
Smoothness Analysis for Probabilistic Programs
with Application to Optimised Variational Inference

Wonyeol Lee1 Xavier Rival2 Hongseok Yang3

1Stanford, USA 2INRIA/ENS/CNRS, France 3KAIST, South Korea

POPL 2023

Smoothness Analysis for Probabilistic Programs
with Application to Optimised Variational Inference

Wonyeol Lee1 Xavier Rival2 Hongseok Yang3

1Stanford, USA 2INRIA/ENS/CNRS, France 3KAIST, South Korea

POPL 2023

Part 1

Part 2

Why Care About Smoothness?

“Smoothness” = {differentiability, Lipschitz continuity, continuity, …}.

3

infinitely differentiable (in mathematics)

Why Care About Smoothness?

“Smoothness” = {differentiability, Lipschitz continuity, continuity, …}.

4

probabilistic model

Can apply many inference algorithms.

Why Care About Smoothness?

“Smoothness” = {differentiability, Lipschitz continuity, continuity, …}.

5

probabilistic model

differentiable

Can apply more efficient inference algorithms.

pathwise gradient estimator Hamiltonian Monte Carlo

⋯

Why Care About Smoothness?

“Smoothness” = {differentiability, Lipschitz continuity, continuity, …}.

6

probabilistic model

neural network

Can apply more efficient inference algorithms.

pathwise gradient estimator Hamiltonian Monte Carlo

⋯

Can provide provable robustness.
Can give guaranteed generalization bounds.
⋯

differentiable

Lipschitz continuous

Why Care About Smoothness?

“Smoothness” = {differentiability, Lipschitz continuity, continuity, …}.

7

probabilistic model

neural network

Can apply more efficient inference algorithms.

pathwise gradient estimator Hamiltonian Monte Carlo

⋯

Can provide provable robustness.
Can give guaranteed generalization bounds.
⋯

differentiable

Lipschitz continuous

⋯ many more examples! ⋯

8⋯

Why Care About Smoothness?

“Smoothness” = {differentiability, Lipschitz continuity, continuity, …}.

Can apply more efficient inference algorithms.

pathwise gradient estimator Hamiltonian Monte Carlo

⋯

Can provide provable robustness.
Can give guaranteed generalization bounds.
⋯

probabilistic model

neural network

Goal: Find out smoothness properties, automatically and soundly.

⋯ many more examples!

9⋯

Why Care About Smoothness?

“Smoothness” = {differentiability, Lipschitz continuity, continuity, …}.

Can apply more efficient inference algorithms.

pathwise gradient estimator Hamiltonian Monte Carlo

⋯

Can provide provable robustness.
Can give guaranteed generalization bounds.
⋯

probabilistic model

neural network

expressed by programs

Goal: Find out smoothness properties, automatically and soundly.
of programs

⋯ many more examples!

Smoothness Properties of Programs

Smoothness = differentiability. Programs = deterministic, imperative programs.

10

Smoothness Properties of Programs

Smoothness = differentiability. Programs = deterministic, imperative programs.

11

P ≜ (y:=exp(x) ; if (x>0) {z:=1} else {z:=-1})

real-valued

Smoothness Properties of Programs

Smoothness = differentiability. Programs = deterministic, imperative programs.

12

• ⟦P⟧ : ℝ3 ➝ ℝ3

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑦!
𝑧!

=
𝑥

exp 𝑥
sgn 𝑥

P ≜ (y:=exp(x) ; if (x>0) {z:=1} else {z:=-1})

Smoothness Properties of Programs

Smoothness = differentiability. Programs = deterministic, imperative programs.

13

• ⟦P⟧ : ℝ3 ➝ ℝ3

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑦!
𝑧!

=
𝑥

exp 𝑥
sgn 𝑥

• P ⊢ 𝑦 is differentiable in 𝑥
…

P ≜ (y:=exp(x) ; if (x>0) {z:=1} else {z:=-1})

⟺

Smoothness Properties of Programs

Smoothness = differentiability. Programs = deterministic, imperative programs.

14

• ⟦P⟧ : ℝ3 ➝ ℝ3

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑦!
𝑧!

=
𝑥

exp 𝑥
sgn 𝑥

• P ⊢ 𝑦 is differentiable in 𝑥
𝑓 : ℝ ➝ ℝ is differentiable for all 𝑦", 𝑧" ∈ ℝ.

𝑥!
𝑦"
𝑧"

⟼
𝑥!
𝑦!
𝑧!

⟦P⟧

P ≜ (y:=exp(x) ; if (x>0) {z:=1} else {z:=-1})

⟺

Smoothness Properties of Programs

Smoothness = differentiability. Programs = deterministic, imperative programs.

15

• ⟦P⟧ : ℝ3 ➝ ℝ3

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑦!
𝑧!

=
𝑥

exp 𝑥
sgn 𝑥

• P ⊢ 𝑦 is differentiable in 𝑥
𝑓 : ℝ ➝ ℝ is differentiable for all 𝑦", 𝑧" ∈ ℝ.

𝑥!
𝑦"
𝑧"

⟼
𝑥!
𝑦!
𝑧!

⟦P⟧

P ≜ (y:=exp(x) ; if (x>0) {z:=1} else {z:=-1})

⟺

Smoothness Properties of Programs

Smoothness = differentiability. Programs = deterministic, imperative programs.

16

• ⟦P⟧ : ℝ3 ➝ ℝ3

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑦!
𝑧!

=
𝑥

exp 𝑥
sgn 𝑥

• P ⊢ 𝑦 is differentiable in 𝑥
𝑓 : ℝ ➝ ℝ is differentiable for all 𝑦", 𝑧" ∈ ℝ.

𝑥!
𝑦"
𝑧"

⟼
𝑥!
𝑦!
𝑧!

⟦P⟧

⟺

P ≜ (y:=exp(x) ; if (x>0) {z:=1} else {z:=-1})

Smoothness Properties of Programs

Smoothness = differentiability. Programs = deterministic, imperative programs.

17

• ⟦P⟧ : ℝ3 ➝ ℝ3

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑦!
𝑧!

=
𝑥

exp 𝑥
sgn 𝑥

• P ⊢ 𝑦 is differentiable in 𝑥.
P ⊬ 𝑧 is differentiable in 𝑥.
⋯

P ≜ (y:=exp(x) ; if (x>0) {z:=1} else {z:=-1})

Smoothness Properties of Programs

Smoothness = differentiability. Programs = deterministic, imperative programs.

18

• ⟦P⟧ : ℝ3 ➝ ℝ3

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑦!
𝑧!

=
𝑥

exp 𝑥
sgn 𝑥

• P ⊢ 𝑦 is differentiable in 𝑥.
P ⊬ 𝑧 is differentiable in 𝑥.

It is surprisingly subtle to find out such smoothness properties

(1) automatically,
(2) soundly, and
(3) precisely enough.

P ≜ (y:=exp(x) ; if (x>0) {z:=1} else {z:=-1})

Want to check differentiability of a program in a compositional way.

Challenging case: Given P, P’ and 𝑈, 𝑉 ⊆ Var, want to check

Differentiability Analysis (Composition Case)

19

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣 .

Differentiability Analysis (Composition Case)

Based on the chain rule:

20

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

∃𝑇 ⊆ Var.

Differentiability Analysis (Composition Case)

Based on the chain rule:

21

• Looks sound by chain rule.
• Previously considered:

e.g., [CACM’12] for continuity.

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

∃𝑇 ⊆ Var.

Differentiability Analysis (Composition Case)

Based on the chain rule:

22

Is this rule indeed sound?

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

∃𝑇 ⊆ Var.

• Looks sound by chain rule.
• Previously considered:

e.g., [CACM’12] for continuity.

Issue 1: Soundness

23

P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 , 𝑇 ≜ 𝑥 .

𝑥!
𝑦!
𝑧!

⟼
𝑥!

sgn 𝑥
𝑧!

𝑥!
𝑦!

𝑥 + 𝑦

𝑥!
𝑦!
𝑧!

⟼
,⟦P⟧ ⟦P’⟧

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

Issue 1: Soundness

24

𝑥!
𝑦!
𝑧!

⟼
𝑥!

sgn 𝑥
𝑧!

𝑥!
𝑦!

𝑥 + 𝑦

𝑥!
𝑦!
𝑧!

⟼
,

P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟦P⟧ ⟦P’⟧

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

⟦P’⟧

Issue 1: Soundness

25

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥
⟼ ⟼

𝑥!
sgn 𝑥
𝑧!

P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟦P⟧

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

⟦P’⟧⟦P⟧

Issue 1: Soundness

26

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥
⟼ ⟼

𝑥!
sgn 𝑥
𝑧!

This rule is unsound! But why?

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟦P’⟧⟦P⟧
⟼ ⟼

Issue 1: Soundness

27

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟦P’⟧⟦P⟧
⟼ ⟼

Issue 1: Soundness

28

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

non-differentiable used

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

Issue 1: Soundness

29

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟦P’⟧⟦P⟧
⟼ ⟼

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

non-differentiable used

Issue 1: Soundness

30

⟦P’⟧⟦P⟧
⟼ ⟼

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

non-differentiable used

Seq

Lesson: Need to consider dependency between variables.

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

Issue 1: Possible Fix

31

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥
⟼ ⟼

𝑥!
sgn 𝑥
𝑧! ⟦P’⟧⟦P⟧

Seq’

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

Var

⟼ ⟼

Issue 1: Possible Fix

32

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧! ⟦P’⟧⟦P⟧

non-differentiable

Seq’

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

Var
P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

Issue 1: Possible Fix

33

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

⟼ ⟼
⟦P’⟧⟦P⟧

non-differentiable

This rule now looks sound. Are we done?

Seq’

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

Var
P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

Issue 2: Precision

34

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

⟼ ⟼
⟦P’⟧⟦P⟧

Seq’

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

Var
P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑥 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟼ ⟼

Issue 2: Precision

35

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑥 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟦P’⟧⟦P⟧

non-differentiable

Seq’

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

Var

Issue 2: Precision

36

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

⟼ ⟼
⟦P’⟧⟦P⟧

non-differentiable

This rule is too imprecise!

Seq’

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

Var
P;P’ ≜ (y:=sgn(x) ; z:=x+y). 𝑈 ≜ 𝑥 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

cannot
deduce

Issue 2: Precision

37

Admit the imprecision for now.
Is this rule indeed sound?

∀𝑢 ∈ 𝑈, ∀𝑡 ∈ Var. P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣
Seq’

Issue 3: Soundness (Again)

38

P;P’ ≜ (y:=x ; z:=f(x,y)) for 𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

𝑥!
𝑦!

𝑓(𝑥, 𝑦)

𝑥!
𝑦!
𝑧!

⟼
⟦P⟧ ⟦P’⟧

Seq’

∀𝑢 ∈ 𝑈, ∀𝑡 ∈ Var. P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

Issue 3: Soundness (Again)

39

P;P’ ≜ (y:=x ; z:=f(x,y)) for 𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

𝑥!
𝑦!

𝑓(𝑥, 𝑦)

𝑥!
𝑦!
𝑧!

⟼
⟦P⟧ ⟦P’⟧

Seq’

∀𝑢 ∈ 𝑈, ∀𝑡 ∈ Var. P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

Issue 3: Soundness (Again)

40

P;P’ ≜ (y:=x ; z:=f(x,y)) for 𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

⟼
⟦P⟧ ⟦P’⟧

𝑥!
𝑥!

1 𝑥 ≠ 0 ⋅ #$

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

Seq’

∀𝑢 ∈ 𝑈, ∀𝑡 ∈ Var. P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

Issue 3: Soundness (Again)

41

⟼
⟦P⟧ ⟦P’⟧

𝑥!
𝑥!

1 𝑥 ≠ 0 ⋅ #$

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

This rule is still unsound! But why?

Seq’

∀𝑢 ∈ 𝑈, ∀𝑡 ∈ Var. P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=x ; z:=f(x,y)) for 𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

⟼
⟦P⟧ ⟦P’⟧

𝑥!
𝑥!

1 𝑥 ≠ 0 ⋅ #$

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

Issue 3: Soundness (Again)

42

⟼
id, id

𝑓

partially differentiable

Seq’

∀𝑢 ∈ 𝑈, ∀𝑡 ∈ Var. P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=x ; z:=f(x,y)) for 𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

P;P’ ≜ (y:=x ; z:=f(x,y)) for 𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

⟼
⟦P⟧ ⟦P’⟧

𝑥!
𝑥!

1 𝑥 ≠ 0 ⋅ #$

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

Issue 3: Soundness (Again)

43

⟼

Fact: 𝑔, ℎ are partially differentiable ⟹ 𝑔 ∘ ℎ does so.

id, id
𝑓

partially differentiable

Seq’

∀𝑢 ∈ 𝑈, ∀𝑡 ∈ Var. P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=x ; z:=f(x,y)) for 𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

⟼
⟦P⟧ ⟦P’⟧

𝑥!
𝑥!

1 𝑥 ≠ 0 ⋅ #$

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

Issue 3: Soundness (Again)

44

⟼

𝑔,ℎ are partially differentiable ⟹ 𝑔 ∘ ℎ does so.

id, id
𝑓

partially differentiable

Seq’

∀𝑢 ∈ 𝑈, ∀𝑡 ∈ Var. P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

assumed implicitly,
but invalid.

P;P’ ≜ (y:=x ; z:=f(x,y)) for 𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

⟼
⟦P⟧ ⟦P’⟧

𝑥!
𝑥!

1 𝑥 ≠ 0 ⋅ #$

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

Issue 3: Soundness (Again)

45

⟼
id, id

𝑓

partially differentiable

Lesson: Need to identify & check assumptions on target smoothness.

Seq’

∀𝑢 ∈ 𝑈, ∀𝑡 ∈ Var. P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉. P ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉. P;P’ ⊢ 𝑢 is differentiable in 𝑣

𝑔, ℎ are partially differentiable ⟹ 𝑔 ∘ ℎ does so.

assumed implicitly,
but invalid.

46

It is subtle to do smoothness analysis, soundly and precisely.

➝ Our approach for smoothness analysis

Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)

47

Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ% → ℝ& : any set of “smooth” functions.

• E.g., {𝑓: partially differentiable}.

48

Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ% → ℝ& : any set of “smooth” functions.

• E.g., {𝑓: partially differentiable}, {𝑓: jointly differentiable}, {𝑓: continuous}, ⋯.

49

Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ% → ℝ& : any set of “smooth” functions.

• E.g., {𝑓: partially differentiable}, {𝑓: jointly differentiable}, {𝑓: continuous}, ⋯.

• P ⊢ 𝑥, 𝑦, 𝑧 is 𝜙-smooth in 𝑦, 𝑧
⋯

50

⟺

Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ% → ℝ& : any set of “smooth” functions.

• E.g., {𝑓: partially differentiable}, {𝑓: jointly differentiable}, {𝑓: continuous}, ⋯.

• P ⊢ 𝑥, 𝑦, 𝑧 is 𝜙-smooth in 𝑦, 𝑧
𝑓 : ℝ2 ➝ ℝ3 ∈ 𝜙 for any 𝑥" ∈ ℝ.

51

𝑥"
𝑦!
𝑧!

⟼
𝑥!
𝑦!
𝑧!

⟦P⟧

⟺

Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ% → ℝ& : any set of “smooth” functions.

• E.g., {𝑓: partially differentiable}, {𝑓: jointly differentiable}, {𝑓: continuous}, ⋯.

• P ⊢ 𝑥, 𝑦, 𝑧 is 𝜙-smooth in 𝑦, 𝑧
𝑓 : ℝ2 ➝ ℝ3 ∈ 𝜙 for any 𝑥" ∈ ℝ.

52

𝑥"
𝑦!
𝑧!

⟼
𝑥!
𝑦!
𝑧!

⟦P⟧

⟺

Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ% → ℝ& : any set of “smooth” functions.

• E.g., {𝑓: partially differentiable}, {𝑓: jointly differentiable}, {𝑓: continuous}, ⋯.

• P ⊢ 𝑥, 𝑦, 𝑧 is 𝜙-smooth in 𝑦, 𝑧
𝑓 : ℝ2 ➝ ℝ3 ∈ 𝜙 for any 𝑥" ∈ ℝ.

53

𝑥"
𝑦!
𝑧!

⟼
𝑥!
𝑦!
𝑧!

⟦P⟧

⟺

Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

54

dependency
info of P

smoothness
info of P

Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

55

dependency
info of P

smoothness
info of P

Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .

56

dependency
info of P

smoothness
info of P

Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .

𝑠';'! 𝑉 ≜ 𝑠' 𝑑'! 𝑉 ∩ 𝑑' 𝑠'! 𝑉 , ,.

57

dependency
info of P

smoothness
info of P

Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .

𝑠';'! 𝑉 ≜ 𝑠' 𝑑'! 𝑉 ∩ 𝑑' 𝑠'! 𝑉 , ,.

58

dependency
info of P

smoothness
info of P

𝑢 ∈𝑢 ∈ ∧𝑢 ∈

𝑢 ∈

Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .

𝑠';'! 𝑉 ≜ 𝑠' 𝑑'! 𝑉 ∩ 𝑑' 𝑠'! 𝑉 , ,.

59

dependency
info of P

smoothness
info of P

𝑢 𝑑!! 𝑉 𝑉

P P’

must be
smooth

may
depend

𝑢 ∈𝑢 ∈ ∧

Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .

𝑠';'! 𝑉 ≜ 𝑠' 𝑑'! 𝑉 ∩ 𝑑' 𝑠'! 𝑉 , ,.

60

dependency
info of P

smoothness
info of P

𝑢 𝑠!! 𝑉 " 𝑉

P P’

must
not depend

may be
non-smooth

𝑢 ∈𝑢 ∈

𝑢 𝑑!! 𝑉 𝑉

P P’

must be
smooth

may
depend

𝑢 ∈ ∧

Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .

𝑠';'! 𝑉 ≜ 𝑠' 𝑑'! 𝑉 ∩ 𝑑' 𝑠'! 𝑉 , ,.

61

dependency
info of P

smoothness
info of P

𝑢 𝑠!! 𝑉 " 𝑉

P P’

must
not depend

may be
non-smooth

𝑢 ∈𝑢 ∈

𝑢 𝑑!! 𝑉 𝑉

P P’

must be
smooth

may
depend

𝑢 ∈ ∧

⟹ can apply the chain rule

𝑢 ∈

Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .

𝑠';'! 𝑉 ≜ 𝑠' 𝑑'! 𝑉 ∩ 𝑑' 𝑠'! 𝑉 , ,.

62

dependency
info of P

smoothness
info of P

Var → 2()*

P : first-order, imperative language
(+ probabilistic prog. constructs)

More details are in the paper.

Our Approach: Soundness

Theorem Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• ⋯ ∀𝑓 = proj"→$: ℝ" → ℝ$. 𝑓 ∈ 𝜙.
• ⋯ ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ" → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑓, 𝑔 ∈ 𝜙.
• ⋯
• ⋯
• ⋯

63

Our Approach: Soundness

Theorem Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• Composition: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ$ → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑔 ∘ 𝑓 ∈ 𝜙.
• Pairing: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ" → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑓, 𝑔 ∈ 𝜙.
• ⋯
• ⋯
• ⋯

64

Our Approach: Soundness

Theorem Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• Composition: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ$ → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑔 ∘ 𝑓 ∈ 𝜙.
• Pairing: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ" → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑓, 𝑔 ∈ 𝜙.
• ⋯
• ⋯
• ⋯

65

jointly diff.

Theorem Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• Composition: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ$ → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑔 ∘ 𝑓 ∈ 𝜙.
• Pairing: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ" → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑓, 𝑔 ∈ 𝜙.
• ⋯
• ⋯
• ⋯

Our Approach: Soundness

66

jointly diff.

Our Approach: Soundness

Theorem Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• Composition: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ$ → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑔 ∘ 𝑓 ∈ 𝜙.
• Pairing: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ" → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑓, 𝑔 ∈ 𝜙.
• ⋯
• ⋯
• ⋯

67

jointly diff.

Smoothness Analysis for Probabilistic Programs
with Application to Optimised Variational Inference

Wonyeol Lee1 Xavier Rival2 Hongseok Yang3

1Stanford, USA 2INRIA/ENS/CNRS, France 3KAIST, South Korea

Part 1

Part 2

Variational Inference

• Problem: Given probability density functions 𝑝 𝑧, 𝑥 and 𝑞- 𝑧 ,

minimize ℒ 𝜃 ≜ 𝔼."(0) log
." 0
2 0,4

over 𝜃 ∈ ℝ%.

• Typical approach: Apply a gradient descent algorithm.

𝜃56# ≔ 𝜃5 − 𝜂 ⋅ ∇-ℒ 𝜃5 .

69

Variational Inference

• Problem: Given probability density functions 𝑝 𝑧, 𝑥 and 𝑞- 𝑧 ,

minimize ℒ 𝜃 ≜ 𝔼."(0) log
." 0
2 0,4

over 𝜃 ∈ ℝ%.

• Typical approach: Apply a gradient descent algorithm.

𝜃56# ≔ 𝜃5 − 𝜂 ⋅ ∇-ℒ 𝜃5 .

70

difficult to compute, so only estimate.

Gradient Estimators

• Basic estimator (called score estimator):

∇-ℒ 𝜃 ≈ ⋯ log ." 0
2 0,4 × ∇- log 𝑞- 𝑧 for 𝑧 ∼ 𝑞- − .

Requirements: 𝑞- 𝑧 is differentiable in 𝜃, ⋯.

• “Optimized” estimator (called pathwise gradient estimator):

∇-ℒ 𝜃 ≈ ⋯∇- log ." 5" 7
2 5" 7 ,4 for 𝑧 ∼ 𝑟 − .

Requirements: 𝑞- 𝑧 and 𝑝 𝑧, 𝑥 are differentiable in 𝜃 and 𝑧 = 𝑧#, … , 𝑧& , ⋯.

71

Gradient Estimators

• Basic estimator (called score estimator):

∇-ℒ 𝜃 ≈ log ." 0
2 0,4 × ∇- log 𝑞- 𝑧 for 𝑧 ∼ 𝑞- − .

Requirements: 𝑞- 𝑧 is differentiable in 𝜃, ⋯.

• “Optimized” estimator (called pathwise gradient estimator):

∇-ℒ 𝜃 ≈ ∇- log ." 5" 0
2 5" 0 ,4 for 𝑧 ∼ 𝑟 − .

Requirements: 𝑞- 𝑧 and 𝑝 𝑧, 𝑥 are differentiable in 𝜃 and 𝑧 = 𝑧#, … , 𝑧& , ⋯.

72

Gradient Estimators

• Basic estimator (called score estimator):

∇-ℒ 𝜃 ≈ log ." 0
2 0,4 × ∇- log 𝑞- 𝑧 for 𝑧 ∼ 𝑞- − .

Requirements: 𝑞- 𝑧 should be differentiable in 𝜃, ⋯.

• “Optimized” estimator (called pathwise gradient estimator):

∇-ℒ 𝜃 ≈ ∇- log ." 5" 0
2 5" 0 ,4 for 𝑧 ∼ 𝑟 − .

Requirements: 𝑞- 𝑧 and 𝑝 𝑧, 𝑥 should be differentiable in 𝜃 and 𝑧, ⋯.

73

Gradient Estimators

• Basic estimator (called score estimator):

∇-ℒ 𝜃 ≈ log ." 0
2 0,4 × ∇- log 𝑞- 𝑧 for 𝑧 ∼ 𝑞- − .

Requirements: 𝑞- 𝑧 should be differentiable in 𝜃, ⋯.

• “Optimized” estimator (called pathwise gradient estimator):

∇-ℒ 𝜃 ≈ ∇- log ." 5" 0
2 5" 0 ,4 for 𝑧 ∼ 𝑟 − .

Requirements: 𝑞- 𝑧 and 𝑝 𝑧, 𝑥 should be differentiable in 𝜃 and 𝑧, ⋯.

74

In practice, we apply optimized estimator selectively to some of 𝑧#, ⋯ , 𝑧&.
To do so soundly, we need to know differentiable parts of 𝑞- 𝑧 and 𝑝 𝑧, 𝑥 .

Gradient Estimators

• Basic estimator (called score estimator):

∇-ℒ 𝜃 ≈ log ." 0
2 0,4 × ∇- log 𝑞- 𝑧 for 𝑧 ∼ 𝑞- − .

Requirements: 𝑞- 𝑧 should be differentiable in 𝜃, ⋯.

• “Optimized” estimator (called pathwise gradient estimator):

∇-ℒ 𝜃 ≈ ∇- log ." 5" 0
2 5" 0 ,4 for 𝑧 ∼ 𝑟 − .

Requirements: 𝑞- 𝑧 and 𝑝 𝑧, 𝑥 should be differentiable in 𝜃 and 𝑧, ⋯.

75

In practice, we apply optimized estimator selectively to some of 𝑧#, ⋯ , 𝑧&.
To do so soundly, we need to know differentiable parts of 𝑞- 𝑧 and 𝑝 𝑧, 𝑥 .

expressed by programs

Part 1 is used here.

Example in Pyro LoC
Our optimizer Pyro’s default optimizer
rv (Sound) # rv (Sound) # rv (Unsound)

Splitting normal 16 1 1 1
⋯ (7 examples omitted) ⋯ ⋯ ⋯ ⋯
Deep exponential family 105 6 6 0
Deep Markov model 112 1 1 0
Hidden Markov model 137 2 2 0
Single-cell annotation 147 3 3 0
Attend-infer-repeat 174 1 1 1
Conditional VAE 205 1 1 0

Evaluation Results

76

PL for variational inference
(with neural nets, ⋯)

of “optimized” random var’s

Example in Pyro LoC
Our optimizer Pyro’s default optimizer
rv (Sound) # rv (Sound) # rv (Unsound)

Splitting normal 16 1 1 1
⋯ (7 examples omitted) ⋯ ⋯ ⋯ ⋯
Deep exponential family 105 6 6 0
Deep Markov model 112 1 1 0
Hidden Markov model 137 2 2 0
Single-cell annotation 147 3 3 0
Attend-infer-repeat 174 1 1 1
Conditional VAE 205 1 1 0

Evaluation Results

77

• Ours checks req’s using smoothness analysis.
• Pyro does not check req’s, so it can be unsound.

PL for variational inference
(with neural nets, ⋯)

of “optimized” random var’s

Example in Pyro LoC
Our optimizer Pyro’s default optimizer
rv (Sound) # rv (Sound) # rv (Unsound)

Splitting normal 16 1 1 1
⋯ (7 examples omitted) ⋯ ⋯ ⋯ ⋯
Deep exponential family 105 6 6 0
Deep Markov model 112 1 1 0
Hidden Markov model 137 2 2 0
Single-cell annotation 147 3 3 0
Attend-infer-repeat 174 1 1 1
Conditional VAE 205 1 1 0

of “optimized” random var’s

Evaluation Results

78

PL for variational inference
(with neural nets, ⋯)

Example in Pyro LoC
Our optimizer Pyro’s default optimizer
rv (Sound) # rv (Sound) # rv (Unsound)

Splitting normal 16 1 1 1
⋯ (7 examples omitted) ⋯ ⋯ ⋯ ⋯
Deep exponential family 105 6 6 0
Deep Markov model 112 1 1 0
Hidden Markov model 137 2 2 0
Single-cell annotation 147 3 3 0
Attend-infer-repeat 174 1 1 1
Conditional VAE 205 1 1 0

of “optimized” random var’s

Evaluation Results

79

PL for variational inference
(with neural nets, ⋯)

due to div-by-0

due to branching

Example in Pyro LoC
Our optimizer Pyro’s default optimizer
rv (Sound) # rv (Sound) # rv (Unsound)

Splitting normal 16 1 1 1
⋯ (7 examples omitted) ⋯ ⋯ ⋯ ⋯
Deep exponential family 105 6 6 0
Deep Markov model 112 1 1 0
Hidden Markov model 137 2 2 0
Single-cell annotation 147 3 3 0
Attend-infer-repeat 174 1 1 1
Conditional VAE 205 1 1 0

Evaluation Results

80

PL for variational inference
(with neural nets, ⋯)

of “optimized” random var’s

Loss
(ℒ)

Iterations

Pyro’s default optimizer

Our optimizer

due to div-by-0

due to branching

High-Level Messages

• It is subtle to do smoothness analysis properly (automatically, soundly, precisely enough).

One reason: Make assumptions on target smoothness, which are easily violated.

• There are some PL research opportunities for ML (which are less explored).
This work: Static analysis for automatic planning of inference algorithms.

81

Thanks for your attention!

Our Approach: Soundness

Theorem Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• Strictness: ∀𝑓 = 𝜆𝑥. ⊥ ∶ ℝ" ⇀ ℝ$. 𝑓 ∈ 𝜙.
• Projection: ∀𝑓 = proj"→$ ∶ ℝ" ⇀ ℝ$. 𝑓 ∈ 𝜙.
• Restriction: ∀𝑓:ℝ" ⇀ ℝ$, 𝑥 ∈ ℝ& 𝑘 ≤ 𝑛 . 𝑓 ∈ 𝜙 ⟹ 𝑓(𝑥,−) ∈ 𝜙.
• Composition: ∀𝑓:ℝ" ⇀ ℝ$, 𝑔: ℝ$ ⇀ ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑔 ∘ 𝑓 ∈ 𝜙.
• Pairing: ∀𝑓:ℝ" ⇀ ℝ$, 𝑔: ℝ" ⇀ ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑓, 𝑔 ∈ 𝜙.

83

jointly diff.

Our Approach: Soundness

84

Evaluation Results

85

