l$. $f, g \in \phi \implies (g \circ f) \in \phi$. \blacktriangleleft chain rule
- Pairing: $\forall f : \mathbb{R}^n \to \mathbb{R}^m, g : \mathbb{R}^n \to \mathbb{R}^l. \quad f, g \in \phi \implies (f, g) \in \phi. \quad \longleftarrow \text{ merging}$
- Restriction: $\forall f : \mathbb{R}^n \to \mathbb{R}^m, x \in \mathbb{R}^k (k \le n). f \in \phi \implies f(x, -) \in \phi.$ \blacktriangleleft weakening
- Projection: $\forall f = \operatorname{proj}_{n \to m} : \mathbb{R}^n \to \mathbb{R}^m$. $f \in \phi$. \blacktriangleleft assignment
- Strictness: $\forall f = \lambda x. \bot : \mathbb{R}^n \to \mathbb{R}^m$. $f \in \phi$. \blacktriangleleft while

Target smoothness property	A3 (proj.)	A4 (pair.)	A5 (rest.)	A6 (comp.)	A7 (stri.)
$\overline{\operatorname{cont.}(\mathcal{C}^0)}$	0	0	0	0	0
locally Lipschitz (= $\phi^{(l)}$)	0	0	0	0	0
uniformly cont.	0	0	0	0	0
Lipschitz cont.	0	0	0	0	0
jointly diff.	0	0	0	0	0
continuously diff. (C^1)	0	0	0	0	0
smooth (C^{∞})	0	0	0	0	0
real analytic (C^{ω})	0	0	0	0	0
partially cont. (= $\phi^{(pc)}$)	0	0	0	×	0
partially diff. (= $\phi^{(pd)}$)	0	0	0	×	0
almost-everywhere cont.	0	0	×	×	0
almost-everywhere diff.	0	0	×	×	0
coordinatewise non-decreasing	0	0	0	0	0
locally bounded	0	0	0	0	0
bounded	×	0	0	0	0
Borel measurable	0	0	0	0	0
locally integrable	0	0	\times	\times	0
integrable	×	0	×	×	0

Target smoothness property	A3 (proj.)	A4 (pair.)	A5 (rest.)	A6 (comp.)	A7 (stri.)
$\overline{\operatorname{cont.}(\mathcal{C}^0)}$	0	0	0	0	0
locally Lipschitz (= $\phi^{(l)}$)	0	0	0	0	0
uniformly cont.	0	0	0	0	0
Lipschitz cont.	0	0	0	0	0
jointly diff.	0	0	0	0	0
continuously diff. (C^{1})	0	0	0	0	0
smooth (C^{∞})	0	0	0	0	0
real analytic (C^{ω})	0	0	0	0	0
partially cont. (= $\phi^{(pc)}$)	0	0	0	×	0
partially diff. (= $\phi^{(pd)}$)	0	0	0	×	0
almost-everywhere cont.	0	0	×	×	0
almost-everywhere diff.	0	0	\times	\times	0
coordinatewise non-decreasing	0	0	0	0	0
locally bounded	0	0	0	0	0
bounded	×	0	0	0	0
Borel measurable	0	0	0	0	0
locally integrable	0	0	\times	\times	0
integrable	×	0	×	×	0

Target smoothness property	A3 (proj.)	A4 (pair.)	A5 (rest.)	A6 (comp.)	A7 (stri.)
cont. (\mathcal{C}^0) (1)	0	0	0	0	0
locally Lipschitz (= $\phi^{(l)}$)	0	0	0	0	0
uniformly cont.	0	0	0	0	0
Lipschitz cont.	0	0	0	0	0
jointly diff.	0	0	0	0	0
continuously diff. (C^1)	0	0	0	0	0
smooth (C^{∞})	0	0	0	0	0
real analytic (C^{ω})	0	0	0	0	0
partially cont. (= $\phi^{(pc)}$)	0	0	0	×	0
partially diff. (= $\phi^{(pd)}$)	0	0	0	×	0
almost-everywhere cont.	0	0	×	×	0
almost-everywhere diff.	0	0	×	×	0
coordinatewise non-decreasing	0	0	0	0	0
locally bounded	0	0	0	0	0
bounded	×	0	0	0	0
Borel measurable	0	0	0	0	0
locally integrable	0	0	×	×	0
integrable	×	0	×	×	0

Evaluation

- We implemented a static smoothness analyzer for Pyro programs.
 - It can analyze differentiability (and locally Lipschitz continuity).

Evaluation

- We implemented a static smoothness analyzer for Pyro programs.
 - It can analyze differentiability (and locally Lipschitz continuity).
- We implemented our gradient estimator using our analyzer.
 - (1) Identify differentiable parts of model p(z, x) and guide $q_{\theta}(z)$.
 - (2) Find $S \subseteq \{z_1, \dots, z_n\}$ that satisfies diff'ty req's of path. grad. estimator.
 - (3) Apply path. grad. estimator to S, and score estimator to S^c .

		random variables z_i to which path. grad. estimator is applied			
Example in Pyro		Our estimator	Pyro's defa	ult estimator	
	LOC	# rv (Sound)	# rv (Sound)	# rv (Unsound)	
Splitting normal	16				
··· (7 examples omitted)	•••				
Deep exponential family	105				
Deep Markov model	112				
Hidden Markov model	137				
Single-cell annotation	147				
Attend-infer-repeat	174				
Conditional VAE	205				

		random variables z_i to which path. grad. estimator is applied \oint			
Example in Pyro		Our estimator	Pyro's default estimator		
	LUC	# rv (Sound)	# rv (Sound)	# rv (Unsound)	
Splitting normal	16	1	1	1	
··· (7 examples omitted)	•••	•••	•••	•••	
Deep exponential family	105	6	6	0	
Deep Markov model	112	1	1	0	
Hidden Markov model	137	2	2	0	
Single-cell annotation	147	3	3	0	
Attend-infer-repeat	174	1	1	1	
Conditional VAE	205	1	1	0	

High-Level Messages

- Smoothnes properties play an important role in prob. prog. (and other areas).
 - Example: Pathwise gradient estimator.
- It is subtle to design a proper smoothness analysis (sound and precise).
 - Reason: Make assumptions on target smoothness which are easily violated.

High-Level Messages

- Smoothnes properties play an important role in prob. prog. (and other areas).
 - Example: Pathwise gradient estimator.
- It is subtle to design a proper smoothness analysis (sound and precise).
 - Reason: Make assumptions on target smoothness which are easily violated.
- There are some PL research opportunities for ML (which are less explored).
 - Example: Static analysis for automatic planning of inference algorithms.

Gradient Estimators: General Case

Our **automatic** approach [POPL'23]. (≈ [Lew+23])

1. Smoothness analysis: Identify differentiable parts of a model/guide.

2. Selective application: Apply path. grad. est. only to these parts.

Other approaches.

- Generalization of path. grad. est.: [Lee+18], [Bangaru+21], ...
- **Smoothing** of input programs:

[Khajwal+23], [Wagner+24], ...

• • • •

