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𝑓 is “smooth”

• In mathematics,  𝑓 is infinitely differentiable.

• In optimization,  ∇𝑓 is Lipschitz continuous.
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𝑓 is “smooth”

• In mathematics,  𝑓 is infinitely differentiable.

• In optimization,  ∇𝑓 is Lipschitz continuous.

• In this talk,  𝑓 is “well-behaved.”
• Examples:

• differentiable, infinitely differentiable, ...
• continuous, Lipschitz continuous, ...
• locally bounded, measurable, ...
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➝ Part 1: Smoothness in Probabilistic Programming

➝ Part 2: Smoothness Analysis of Programs

6

[NeurIPS’18]

[POPL’23]



Probabilistic Programming

• Example: def p(): # model
   z = pyro.sample(“z”, Normal(0., 5.))
   if (z > 0):  pyro.sample(“x”, Normal( 1., 1.), obs=0.)
   else:        pyro.sample(“x”, Normal(-2., 1.), obs=0.)

7

Written in Pyro language.
Describes a probabilistic model to be inferred.



Probabilistic Programming

• Example: def p(): # model
   z = pyro.sample(“z”, Normal(0., 5.))
   if (z > 0):  pyro.sample(“x”, Normal( 1., 1.), obs=0.)
   else:        pyro.sample(“x”, Normal(-2., 1.), obs=0.)
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Performs random sampling.
model (prior)
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Probabilistic Programming

• Example: def p(): # model
   z = pyro.sample(“z”, Normal(0., 5.))
   if (z > 0):  pyro.sample(“x”, Normal( 1., 1.), obs=0.)
   else:        pyro.sample(“x”, Normal(-2., 1.), obs=0.)
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Probabilistic Programming

• Example: def p(): # model
   z = pyro.sample(“z”, Normal(0., 5.))
   if (z > 0):  pyro.sample(“x”, Normal( 1., 1.), obs=0.)
   else:        pyro.sample(“x”, Normal(-2., 1.), obs=0.)
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Probabilistic Programming

• Example: def p(): # model
   z = pyro.sample(“z”, Normal(0., 5.))
   if (z > 0):  pyro.sample(“x”, Normal( 1., 1.), obs=0.)
   else:        pyro.sample(“x”, Normal(-2., 1.), obs=0.)

prior 𝑝 𝑧
posterior 𝑝 𝑧 𝑥 = 0
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density

𝑧



Probabilistic Programming

• Example: def p(): # model
   z = pyro.sample(“z”, Normal(0., 5.))
   if (z > 0):  pyro.sample(“x”, Normal( 1., 1.), obs=0.)
   else:        pyro.sample(“x”, Normal(-2., 1.), obs=0.)

prior 𝑝 𝑧
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density

𝑧

posterior 𝑝 𝑧 𝑥 = 0
posterior inference

problem



Variational Inference

• Example: def p(): # model
   z = pyro.sample(“z”, Normal(0., 5.))
   if (z > 0):  pyro.sample(“x”, Normal( 1., 1.), obs=0.)
   else:        pyro.sample(“x”, Normal(-2., 1.), obs=0.)

def qθ(): # guide
   θ = pyro.param(“θ”, 1.)

z = pyro.sample(“z”, Normal(θ, 1.))≈
prior 𝑝 𝑧
posterior 𝑝 𝑧 𝑥 = 0

13

Describes a family of approx. distributions.

density

𝑧



Variational Inference

• Example: def p(): # model
   z = pyro.sample(“z”, Normal(0., 5.))
   if (z > 0):  pyro.sample(“x”, Normal( 1., 1.), obs=0.)
   else:        pyro.sample(“x”, Normal(-2., 1.), obs=0.)

prior 𝑝 𝑧

14

def qθ(): # guide
   θ = pyro.param(“θ”, 1.)

z = pyro.sample(“z”, Normal(θ, 1.))≈density

𝑧

posterior 𝑝 𝑧 𝑥 = 0



Variational Inference

• Example: def p(): # model
   z = pyro.sample(“z”, Normal(0., 5.))
   if (z > 0):  pyro.sample(“x”, Normal( 1., 1.), obs=0.)
   else:        pyro.sample(“x”, Normal(-2., 1.), obs=0.)

def qθ(): # guide
   θ = pyro.param(“θ”, 1.)

z = pyro.sample(“z”, Normal(θ, 1.))≈
prior 𝑝 𝑧
posterior 𝑝 𝑧 𝑥 = 0
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Variational inference:
Find θ that minimizes this distance.

density

𝑧



Variational Inference

• Example: def p(): # model
   z = pyro.sample(“z”, Normal(0., 5.))
   if (z > 0):  pyro.sample(“x”, Normal( 1., 1.), obs=0.)
   else:        pyro.sample(“x”, Normal(-2., 1.), obs=0.)

def qθ(): # guide
θ = pyro.param(“θ”, 1.)
z = pyro.sample(“z”, Normal(θ, 1.))≈

guide 𝑞!(𝑧) 
with optimal 𝜃

prior 𝑝 𝑧
posterior 𝑝 𝑧 𝑥 = 0

16

density

𝑧

Variational inference:
Find θ that minimizes this distance.



Variational Inference: Details

• Goal:  Given a model 𝑝 𝑧, 𝑥  and a guide 𝑞! 𝑧 ,

minimize     ℒ 𝜃 ≜ 𝔼"!($) log
"! $
& $,(      over 𝜃 ∈ ℝ).

17

= dist 𝑝, 𝑞! + const



Variational Inference: Details

• Goal:  Given a model 𝑝 𝑧, 𝑥  and a guide 𝑞! 𝑧 ,

minimize     ℒ 𝜃 ≜ 𝔼"!($) log
"! $
& $,(      over 𝜃 ∈ ℝ).

• Typical approach:  Apply a gradient descent algorithm.

𝜃*+, = 𝜃* − 𝜂 ⋅ ∇!ℒ 𝜃* .
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= dist 𝑝, 𝑞! + const



Variational Inference: Details

• Goal:  Given a model 𝑝 𝑧, 𝑥  and a guide 𝑞! 𝑧 ,

minimize     ℒ 𝜃 ≜ 𝔼"!($) log
"! $
& $,(      over 𝜃 ∈ ℝ).

• Typical approach:  Apply a gradient descent algorithm.

𝜃*+, = 𝜃* − 𝜂 ⋅ ∇!ℒ 𝜃* .

19

Difficult to compute exactly.
So we usually estimate it.

= dist 𝑝, 𝑞! + const



Gradient Estimators

• Score estimator (≈ basic):

  ∇!ℒ 𝜃 = ⋯ log "! $
& $,(

	×	∇! log 𝑞! 𝑧  for  𝑧 ∼ 𝑞!.

• Pathwise gradient estimator (≈ more accurate):

  ∇!ℒ 𝜃 = ⋯∇! log "! *! -
& *! - ,(   for  𝑧 ∼ 𝑟.

   Requirements:  𝑞! 𝑧  and 𝑝 𝑧, 𝑥  are differentiable in 𝜃 and 𝑧 = 𝑧,, … , 𝑧. , ⋯.
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Gradient Estimators

• Score estimator (≈ basic):

  ∇!ℒ 𝜃 = log "! $
& $,(

	×	∇! log 𝑞! 𝑧  for  𝑧 ∼ 𝑞!.

• Pathwise gradient estimator (≈ more accurate):

  ∇!ℒ 𝜃 = ∇! log "! *! $
& *! $ ,(    for  𝑧 ∼ 𝑟.

   Requirements:  𝑞! 𝑧  and 𝑝 𝑧, 𝑥  are differentiable in 𝜃 and 𝑧 = 𝑧,, … , 𝑧. , ⋯.

21



Gradient Estimators

• Score estimator (≈ basic):

  ∇!ℒ 𝜃 = log "! $
& $,(

	×	∇! log 𝑞! 𝑧  for  𝑧 ∼ 𝑞!.

• Required:  𝑞! 𝑧  should be differentiable in 𝜃, ⋯.

• Pathwise gradient estimator (≈ more accurate):

  ∇!ℒ 𝜃 = ∇! log "! *! $
& *! $ ,(    for  𝑧 ∼ 𝑟.

• Required:  𝑞! 𝑧  and 𝑝 𝑧, 𝑥  should be differentiable in 𝜃 and 𝑧, ⋯.
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Gradient Estimators

• Score estimator (≈ basic):

  ∇!ℒ 𝜃 = log "! $
& $,(

	×	∇! log 𝑞! 𝑧  for  𝑧 ∼ 𝑞!.

• Required:  𝑞! 𝑧  should be differentiable in 𝜃, ⋯.

• Pathwise gradient estimator (≈ more accurate):

  ∇!ℒ 𝜃 = ∇! log "! *! $
& *! $ ,(    for  𝑧 ∼ 𝑟.

• Required:  𝑞! 𝑧  and 𝑝 𝑧, 𝑥  should be differentiable in 𝜃 and 𝑧, ⋯.

• Soundness:       𝔼$ ∇!ℒ 𝜃 = ∇!ℒ 𝜃        if all requirements are satisfied.
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Gradient Estimators: General Case

• Score estimator (≈ basic):

  ∇!ℒ 𝜃 = log "! $
& $,(

	×	∇! log 𝑞! 𝑧  for  𝑧 ∼ 𝑞!.

• Required:  𝑞! 𝑧  should be differentiable in 𝜃, ⋯.

• Pathwise gradient estimator (≈ more accurate):

  ∇!ℒ 𝜃 = ∇! log "! *! $
& *! $ ,(    for  𝑧 ∼ 𝑟.

• Required:  𝑞! 𝑧  and 𝑝 𝑧, 𝑥  should be differentiable in 𝜃 and 𝑧, ⋯.

• Soundness:       𝔼$ ∇!ℒ 𝜃 = ∇!ℒ 𝜃        if all requirements are satisfied.

24

expressed by programs (with if-else, ...)



Gradient Estimators: General Case

• Score estimator (≈ basic):

  ∇!ℒ 𝜃 = log "! $
& $,(

	×	∇! log 𝑞! 𝑧  for  𝑧 ∼ 𝑞!.

• Required:  𝑞! 𝑧  should be differentiable in 𝜃, ⋯.

• Pathwise gradient estimator (≈ more accurate):

  ∇!ℒ 𝜃 = ∇! log "! *! $
& *! $ ,(    for  𝑧 ∼ 𝑟.

• Required:  𝑞! 𝑧  and 𝑝 𝑧, 𝑥  should be differentiable in 𝜃 and 𝑧, ⋯.

• Soundness:       𝔼$ ∇!ℒ 𝜃 = ∇!ℒ 𝜃        if all requirements are satisfied.
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expressed by programs (with if-else, ...)

Still holds?



Gradient Estimators: General Case

• Score estimator (≈ basic one):

  ∇!ℒ 𝜃 = log "! $
& $,(

	×	∇! log 𝑞! 𝑧  for  𝑧 ∼ 𝑞!.

• Required:  𝑞! 𝑧  should be differentiable in 𝜃, ⋯.

• Pathwise gradient estimator (≈ more accurate):

  ∇!ℒ 𝜃 = ∇! log "! *! $
& *! $ ,(    for  𝑧 ∼ 𝑟.

• Required:  𝑞! 𝑧  and 𝑝 𝑧, 𝑥  should be differentiable in 𝜃 and 𝑧, ⋯.

• Soundness:       𝔼$ ∇!ℒ 𝜃 = ∇!ℒ 𝜃        if all requirements are satisfied.

26

We studied this question in [NeurIPS’18].  Answer: No!

Still holds?



Gradient Estimators: General Case

• Previous example:

def p(): # model
   z = sample(“z”, Normal(0, 5))
   if (z > 0): sample(“x”, Normal( 1, 1), obs=0)
   else:     sample(“x”, Normal(-2, 1), obs=0)

def qθ(): # guide
   θ = pyro.param(“θ”, 1)

z = pyro.sample(“z”, Normal(θ, 1))

27

𝑝 𝑧 𝑥

𝑞! 𝑧

𝑧



Gradient Estimators: General Case

• Previous example:

def p(): # model
   z = sample(“z”, Normal(0, 5))
   if (z > 0): sample(“x”, Normal( 1, 1), obs=0)
   else:       sample(“x”, Normal(-2, 1), obs=0)

def qθ(): # guide
   θ = pyro.param(“θ”, 1)

z = pyro.sample(“z”, Normal(θ, 1))

28

𝑞! 𝑧 : differentiable in 𝜃 and 𝑧.
𝑝 𝑧, 𝑥 : non-differentiable in 𝑧.

𝑝 𝑧 𝑥

𝑞! 𝑧

𝑧



Gradient Estimators: General Case

• Previous example:
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𝑞! 𝑧 : differentiable in 𝜃 and 𝑧.
𝑝 𝑧, 𝑥 : non-differentiable in 𝑧.

Score estimator: sound.
Pathwise gradient estimator: unsound.⟹

∇!ℒ 𝜃 = 0 for all 𝜃.

𝑝 𝑧 𝑥

𝑞! 𝑧

𝑧

def p(): # model
   z = sample(“z”, Normal(0, 5))
   if (z > 0): sample(“x”, Normal( 1, 1), obs=0)
   else:       sample(“x”, Normal(-2, 1), obs=0)

def qθ(): # guide
   θ = pyro.param(“θ”, 1)

z = pyro.sample(“z”, Normal(θ, 1))



Gradient Estimators: General Case

• Previous example:
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𝑞! 𝑧 : differentiable in 𝜃 and 𝑧.
𝑝 𝑧, 𝑥 : non-differentiable in 𝑧.

Score estimator: sound.
Pathwise gradient estimator: unsound.⟹

∇!ℒ 𝜃 = 0 for all 𝜃.

𝑝 𝑧 𝑥

𝑞! 𝑧

𝑧

def p(): # model
   z = sample(“z”, Normal(0, 5))
   if (z > 0): sample(“x”, Normal( 1, 1), obs=0)
   else:       sample(“x”, Normal(-2, 1), obs=0)

def qθ(): # guide
   θ = pyro.param(“θ”, 1)

z = pyro.sample(“z”, Normal(θ, 1))

If 𝑓 is non-differentiable in 𝜃, then in general

∇!B𝑓! 𝑡 𝑑𝑡 ≠ B∇!𝑓! 𝑡 𝑑𝑡 .



Gradient Estimators: General Case

• Previous example:
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𝑞! 𝑧 : differentiable in 𝜃 and 𝑧.
𝑝 𝑧, 𝑥 : non-differentiable in 𝑧.

Score estimator: correct.
Pathwise gradient estimator: incorrect.

∇!ℒ 𝜃 = 0 for all 𝜃.  Pyro computes this.

𝑝 𝑧 𝑥

𝑞! 𝑧

𝑧

def p(): # model
   z = sample(“z”, Normal(0, 5))
   if (z > 0): sample(“x”, Normal( 1, 1), obs=0)
   else:       sample(“x”, Normal(-2, 1), obs=0)

def qθ(): # guide
   θ = pyro.param(“θ”, 1)

z = pyro.sample(“z”, Normal(θ, 1))

Score estimator:   Accuracy ↓,  Requirements ↓.
       Path. grad. estimator:   Accuracy ↑,  Requirements ↑.
            Differentiability requirement is important.



Gradient Estimators: General Case

• Previous example:
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𝑞! 𝑧 : differentiable in 𝜃 and 𝑧.
𝑝 𝑧, 𝑥 : non-differentiable in 𝑧.

Score estimator: correct.
Pathwise gradient estimator: incorrect.

∇!ℒ 𝜃 = 0 for all 𝜃.  Pyro computes this.

𝑝 𝑧 𝑥

𝑞! 𝑧

𝑧

def p(): # model
   z = sample(“z”, Normal(0, 5))
   if (z > 0): sample(“x”, Normal( 1, 1), obs=0)
   else:       sample(“x”, Normal(-2, 1), obs=0)

def qθ(): # guide
   θ = pyro.param(“θ”, 1)

z = pyro.sample(“z”, Normal(θ, 1))

How to maximize the use of path. grad. estimator,
while remaining sound for general programs?



Gradient Estimators: General Case

• Previous example:
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𝑞! 𝑧 : differentiable in 𝜃 and 𝑧.
𝑝 𝑧, 𝑥 : non-differentiable in 𝑧.

Score estimator: correct.
Pathwise gradient estimator: incorrect.

∇!ℒ 𝜃 = 0 for all 𝜃.  Pyro computes this.

𝑝 𝑧 𝑥

𝑞! 𝑧

𝑧

def p(): # model
   z = sample(“z”, Normal(0, 5))
   if (z > 0): sample(“x”, Normal( 1, 1), obs=0)
   else:       sample(“x”, Normal(-2, 1), obs=0)

def qθ(): # guide
   θ = pyro.param(“θ”, 1)

z = pyro.sample(“z”, Normal(θ, 1))Our automatic approach [POPL’23].  (≈ [Lew+23])

1. Smoothness analysis:   Identify differentiable parts of a model/guide.
2. Selective application:   Apply path. grad. est. only to these parts.

How to maximize the use of path. grad. estimator,
while remaining sound for general programs?



➝ Part 1: Smoothness in Probabilistic Programming

➝ Part 2: Smoothness Analysis of Programs
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[NeurIPS’18]

[POPL’23]



Why Need Smoothness?

35

probabilistic model

differentiable

We can apply more efficient inference algorithms.

pathwise gradient estimator Hamiltonian Monte Carlo

⋯



Why Need Smoothness?

36

probabilistic model

neural network

We can apply more efficient inference algorithms.

pathwise gradient estimator Hamiltonian Monte Carlo

⋯

We can provide provable robustness.
We can give guaranteed generalization bounds.
⋯

differentiable

cyber-physical systems, ⋯
We can describe and solve differential equations.
⋯

Lipschitz
continuous
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Why Need Smoothness?

Can apply more efficient inference algorithms.

pathwise gradient estimator Hamiltonian Monte Carlo

⋯
probabilistic model

neural network

We can provide provable robustness.
We can give guaranteed generalization bounds.
⋯

cyber-physical systems, ⋯
We can describe and solve differential equations.
⋯

expressed by programs

Goal:  Find out smoothness properties of programs,
automatically and soundly.



Smoothness Properties of Programs

Smoothness = differentiability.   Programs = deterministic, imperative programs.

38

P ≜ ( y:=exp(x) ; if (x>0) {z:=1} else {z:=-1} )



Smoothness Properties of Programs

Smoothness = differentiability.   Programs = deterministic, imperative programs.
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• ⟦P⟧     :     ℝ3    ➝ ℝ3

	 𝑥/
	 𝑦/
	 𝑧/

⟼
	 𝑥/	
𝑦/	
𝑧/	

=
𝑥

exp 𝑥
	sgn 𝑥 	

P ≜ ( y:=exp(x) ; if (x>0) {z:=1} else {z:=-1} )

real-valued



Smoothness Properties of Programs

Smoothness = differentiability.   Programs = deterministic, imperative programs.

40

• ⟦P⟧     :     ℝ3    ➝ ℝ3

	 𝑥/
	 𝑦/
	 𝑧/

⟼
	 𝑥/	
𝑦/	
𝑧/	

=
𝑥

exp 𝑥
	sgn 𝑥 	

• P ⊢  𝑦 is differentiable in 𝑥 
             …

P ≜ ( y:=exp(x) ; if (x>0) {z:=1} else {z:=-1} )

⟺



Smoothness Properties of Programs

Smoothness = differentiability.   Programs = deterministic, imperative programs.
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• ⟦P⟧     :     ℝ3    ➝ ℝ3

	 𝑥/
	 𝑦/
	 𝑧/

⟼
	 𝑥/	
𝑦/	
𝑧/	

=
𝑥

exp 𝑥
	sgn 𝑥 	

• P ⊢  𝑦 is differentiable in 𝑥
     𝑓 :      ℝ    ➝ ℝ        is differentiable  for all 𝑦0, 𝑧0 ∈ ℝ.

	 𝑥/
	𝑦0
	𝑧0

⟼
	 𝑥/	
𝑦/	
𝑧/	

⟦P⟧

P ≜ ( y:=exp(x) ; if (x>0) {z:=1} else {z:=-1} )

⟺



Smoothness Properties of Programs

Smoothness = differentiability.   Programs = deterministic, imperative programs.
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• ⟦P⟧     :     ℝ3    ➝ ℝ3

	 𝑥/
	 𝑦/
	 𝑧/

⟼
	 𝑥/	
𝑦/	
𝑧/	

=
𝑥

exp 𝑥
	sgn 𝑥 	

• P ⊢  𝑦 is differentiable in 𝑥
 

            𝑓 :      ℝ    ➝ ℝ        is differentiable    for all 𝑦0, 𝑧0 ∈ ℝ.
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P ≜ ( y:=exp(x) ; if (x>0) {z:=1} else {z:=-1} )

⟺



Smoothness Properties of Programs

Smoothness = differentiability.   Programs = deterministic, imperative programs.
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• ⟦P⟧     :     ℝ3    ➝ ℝ3

	 𝑥/
	 𝑦/
	 𝑧/

⟼
	 𝑥/	
𝑦/	
𝑧/	

=
𝑥

exp 𝑥
	sgn 𝑥 	

• P ⊢  𝑦 is differentiable in 𝑥 

            𝑓 :      ℝ    ➝ ℝ        is differentiable    for all 𝑦0, 𝑧0 ∈ ℝ.
	 𝑥/
	𝑦0
	𝑧0

⟼
	 𝑥/	
𝑦/	
𝑧/	

⟦P⟧

⟺

P ≜ ( y:=exp(x) ; if (x>0) {z:=1} else {z:=-1} )



Smoothness Properties of Programs

Smoothness = differentiability.   Programs = deterministic, imperative programs.
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• ⟦P⟧     :     ℝ3   ➝ ℝ3

	 𝑥/
	 𝑦/
	 𝑧/

⟼
	 𝑥/	
𝑦/	
𝑧/	

=
𝑥

exp 𝑥
	sgn 𝑥 	

• P ⊢  𝑦 is differentiable in 𝑥.
P ⊬  𝑧 is differentiable in 𝑥. 
⋯

P ≜ ( y:=exp(x) ; if (x>0) {z:=1} else {z:=-1} )



Smoothness Properties of Programs

Smoothness = differentiability.   Programs = deterministic, imperative programs.
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• ⟦P⟧     :     ℝ3   ➝ ℝ3

	 𝑥/
	 𝑦/
	 𝑧/

⟼
	 𝑥/	
𝑦/	
𝑧/	

=
𝑥

exp 𝑥
	sgn 𝑥 	

• P ⊢  𝑦 is differentiable in 𝑥.
P ⊬  𝑧 is differentiable in 𝑥. 

It is surprisingly subtle to find out such smoothness properties

(1)  automatically,
(2)  soundly, and
(3)  precisely enough.

P ≜ ( y:=exp(x) ; if (x>0) {z:=1} else {z:=-1} )



Want to check differentiability of a program in a compositional way.

Case for seq-composition:  ⋯ Given P, P’ and 𝑈, 𝑉 ⊆ Var,  want to check

Case for if-else:  ⋯
Case for while:  ⋯
⋯

Differentiability Analysis

46



Want to check differentiability of a program in a compositional way.

Case for seq-composition:  Given P, P’ and 𝑈, 𝑉 ⊆ Var,  

Case for if-else:  ⋯
⋯

Differentiability Analysis

47

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣  ?

𝑣 𝑢

P;P’



Differentiability Analysis

Based on the chain rule:

48

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣

∃𝑇 ⊆ Var.

𝑣 𝑡 𝑢

P P’



Differentiability Analysis

Based on the chain rule:

49

Looks sound by chain rule.
 Previously proposed & studied
 (e.g., [CACM’12] for continuity).

Seq

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣

∃𝑇 ⊆ Var.

𝑣 𝑡 𝑢

P P’



Differentiability Analysis

Based on the chain rule:

50

Is this rule indeed sound?

Seq

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣

∃𝑇 ⊆ Var.

Looks sound by chain rule.
 Previously proposed & studied
 (e.g., [CACM’12] for continuity).



Soundness Issue

51

P;P’ ≜ (y:=sgn(x) ; z:=x+y).  𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 , 𝑇 ≜ 𝑥 .

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
	 𝑥/

sgn 𝑥
	 𝑧/

	 𝑥/
	 𝑦/
𝑥 + 𝑦

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
,⟦P⟧ ⟦P’⟧

Seq

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣



Soundness Issue

52

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
	 𝑥/

sgn 𝑥
	 𝑧/

	 𝑥/
	 𝑦/
𝑥 + 𝑦

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
,

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟦P⟧ ⟦P’⟧

Seq

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣



⟦P’⟧

Soundness Issue

53

	 𝑥/
	 𝑦/
	 𝑧/

	
	 𝑥/

sgn(𝑥)
𝑥 + sgn 𝑥

⟼ ⟼
	 𝑥/

sgn 𝑥
	 𝑧/

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟦P⟧

Seq

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣



⟦P’⟧⟦P⟧

Soundness Issue

54

	 𝑥/
	 𝑦/
	 𝑧/

	
	 𝑥/

sgn(𝑥)
𝑥 + sgn 𝑥

⟼ ⟼
	 𝑥/

sgn 𝑥
	 𝑧/

This rule is unsound!  But why?

Seq

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .



⟦P’⟧⟦P⟧
⟼ ⟼

Soundness Issue

55

	 𝑥/
	 𝑦/
	 𝑧/

	
	 𝑥/

sgn(𝑥)
𝑥 + sgn 𝑥

	 𝑥/
sgn 𝑥
	 𝑧/

Seq

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .



⟦P’⟧⟦P⟧
⟼ ⟼

Soundness Issue

56

	 𝑥/
	 𝑦/
	 𝑧/

	
	 𝑥/

sgn(𝑥)
𝑥 + sgn 𝑥

	 𝑥/
sgn 𝑥
	 𝑧/

non-differentiable used

Seq

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .



Soundness Issue

57

Seq

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟦P’⟧⟦P⟧
⟼ ⟼

	 𝑥/
	 𝑦/
	 𝑧/

	
	 𝑥/

sgn(𝑥)
𝑥 + sgn 𝑥

	 𝑥/
sgn 𝑥
	 𝑧/

non-differentiable used



Soundness Issue

58

⟦P’⟧⟦P⟧
⟼ ⟼

	 𝑥/
	 𝑦/
	 𝑧/

	
	 𝑥/

sgn(𝑥)
𝑥 + sgn 𝑥

	 𝑥/
sgn 𝑥
	 𝑧/

non-differentiable used

Seq

Lesson: Need to consider dependency between variables.

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .



P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

Possible Fix

59

	 𝑥/
	 𝑦/
	 𝑧/

	
	 𝑥/

sgn(𝑥)
𝑥 + sgn 𝑥

⟼ ⟼
	 𝑥/

sgn 𝑥
	 𝑧/ ⟦P’⟧⟦P⟧

Seq’

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣

Var



⟼ ⟼

Possible Fix

60

	 𝑥/
	 𝑦/
	 𝑧/

	
	 𝑥/

sgn(𝑥)
𝑥 + sgn 𝑥

	 𝑥/
sgn 𝑥
	 𝑧/ ⟦P’⟧⟦P⟧

non-differentiable

Seq’

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣

Var
P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .



Possible Fix

61

	 𝑥/
	 𝑦/
	 𝑧/

	
	 𝑥/

sgn(𝑥)
𝑥 + sgn 𝑥

	 𝑥/
sgn 𝑥
	 𝑧/

⟼ ⟼
⟦P’⟧⟦P⟧

non-differentiable

This rule now looks sound.  Right...?

Seq’

∀𝑢 ∈ 𝑈, ∀	𝑡 ∈ 𝑇.          P’ ⊢  𝑢 is differentiable in 𝑡
 ∀	𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢  𝑡 is differentiable in 𝑣

 ∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢  𝑢 is differentiable in 𝑣

Var
P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .



Soundness Issue (Again)

62

P;P’ ≜ (y:=x ; z:=f(x,y))  for   𝑓 𝑥, 𝑦 ≜ . ⁄𝑥𝑦 𝑥" + 𝑦"
0

	 if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

      𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
	 𝑥/
	 𝑥/
	 𝑧/

	 𝑥/
	 𝑦/

𝑓(𝑥, 𝑦)

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
⟦P⟧ ⟦P’⟧

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡	 ∈ Var.    P’ ⊢  𝑢 is differentiable in 𝑡
∀𝑡	 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢  𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢  𝑢 is differentiable in 𝑣



Soundness Issue (Again)

63

P;P’ ≜ (y:=x ; z:=f(x,y))   for   𝑓 𝑥, 𝑦 ≜ . ⁄𝑥𝑦 𝑥" + 𝑦"
0

	 if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

      𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
	 𝑥/
	 𝑥/
	 𝑧/

	 𝑥/
	 𝑦/

𝑓(𝑥, 𝑦)

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
⟦P⟧ ⟦P’⟧

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡	 ∈ Var.    P’ ⊢  𝑢 is differentiable in 𝑡
∀𝑡	 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢  𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢  𝑢 is differentiable in 𝑣



Soundness Issue (Again)

64

P;P’ ≜ (y:=x ; z:=f(x,y))   for   𝑓 𝑥, 𝑦 ≜ . ⁄𝑥𝑦 𝑥" + 𝑦"
0

	 if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

      𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

⟼
⟦P⟧ ⟦P’⟧

	 𝑥/
	 𝑥/

1 𝑥 ≠ 0 ⋅ ,1

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
	 𝑥/
	 𝑥/
	 𝑧/

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡	 ∈ Var.    P’ ⊢  𝑢 is differentiable in 𝑡
∀𝑡	 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢  𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢  𝑢 is differentiable in 𝑣



Soundness Issue (Again)

65

⟼
⟦P⟧ ⟦P’⟧

	 𝑥/
	 𝑥/

1 𝑥 ≠ 0 ⋅ ,1

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
	 𝑥/
	 𝑥/
	 𝑧/

This rule is still unsound!  But why?

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡	 ∈ Var.    P’ ⊢  𝑢 is differentiable in 𝑡
∀𝑡	 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢  𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢  𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=x ; z:=f(x,y))   for   𝑓 𝑥, 𝑦 ≜ . ⁄𝑥𝑦 𝑥" + 𝑦"
0

	 if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

      𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .



⟼
⟦P⟧ ⟦P’⟧

	 𝑥/
	 𝑥/

1 𝑥 ≠ 0 ⋅ ,1

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
	 𝑥/
	 𝑥/
	 𝑧/

Soundness Issue (Again)

66

⟼
id, id

𝑓

partially differentiable

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡	 ∈ Var.    P’ ⊢  𝑢 is differentiable in 𝑡
∀𝑡	 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢  𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢  𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=x ; z:=f(x,y))   for   𝑓 𝑥, 𝑦 ≜ . ⁄𝑥𝑦 𝑥" + 𝑦"
0

	 if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

      𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .



P;P’ ≜ (y:=x ; z:=f(x,y))   for   𝑓 𝑥, 𝑦 ≜ . ⁄𝑥𝑦 𝑥" + 𝑦"
0

	 if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

      𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

⟼
⟦P⟧ ⟦P’⟧

	 𝑥/
	 𝑥/

1 𝑥 ≠ 0 ⋅ ,1

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
	 𝑥/
	 𝑥/
	 𝑧/

Soundness Issue (Again)

67

⟼

Fact:  𝑔, ℎ are partially differentiable  ⟹  𝑔 ∘ ℎ does so.

id, id
𝑓

partially differentiable

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡	 ∈ Var.    P’ ⊢  𝑢 is differentiable in 𝑡
∀𝑡	 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢  𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢  𝑢 is differentiable in 𝑣



P;P’ ≜ (y:=x ; z:=f(x,y))   for   𝑓 𝑥, 𝑦 ≜ . ⁄𝑥𝑦 𝑥" + 𝑦"
0

	 if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

      𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

⟼
⟦P⟧ ⟦P’⟧

	 𝑥/
	 𝑥/

1 𝑥 ≠ 0 ⋅ ,1

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
	 𝑥/
	 𝑥/
	 𝑧/

Soundness Issue (Again)

68

⟼

𝑔,ℎ are partially differentiable  ⟹  𝑔 ∘ ℎ does so. 

id, id
𝑓

partially differentiable

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡	 ∈ Var.    P’ ⊢  𝑢 is differentiable in 𝑡
∀𝑡	 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢  𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢  𝑢 is differentiable in 𝑣

assumed implicitly, 
but invalid.



P;P’ ≜ (y:=x ; z:=f(x,y))   for   𝑓 𝑥, 𝑦 ≜ . ⁄𝑥𝑦 𝑥" + 𝑦"
0

	 if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

      𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

⟼
⟦P⟧ ⟦P’⟧

	 𝑥/
	 𝑥/

1 𝑥 ≠ 0 ⋅ ,1

	 𝑥/
	 𝑦/
	 𝑧/

	 ⟼
	 𝑥/
	 𝑥/
	 𝑧/

Soundness Issue (Again)

69

⟼
id, id

𝑓

partially differentiable

Lesson: Need to identify & check assumptions on target smoothness.

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡	 ∈ Var.    P’ ⊢  𝑢 is differentiable in 𝑡
∀𝑡	 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢  𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢  𝑢 is differentiable in 𝑣

𝑔, ℎ are partially differentiable  ⟹  𝑔 ∘ ℎ does so. 

assumed implicitly, 
but invalid.



70

It is subtle to do smoothness analysis, soundly (and precisely).

➝    Our approach for smoothness analysis



Our Approach: Smoothness Property

P ⊢  𝑈 is 𝜙-smooth in 𝑉     (𝑈, 𝑉 ⊆ Var)

71
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• 𝜙 ⊆ 𝑓:ℝ) → ℝ. :  any set of functions we consider “smooth”.

• E.g., {𝑓: partially differentiable}.
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Our Approach: Smoothness Property

P ⊢  𝑈 is 𝜙-smooth in 𝑉     (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ) → ℝ. :  any set of functions we consider “smooth”.

• E.g., {𝑓: partially differentiable},  {𝑓: jointly differentiable},  {𝑓: continuous},  ⋯.
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Our Approach: Smoothness Property

P ⊢  𝑈 is 𝜙-smooth in 𝑉     (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ) → ℝ. :  any set of functions we consider “smooth”.

• E.g., {𝑓: partially differentiable},  {𝑓: jointly differentiable},  {𝑓: continuous},  ⋯.

• P ⊢ 𝑥, 𝑦  is 𝜙-smooth in 𝑦, 𝑧  

 ⋯
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Our Approach: Smoothness Property

P ⊢  𝑈 is 𝜙-smooth in 𝑉     (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ) → ℝ. :  any set of functions we consider “smooth”.

• E.g., {𝑓: partially differentiable},  {𝑓: jointly differentiable},  {𝑓: continuous},  ⋯.

• P ⊢ 𝑥, 𝑦  is 𝜙-smooth in 𝑦, 𝑧
               𝑓 :  ℝ2     ➝ ℝ3     ∈  𝜙     for any 𝑥0 ∈ ℝ.
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• 𝜙 ⊆ 𝑓:ℝ) → ℝ. :  any set of functions we consider “smooth”.

• E.g., {𝑓: partially differentiable},  {𝑓: jointly differentiable},  {𝑓: continuous},  ⋯.

• P ⊢ 𝑥, 𝑦  is 𝜙-smooth in 𝑦, 𝑧
               𝑓 :  ℝ2     ➝ ℝ2   ∈  𝜙     for any 𝑥0 ∈ ℝ.
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Our Approach: Smoothness Analysis

𝑑2, 𝑠2 	 ∶ 	 2345 → 2345 
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Our Approach: Smoothness Analysis

𝑑2, 𝑠2 	 ∶ 	 2345 → 2345 

• Invariants: P ⊢  𝑉 is dependent at most on 𝑑2 𝑉 .

  P ⊢  𝑉 is 𝜙-smooth in 𝑠2 𝑉 .
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Our Approach: Smoothness Analysis

𝑑2, 𝑠2 	 ∶ 	 2345 → 2345 

• Invariants: P ⊢  𝑉 is dependent at most on 𝑑2 𝑉 .

  P ⊢  𝑉 is 𝜙-smooth in 𝑠2 𝑉 .

• Rules: 𝑑2;2" 𝑉 ≜ 𝑑2 𝑑2" 𝑉 .
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Our Approach: Smoothness Analysis

𝑑2, 𝑠2 	 ∶ 	 2345 → 2345 

• Invariants: P ⊢  𝑉 is dependent at most on 𝑑2 𝑉 .

  P ⊢  𝑉 is 𝜙-smooth in 𝑠2 𝑉 .

• Rules: 𝑑2;2" 𝑉 ≜ 𝑑2 𝑑2" 𝑉 .

  𝑠2;2" 𝑉 ≜ 𝑠2 𝑑2" 𝑉 	∩	𝑑2 𝑠2" 𝑉 7 7.
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Our Approach: Smoothness Analysis

𝑑2, 𝑠2 	 ∶ 	 2345 → 2345 

• Invariants: P ⊢  𝑉 is dependent at most on 𝑑2 𝑉 .

  P ⊢  𝑉 is 𝜙-smooth in 𝑠2 𝑉 .

• Rules: 𝑑2;2" 𝑉 ≜ 𝑑2 𝑑2" 𝑉 .
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Our Approach: Smoothness Analysis

𝑑2, 𝑠2 	 ∶ 	 2345 → 2345 

• Invariants: P ⊢  𝑉 is dependent at most on 𝑑2 𝑉 .

  P ⊢  𝑉 is 𝜙-smooth in 𝑠2 𝑉 .

• Rules: 𝑑2;2" 𝑉 ≜ 𝑑2 𝑑2" 𝑉 .
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Our Approach: Smoothness Analysis

𝑑2, 𝑠2 	 ∶ 	 2345 → 2345 

• Invariants: P ⊢  𝑉 is dependent at most on 𝑑2 𝑉 .

  P ⊢  𝑉 is 𝜙-smooth in 𝑠2 𝑉 .

• Rules: 𝑑2;2" 𝑉 ≜ 𝑑2 𝑑2" 𝑉 .
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Our Approach: Smoothness Analysis

𝑑2, 𝑠2 	 ∶ 	 2345 → 2345 

• Invariants: P ⊢  𝑉 is dependent at most on 𝑑2 𝑉 .

  P ⊢  𝑉 is 𝜙-smooth in 𝑠2 𝑉 .

• Rules: 𝑑2;2" 𝑉 ≜ 𝑑2 𝑑2" 𝑉 .
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       (not obvious; proved in our soundness theorem)



Our Approach: Smoothness Analysis (Details)

𝑑2, 𝑠2 	 ∶ 	 2345 → 2345 
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Our Approach: Smoothness Analysis (Details)

𝑑2, 𝑠2 	 ∶ 	 2345 → 2345 

• Invariants: P ⊢  𝑉 is dependent at most on 𝑑2 𝑉 .

  P ⊢  𝑉 is 𝜙-smooth in 𝑠2 𝑉 .

• Rules: 𝑑2;2" 𝑉 ≜ 𝑑2 𝑑2" 𝑉 .

  𝑠2;2" 𝑉 ≜ 𝑠2 𝑑2" 𝑉 	∩	𝑑2 𝑠2" 𝑉 7 7.
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More details are in our paper [POPL’23].

Var → 2345

𝑑2 𝑉 ≔l
8∈:

	
𝑑2 𝑣

𝑠2 𝑉 ≔m
8∈:

	
𝑠2 𝑣



Our Approach: Soundness

Theorem  Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• ⋯  ∀𝑓 = proj#→%: ℝ# → ℝ%. 𝑓 ∈ 𝜙.
• ⋯  ∀𝑓:ℝ# → ℝ%,	𝑔: ℝ# → ℝ& .			 𝑓, 𝑔 ∈ 𝜙	 ⟹ 𝑓, 𝑔 ∈ 𝜙.
• ⋯ 
• ⋯
• ⋯
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Our Approach: Soundness

Theorem  Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• Composition: ∀𝑓:ℝ# ⇀ ℝ%,	𝑔: ℝ% ⇀ ℝ& .		 𝑓, 𝑔 ∈ 𝜙	 ⟹	 𝑔 ∘ 𝑓 ∈ 𝜙.
• Pairing:  ∀𝑓:ℝ# ⇀ ℝ%,	𝑔: ℝ# ⇀ ℝ& .			 𝑓, 𝑔 ∈ 𝜙	 ⟹	 𝑓, 𝑔 ∈ 𝜙.
• Restriction: ∀𝑓:ℝ# ⇀ ℝ%,	𝑥 ∈ ℝ' 𝑘 ≤ 𝑛 .	 𝑓 ∈ 𝜙	 ⟹ 	 𝑓(𝑥, −) ∈ 𝜙.
• Projection: ∀𝑓 = proj#→% 	 ∶ ℝ# ⇀ ℝ%.		 𝑓 ∈ 𝜙.
• Strictness: ∀𝑓 = 𝜆𝑥. ⊥	∶ ℝ# ⇀ ℝ%.		 𝑓 ∈ 𝜙.
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Our Approach: Soundness
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Evaluation

• We implemented a static smoothness analyzer for Pyro programs.

-  It can analyze differentiability (and locally Lipschitz continuity).
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Evaluation

• We implemented a static smoothness analyzer for Pyro programs.

-  It can analyze differentiability (and locally Lipschitz continuity).

• We implemented our gradient estimator using our analyzer.

(1)  Identify differentiable parts of model 𝑝 𝑧, 𝑥  and guide 𝑞! 𝑧 .
(2)  Find 𝑆 ⊆ {𝑧,, … , 𝑧)} that satisfies diff’ty req’s of path. grad. estimator.
(3)  Apply path. grad. estimator to 𝑆, and score estimator to 𝑆7.
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Example in Pyro LoC
Our estimator Pyro’s default estimator
# rv (Sound) # rv (Sound) # rv (Unsound)

Splitting normal 16 1 1 1
⋯ (7 examples omitted) ⋯ ⋯ ⋯ ⋯
Deep exponential family 105 6 6 0
Deep Markov model 112 1 1 0
Hidden Markov model 137 2 2 0
Single-cell annotation 147 3 3 0
Attend-infer-repeat 174 1 1 1
Conditional VAE 205 1 1 0

Evaluation Results
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Example in Pyro LoC
Our estimator Pyro’s default estimator
# rv (Sound) # rv (Sound) # rv (Unsound)
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Evaluation Results
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High-Level Messages

• Smoothnes properties play an important role in prob. prog. (and other areas).
    -  Example:  Pathwise gradient estimator.

• It is subtle to design a proper smoothness analysis (sound and precise).
    -  Reason:  Make assumptions on target smoothness which are easily violated.
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High-Level Messages

• Smoothnes properties play an important role in prob. prog. (and other areas).
    -  Example:  Pathwise gradient estimator.

• It is subtle to design a proper smoothness analysis (sound and precise).
    -  Reason:  Make assumptions on target smoothness which are easily violated.

• There are some PL research opportunities for ML (which are less explored).
    -  Example:  Static analysis for automatic planning of inference algorithms.
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Gradient Estimators: General Case

• Previous example:

105

𝑞! 𝑧 : differentiable in 𝜃 and 𝑧.
𝑝 𝑧, 𝑥 : non-differentiable in 𝑧.

Score estimator: correct.
Pathwise gradient estimator: incorrect.

∇!ℒ 𝜃 = 0 for all 𝜃.  Pyro computes this.

𝑝 𝑧 𝑥

𝑞! 𝑧

𝑧

def p(): # model
   z = sample(“z”, Normal(0, 5))
   if (z > 0): sample(“x”, Normal( 1, 1), obs=0)
   else:       sample(“x”, Normal(-2, 1), obs=0)

def qθ(): # guide
   θ = pyro.param(“θ”, 1)

z = pyro.sample(“z”, Normal(θ, 1))Other approaches.
• Generalization of path. grad. est.:   [Lee+18], [Bangaru+21], ...
• Smoothing of input programs:         [Khajwal+23], [Wagner+24], ...
• ⋯

Our automatic approach [POPL’23].  (≈ [Lew+23])
1. Smoothness analysis:   Identify differentiable parts of a model/guide.
2. Selective application:   Apply path. grad. est. only to these parts.



Example in Pyro LoC
Our estimator Pyro’s default estimator
# rv (Sound) # rv (Sound) # rv (Unsound)

Splitting normal 16 1 1 1
⋯ (7 examples omitted) ⋯ ⋯ ⋯ ⋯
Deep exponential family 105 6 6 0
Deep Markov model 112 1 1 0
Hidden Markov model 137 2 2 0
Single-cell annotation 147 3 3 0
Attend-infer-repeat 174 1 1 1
Conditional VAE 205 1 1 0

Evaluation Results

111

due to div-by-0

due to branching

Loss
(ℒ) 

Iterations

Pyro’s default estimator

Our estimator

random variables 𝑧(
to which path. grad. estimator is applied


