Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference

Part 1 Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference

Xavier Rival²

Part 2

Hongseok Yang³

²INRIA/ENS/CNRS, France

³KAIST, South Korea

"Smoothness" = {differentiability, Lipschitz continuity, continuity, ...}.

infinitely differentiable (in mathematics)

"Smoothness" = {differentiability, Lipschitz continuity, continuity, ...}.

Can apply many inference algorithms.

probabilistic model

"Smoothness" = {differentiability, Lipschitz continuity, continuity, ...}.

Goal: Find out **smoothness** properties[?] automatically and soundly.

 $= \mathbb{E}_{p(\boldsymbol{\epsilon})} \left[\nabla_{\boldsymbol{\theta}} f(g(\boldsymbol{\epsilon}; \boldsymbol{\theta})) \right]$

of **programs**

oathwise gradient estimator

 $\frac{di}{dt} = -\frac{1}{\partial q_i}$ Hamiltonian Monte Carlo expressed by programs

neural network

x

probabilistic model

Can provide provable robustness.

Can give guaranteed generalization bounds.

Smoothness = differentiability. Programs = deterministic, imperative programs.

Smoothness = differentiability. Programs = deterministic, imperative programs.

$$P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$$

real-valued

Smoothness = differentiability. Programs = deterministic, imperative programs.

 $P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$

•
$$\llbracket P \rrbracket$$
 : $\mathbb{R}^3 \to \mathbb{R}^3$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ \exp(x) \\ \operatorname{sgn}(x) \end{pmatrix}$

Smoothness = differentiability. Programs = deterministic, imperative programs.

 $P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$

•
$$\llbracket P \rrbracket$$
 : $\mathbb{R}^3 \to \mathbb{R}^3$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ \exp(x) \\ \operatorname{sgn}(x) \end{pmatrix}$

• $P \vdash y$ is differentiable in x

$$\iff$$
 ...

Smoothness = differentiability. Programs = deterministic, imperative programs.

 $P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$

•
$$\llbracket P \rrbracket$$
 : $\mathbb{R}^3 \to \mathbb{R}^3$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ \exp(x) \\ \operatorname{sgn}(x) \end{pmatrix}$

• P \vdash y is differentiable in x

 $\begin{pmatrix} x \\ y_0 \\ z \end{pmatrix} \stackrel{\llbracket P \rrbracket}{\mapsto} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$

for all $y_0, z_0 \in \mathbb{R}$.

14

Smoothness = differentiability. Programs = deterministic, imperative programs.

 $P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$

•
$$\llbracket P \rrbracket$$
 : $\mathbb{R}^3 \to \mathbb{R}^3$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ \exp(x) \\ \operatorname{sgn}(x) \end{pmatrix}$

• P \vdash y is differentiable in x

$$\Rightarrow f: \mathbb{R} \to \mathbb{R}$$
$$\begin{pmatrix} x \\ y_0 \\ z_0 \end{pmatrix} \stackrel{\mathbb{P}}{\mapsto} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

for all $y_0, z_0 \in \mathbb{R}$.

Smoothness = differentiability. Programs = deterministic, imperative programs.

 $P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$

•
$$\llbracket P \rrbracket$$
 : $\mathbb{R}^3 \to \mathbb{R}^3$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ \exp(x) \\ \operatorname{sgn}(x) \end{pmatrix}$

• $P \vdash y$ is differentiable in x

 $\Leftrightarrow f: \mathbb{R} \to \mathbb{R} \quad \text{is differentiable} \quad \text{for all } y_0, z_0 \in \mathbb{R}. \\ \begin{pmatrix} x \\ y_0 \\ z_0 \end{pmatrix} \stackrel{\mathbb{P}}{\mapsto} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$

Smoothness = differentiability. Programs = deterministic, imperative programs.

 $P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$

•
$$\llbracket P \rrbracket$$
 : $\mathbb{R}^3 \to \mathbb{R}^3$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ \exp(x) \\ \operatorname{sgn}(x) \end{pmatrix}$

• **P** \vdash y is differentiable in x.

. . .

P \nvDash z is differentiable in x.

Smoothness = differentiability. Programs = deterministic, imperative programs.

 $P \triangleq (y:=exp(x); if (x>0) \{z:=1\} else \{z:=-1\})$

It is surprisingly subtle to find out such smoothness properties (1) automatically, (2) soundly, and (3) precisely enough.

Want to check differentiability of a program in a compositional way.

Challenging case: Given P, P³ and $U, V \subseteq Var$, want to check

 $\forall u \in U, \forall v \in V. \quad \mathsf{P}; \mathsf{P}' \vdash u \text{ is differentiable in } v$.

Based on the chain rule:

 $\exists T \subseteq Var.$ $\forall u \in U, \forall t \in T.$ $P' \vdash u$ is differentiable in t $\forall t \in T, \forall v \in V.$ $P \vdash t$ is differentiable in v

• Looks sound by chain rule.

Seq

Based on the chain rule:

• Previously considered: e.g., [CACM'12] for continuity.

 $\exists T \subseteq \text{Var.} \quad \forall u \in U, \forall t \in T. \qquad P^{\prime} \vdash u \text{ is differentiable in } t \\ \forall t \in T, \forall v \in V. \qquad P \vdash t \text{ is differentiable in } v$

• Looks sound by chain rule.

Based on the chain rule:

• Previously considered: e.g., [CACM'12] for continuity.

 $\exists T \subseteq \text{Var.} \quad \forall u \in U, \forall t \in T. \quad P' \vdash u \text{ is differentiable in } t \\ \forall t \in T, \forall v \in V. \quad P \vdash t \text{ is differentiable in } v \quad \checkmark \\ \text{Seq}$

 $\forall u \in U, \forall v \in V.$ P; P' $\vdash u$ is differentiable in v

Is this rule indeed sound?

 $P;P' \triangleq (y:=sgn(x); z:=x+y).$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{\mathbb{P}} \begin{pmatrix} x \\ \mathsf{sgn}(x) \\ z \end{pmatrix}, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{\mathbb{P}} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

P;P' \triangleq (y:=sgn(x); z:=x+y). $U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}$.

 $\bigvee \forall u \in U, \forall t \in T. \qquad P' \vdash u \text{ is differentiable in } t$ $\forall t \in T, \forall v \in V. \qquad P \vdash t \text{ is differentiable in } v$ Seq

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{} \mathbb{P}^{\mathbb{I}} \begin{pmatrix} x \\ sgn(x) \\ z \end{pmatrix}, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{} \mathbb{P}^{\mathbb{I}} \begin{pmatrix} x \\ y \\ x + y \end{pmatrix}$$

 $\mathsf{P};\mathsf{P}' \triangleq (\mathsf{y}:=\mathsf{sgn}(\mathsf{x}) ; \mathsf{z}:=\mathsf{x}+\mathsf{y}). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$

✓ $\forall u \in U, \forall t \in T.$ P' ⊢ u is differentiable in t
✓ $\forall t \in T, \forall v \in V.$ P ⊢ t is differentiable in v
Seq

 $\mathsf{P};\mathsf{P}' \triangleq (\mathsf{y}:=\mathsf{sgn}(\mathsf{x}) ; \mathsf{z}:=\mathsf{x}+\mathsf{y}). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$

✓ $\forall u \in U, \forall t \in T.$ P' ⊢ u is differentiable in t
✓ $\forall t \in T, \forall v \in V.$ P ⊢ t is differentiable in v
Seq

★ $\forall u \in U, \forall v \in V$. P; P' $\vdash u$ is differentiable in v

This rule is unsound! But why?

 $\mathsf{P};\mathsf{P}' \triangleq (\mathsf{y}:=\mathsf{sgn}(\mathsf{x}) ; \mathsf{z}:=\mathsf{x}+\mathsf{y}). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$

 \checkmark $\forall u \in U, \forall t \in T.$ $P' \vdash u$ is differentiable in t \checkmark $\forall t \in T, \forall v \in V.$ $P \vdash t$ is differentiable in v

 $\forall u \in U, \forall v \in V. P; P' \vdash u$ is differentiable in v

Seq

 $\mathsf{P};\mathsf{P}' \triangleq (\mathsf{y}:=\mathsf{sgn}(\mathsf{x}) ; \mathsf{z}:=\mathsf{x}+\mathsf{y}). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$

✓ $\forall u \in U, \forall t \in T.$ P' ⊢ u is differentiable in t
✓ $\forall t \in T, \forall v \in V.$ P ⊢ t is differentiable in v
Seq

 $\mathsf{P};\mathsf{P}' \triangleq (\mathsf{y}:=\mathsf{sgn}(\mathsf{x}) ; \mathsf{z}:=\mathsf{x}+\mathsf{y}). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$

 $\mathsf{P};\mathsf{P}' \triangleq (\mathsf{y}:=\mathsf{sgn}(\mathsf{x}); \mathsf{z}:=\mathsf{x}+\mathsf{y}). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$

 $\forall u \in U, \forall t \in T. \qquad P' \vdash u \text{ is differentiable in } t \\ \forall t \in T, \forall v \in V. \qquad P \vdash t \text{ is differentiable in } v \\ \hline \end{bmatrix}$

 $\forall u \in U, \forall v \in V.$ P; P' $\vdash u$ is differentiable in v

Lesson: Need to consider dependency between variables.

non-differentiable us

Issue 1: Possible Fix

 $P;P' \triangleq (y:=sgn(x) ; z:=x+y). \quad U \triangleq \{z\}, \forall T \triangleq \{x\}, \forall V \triangleq \{x\}.$ $\forall u \in U, \forall t \in T! \quad P' \vdash u \text{ is differentiable in } t$ $\forall t \in T, \forall v \in V. \quad P \vdash t \text{ is differentiable in } v$ $\forall u \in U, \forall v \in V. \quad P;P' \vdash u \text{ is differentiable in } v$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{} \mathbb{P} \begin{pmatrix} x \\ \operatorname{sgn}(x) \\ z \end{pmatrix} \xrightarrow{} \mathbb{P} \begin{bmatrix} x \\ \operatorname{sgn}(x) \\ \mathbb{P} \end{bmatrix} \xrightarrow{} \begin{pmatrix} x \\ \operatorname{sgn}(x) \\ x + \operatorname{sgn}(x) \end{pmatrix}$$

Issue 1: Possible Fix

$$P;P' \triangleq (y:=sgn(x) ; z:=x+y). \quad U \triangleq \{z\}, T \triangleq \{x\}, V \triangleq \{x\}.$$

$$\forall u \in U, \forall t \in T. \quad P' \vdash u \text{ is differentiable in } t$$

$$\forall t \in T, \forall v \in V. \quad P \vdash t \text{ is differentiable in } v$$

$$\forall u \in U, \forall v \in V. \quad P;P' \vdash u \text{ is differentiable in } v$$
Seq'

Issue 1: Possible Fix

$$P;P' \triangleq (y:=sgn(x) ; z:=x+y). \quad U \triangleq \{z\}, \forall T \triangleq \{x\}, \forall V \triangleq \{x\}.$$

$$\forall u \in U, \forall t \in T. \quad P' \vdash u \text{ is differentiable in } t$$

$$\forall t \in T, \forall v \in V. \quad P \vdash t \text{ is differentiable in } v$$

$$\forall u \in U, \forall v \in V. \quad P;P' \vdash u \text{ is differentiable in } v$$

$$Seq'$$

$$(x)$$

$$(x)$$

$$(y)$$

$$(x)$$

$$($$

This rule now looks sound. Are we done?

Issue 2: Precision

 $P;P' \triangleq (y:=sgn(x) ; z:=x+y). \quad U \triangleq \{x\}, T \triangleq \{x\}, V \triangleq \{x\}.$ $\forall u \in U, \forall t \in T. \quad P' \vdash u \text{ is differentiable in } t$ $\forall t \in T, \forall v \in V. \quad P \vdash t \text{ is differentiable in } v$ $\forall u \in U, \forall v \in V. \quad P;P' \vdash u \text{ is differentiable in } v$ Seq'

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{} \mathbb{P}^{\mathbb{I}} \begin{pmatrix} x \\ \operatorname{sgn}(x) \\ z \end{pmatrix} \xrightarrow{} \mathbb{P}^{\mathbb{I}} \begin{pmatrix} x \\ \operatorname{sgn}(x) \\ \mathbb{P}^{\mathbb{I}} \end{bmatrix} \begin{pmatrix} x \\ \operatorname{sgn}(x) \\ x + \operatorname{sgn}(x) \end{pmatrix}$$

Issue 2: Precision

$$P;P' \triangleq (y:=sgn(x) ; z:=x+y). \quad U \triangleq \{x\}, T \triangleq \{x\}, V \triangleq \{x\}.$$

$$\forall u \in U, \forall t \in T. \quad P' \vdash u \text{ is differentiable in } t$$

$$\forall t \in T, \forall v \in V. \quad P \vdash t \text{ is differentiable in } v$$

$$\forall u \in U, \forall u \in V. \quad P \vdash t \text{ is differentiable in } v$$

$$\forall u \in U, \forall u \in V. \quad P \vdash v \text{ is differentiable in } v$$

 $\nabla u \in U, \nabla v \in V$. P; $P' \vdash u$ is differentiable in v

Issue 2: Precision

$\forall u \in U, \ \forall t \in \text{Var. P'} \vdash u \text{ is differentiable in } t$ $\forall t \in \text{Var}, \forall v \in V. P \vdash t \text{ is differentiable in } v$ $\forall u \in U, \forall v \in V. P; P' \vdash u \text{ is differentiable in } v$

Admit the imprecision for now. Is this rule indeed sound?

P;P' \triangleq (y:=x; z:=f(x,y)) for $f(x,y) \triangleq \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

 $\forall u \in U, \ \forall t \in \text{Var. P'} \vdash u \text{ is differentiable in } t \\ \forall t \in \text{Var}, \forall v \in V. P \vdash t \text{ is differentiable in } v \\ \hline \text{Seq'}$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{\mathbb{P}} \begin{pmatrix} x \\ x \\ z \end{pmatrix} \xrightarrow{\mathbb{P}} \begin{pmatrix} x \\ x \\ z \end{pmatrix} \xrightarrow{\mathbb{P}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{\mathbb{P}} \begin{bmatrix} x \\ y \\ f(x, y) \end{pmatrix}$$

P;P' \triangleq (y:=x; z:=f(x,y)) for $f(x,y) \triangleq \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ $U \triangleq \{z\}, V \triangleq \{x\}.$

 $\bigvee \forall u \in U, \forall t \in Var. P' \vdash u \text{ is differentiable in } t$ $\forall t \in Var, \forall v \in V. P \vdash t \text{ is differentiable in } v$ Seq'

P;P' \triangleq (y:=x; z:=f(x,y)) for $f(x,y) \triangleq \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ $U \triangleq \{z\}, V \triangleq \{x\}.$

✓ $\forall u \in U, \forall t \in Var. P' \vdash u$ is differentiable in t✓ $\forall t \in Var, \forall v \in V. P \vdash t$ is differentiable in vSeq'

P;P' ≜ (y:=x; z:=f(x,y)) for $f(x,y) \triangleq \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ $U \triangleq \{z\}, V \triangleq \{x\}.$

✓ $\forall u \in U, \forall t \in Var. P' \vdash u$ is differentiable in t✓ $\forall t \in Var, \forall v \in V. P \vdash t$ is differentiable in vSeq'

 $\forall u \in U, \forall v \in V.$ P; P' $\vdash u$ is differentiable in v

This rule is still unsound! But why?

P;P' \triangleq (y:=x; z:=f(x,y)) for $f(x,y) \triangleq \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ $U \triangleq \{z\}, V \triangleq \{x\}.$

 $\checkmark \forall u \in U, \forall t \in Var. P' \vdash u \text{ is differentiable in } t$ $\forall t \in Var, \forall v \in V. P \vdash t \text{ is differentiable in } v$ Seq'

 $(\dots / (\dots 2 + \dots 2) \text{ if } (r \cdot v) \neq (0,0)$ $P;P' \triangleq (y:$ = (0,0). g, h are partially differentiable $\implies g \circ h$ does so. $U \triangleq \{z\}, V \triangleq$ assumed implicitly, \checkmark $\forall u \in U, \forall t \in Var. P' \vdash u$ is differentiable in t but invalid. ✓ $\forall t \in Var, \forall v \in V.$ P $\vdash t$ is differentiable in v Seq' $\forall u \in U, \forall v \in V.$ P; P' $\vdash u$ is differentiable in v $\begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} \text{id, id} \end{pmatrix} \begin{pmatrix} x \\ x \end{pmatrix} f \begin{pmatrix} x \\ 1[x \neq 0] \cdot \frac{1}{2} \end{pmatrix}$ partially differentiable

Lesson: Need to identify & check assumptions on target smoothness.

It is subtle to do smoothness analysis, soundly and precisely.

→ Our approach for smoothness analysis

- $\phi \subseteq \{f : \mathbb{R}^n \to \mathbb{R}^m\}$: any set of "smooth" functions.
 - E.g., {*f* : partially differentiable}.

- $\phi \subseteq \{f : \mathbb{R}^n \to \mathbb{R}^m\}$: any set of "smooth" functions.
 - E.g., $\{f: partially differentiable\}, \{f: jointly differentiable\}, \{f: continuous\}, \cdots$.

- $\phi \subseteq \{f : \mathbb{R}^n \to \mathbb{R}^m\}$: any set of "smooth" functions.
 - E.g., $\{f: partially differentiable\}, \{f: jointly differentiable\}, \{f: continuous\}, \cdots$.
- P $\vdash \{x, y, z\}$ is ϕ -smooth in $\{y, z\}$
 - $\iff \cdots$

- $\phi \subseteq \{f : \mathbb{R}^n \to \mathbb{R}^m\}$: any set of "smooth" functions.
 - E.g., $\{f: partially differentiable\}, \{f: jointly differentiable\}, \{f: continuous\}, \cdots$.

- $\phi \subseteq \{f : \mathbb{R}^n \to \mathbb{R}^m\}$: any set of "smooth" functions.
 - E.g., $\{f: partially differentiable\}, \{f: jointly differentiable\}, \{f: continuous\}, \cdots$.

- $\phi \subseteq \{f : \mathbb{R}^n \to \mathbb{R}^m\}$: any set of "smooth" functions.
 - E.g., $\{f: partially differentiable\}, \{f: jointly differentiable\}, \{f: continuous\}, \cdots$.
- $P \vdash \{x, y, z\} \text{ is } \phi \text{-smooth in } \{y, z\}$ $\iff f : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \in \phi \text{ for any } x_0 \in \mathbb{R}.$ $\begin{pmatrix} x_0 \\ y \\ z \end{pmatrix} \stackrel{\text{IPI}}{\mapsto} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$

• Invariants: $P \vdash V$ is dependent at most on $d_P(V)$. $P \vdash V$ is ϕ -smooth in $s_P(V)$.

- Invariants: $P \vdash V$ is dependent at most on $d_P(V)$. $P \vdash V$ is ϕ -smooth in $s_P(V)$.
- Rules: $d_{\mathrm{P};\mathrm{P}'}(V) \triangleq d_{\mathrm{P}}(d_{\mathrm{P}'}(V)).$

- Invariants: $P \vdash V$ is dependent at most on $d_P(V)$. $P \vdash V$ is ϕ -smooth in $s_P(V)$.
- Rules: $d_{\mathbf{P};\mathbf{P}'}(V) \triangleq d_{\mathbf{P}}(d_{\mathbf{P}'}(V)).$ $s_{\mathbf{P};\mathbf{P}'}(V) \triangleq s_{\mathbf{P}}(d_{\mathbf{P}'}(V)) \cap d_{\mathbf{P}}(s_{\mathbf{P}'}(V)^{c})^{c}.$

• Invariants: $P \vdash V$ is dependent at most on $d_P(V)$. $P \vdash V$ is ϕ -smooth in $s_P(V)$.

• Rules: $d_{\mathbf{P};\mathbf{P}'}(V) \triangleq d_{\mathbf{P}}(d_{\mathbf{P}'}(V)).$ $s_{\mathbf{P};\mathbf{P}'}(V) \triangleq s_{\mathbf{P}}(d_{\mathbf{P}'}(V)) \cap d_{\mathbf{P}}(s_{\mathbf{P}'}(V)^{c})^{c}.$ $u \in u \in \Lambda \quad u \in$

<u>Theorem</u> Our ϕ -smoothness analysis is sound if ϕ satisfies five assumptions:

- • •
- ...
- ...
- ...
- ...

<u>Theorem</u> Our ϕ -smoothness analysis is sound if ϕ satisfies five assumptions:

- Composition: $\forall f : \mathbb{R}^n \to \mathbb{R}^m, g : \mathbb{R}^m \to \mathbb{R}^l. \quad f, g \in \phi \implies (g \circ f) \in \phi.$
- Pairing: $\forall f : \mathbb{R}^n \to \mathbb{R}^m, g : \mathbb{R}^n \to \mathbb{R}^l. \quad f, g \in \phi \implies (f, g) \in \phi.$
- • • •
- • • •
- • •

<u>Theorem</u> Our ϕ -smoothness analysis is sound if ϕ satisfies five assumptions:

 Composition: 	$\forall f \colon \mathbb{R}^n \to \mathbb{R}^m$, $g \colon \mathbb{R}^m \to \mathbb{R}^l$.	$f, g \in \phi \implies$	$(g \circ f) \in \phi$

• Pairing: $\forall f : \mathbb{R}^n \to \mathbb{R}^m, g : \mathbb{R}^n \to \mathbb{R}^l.$	$f, g \in \phi \implies (f, g) \in \phi$	Ξφ,
--	--	-----

•••	Target smoothness property	A3 (proj.)	A4 (pair.)	A5 (rest.)	A6 (comp.)	A7 (stri.)
•••	cont. (C^0)	0	0	0	0	0
	locally Lipschitz (= $\phi^{(l)}$)	0	0	0	0	0
•••	uniformly cont.	0	0	0	0	0
	Lipschitz cont.	0	0	0	0	0
	jointly diff.	0	0	0	0	0
	continuously diff. (C^1)	0	0	0	0	0
	smooth (C^{∞})	0	0	0	0	0
	real analytic (C^{ω})	0	0	0	0	0
	partially cont. (= $\phi^{(pc)}$)	0	0	0	×	0
	partially diff. (= $\phi^{(pd)}$)	0	0	0	×	0
	almost-everywhere cont.	0	0	×	×	0
	almost-everywhere diff.	0	0	×	×	0
	coordinatewise non-decreasing	0	0	0	0	0
	locally bounded	0	0	0	0	0
	bounded	×	0	0	0	0
	Borol moogurable	0	0	0	0	0

<u>Theorem</u> Our ϕ -smoothness analysis is sound if ϕ satisfies five assumptions:

 Composition: 	$\forall f \colon \mathbb{R}^n \to \mathbb{R}^m, g \colon \mathbb{R}^m \to \mathbb{R}^l.$	$f, g \in \phi \implies$	$(g \circ f) \in \phi$

• Pairing:	$orall f \colon \mathbb{R}^n o \mathbb{R}^m$, $g \colon \mathbb{R}^n o \mathbb{R}$	\mathbb{R}^l . $f, g \in \phi$	$\implies (f,g) \in \phi.$
------------	--	----------------------------------	----------------------------

•••	Target smoothness property	A3 (proj.)	A4 (pair.)	A5 (rest.)	A6 (comp.)	A7 (stri.)
•	cont. (C^0)	0	0	0	0	0
	locally Lipschitz (= $\phi^{(l)}$)	0	0	0	0	0
• •••	uniformly cont.	0	0	0	0	0
	Lipschitz cont.	0	0	0	0	0
	jointly diff.	0	0	0	0	0
	continuously diff. (C^1)	0	0	0	0	0
	smooth (C^{∞})	0	0	0	0	0
	real analytic (C^{ω})	0	0	0	0	0
	partially cont. (= $\phi^{(pc)}$)	0	0	0	×	0
	partially diff. (= $\phi^{(pd)}$)	0	0	0	×	0
	almost-everywhere cont.	0	0	×	×	0
	almost-everywhere diff.	0	0	×	×	0
	coordinatewise non-decreasing	0	0	0	0	0
	locally bounded	0	0	0	0	0
	bounded	×	0	0	0	0
	Borol moogurable	0	0	0	0	0

66

<u>Theorem</u> Our ϕ -smoothness analysis is sound if ϕ satisfies five assumptions:

- Composition: $\forall f : \mathbb{R}^n \to \mathbb{R}^m, g : \mathbb{R}^m \to \mathbb{R}^l. \quad f, g \in \phi \implies (g \circ f) \in \phi.$
- Pairing: $\forall f : \mathbb{R}^n \to \mathbb{R}^m, g : \mathbb{R}^n \to \mathbb{R}^l. \quad f, g \in \phi \implies (f, g) \in \phi.$

• • • •	Target smoothness property	A3 (proj.)	A4 (pair.)	A5 (rest.)	A6 (comp.)	A7 (stri.)
• •••	cont. (C^0)	0	0	0	0	0
	locally Lipschitz (= $\phi^{(l)}$)	0	0	0	0	0
• •••	uniformly cont.	0	0	0	0	0
	Lipschitz cont.	0	0	0	0	0
	jointly diff.	0	0	0	0	0
	continuously diff. (C^1)	0	0	0	0	0
	smooth (C^{∞})	0	0	0	0	0
	real analytic (C^{ω})	0	0	0	0	0
	partially cont. (= $\phi^{(pc)}$)	0	0	0	×	0
	partially diff. $(= \phi^{(pd)})$	0	0	0	×	0
	almost-everywhere cont.	0	0	×	×	0
	almost-everywhere diff.	0	0	×	X	0
	coordinatewise non-decreasing	0	0	0	0	0
	locally bounded	0	0	0	0	0
	bounded	×	0	0	0	0
	Borol magazzabla	0	0	0	0	0

67

Part 1 Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference

Xavier Rival²

Part 2

Hongseok Yang³

¹Stanford, USA

²INRIA/ENS/CNRS, France

³KAIST, South Korea

Variational Inference

• Problem: Given probability density functions p(z, x) and $q_{\theta}(z)$,

minimize
$$\mathcal{L}(\theta) \triangleq \mathbb{E}_{q_{\theta}(z)} \left[\log \frac{q_{\theta}(z)}{p(z,x)} \right]$$
 over $\theta \in \mathbb{R}^{n}$.

• Typical approach: Apply a gradient descent algorithm.

$$\theta_{t+1} \coloneqq \theta_t - \eta \cdot \nabla_{\theta} \mathcal{L}(\theta_t).$$

Variational Inference

• Problem: Given probability density functions p(z, x) and $q_{\theta}(z)$,

minimize
$$\mathcal{L}(\theta) \triangleq \mathbb{E}_{q_{\theta}(z)} \left[\log \frac{q_{\theta}(z)}{p(z,x)} \right]$$
 over $\theta \in \mathbb{R}^{n}$.

• Typical approach: Apply a gradient descent algorithm.

$$\theta_{t+1} \coloneqq \theta_t - \eta \cdot \nabla_{\theta} \mathcal{L}(\theta_t).$$

difficult to compute, so only estimate

Gradient Estimators

• Basic estimator (called score estimator):

 $\nabla_{\theta} \mathcal{L}(\theta) \approx \cdots$

• "Optimized" estimator (called pathwise gradient estimator):

$$\nabla_{\theta} \mathcal{L}(\theta) \approx \cdots$$

for $z \sim r(-)$.

Gradient Estimators

• Basic estimator (called score estimator):

$$\nabla_{\theta} \mathcal{L}(\theta) \approx \log \frac{q_{\theta}(z)}{p(z,x)} \times \nabla_{\theta}(\log q_{\theta}(z)) \quad \text{for } z \sim q_{\theta}(-).$$

• "Optimized" estimator (called pathwise gradient estimator):

$$\nabla_{\theta} \mathcal{L}(\theta) \approx \overline{\nabla_{\theta}} \left(\log \frac{q_{\theta}(t_{\theta}(z))}{p(t_{\theta}(z), x)} \right)$$

for $z \sim r(-)$.
Gradient Estimators

• Basic estimator (called score estimator):

$$\nabla_{\theta} \mathcal{L}(\theta) \approx \log \frac{q_{\theta}(z)}{p(z,x)} \times \nabla_{\theta}(\log q_{\theta}(z)) \quad \text{for } z \sim q_{\theta}(-).$$

Requirements: $q_{\theta}(z)$ should be differentiable in θ ,

• "Optimized" estimator (called pathwise gradient estimator):

$$\mathcal{T}_{\theta}\mathcal{L}(\theta) \approx \nabla_{\theta} \left(\log \frac{q_{\theta}(t_{\theta}(z))}{p(t_{\theta}(z), x)} \right)$$
 for $z \sim r(-)$.

Requirements: $q_{\theta}(z)$ and p(z, x) should be differentiable in θ and z,

Gradient Estimators

• Basic estimator (called score estimator):

$$\nabla_{\theta} \mathcal{L}(\theta) \approx \log \frac{q_{\theta}(z)}{p(z,x)} \times \nabla_{\theta}(\log q_{\theta}(z)) \quad \text{for } z \sim q_{\theta}(-).$$

Requirements: $q_{\theta}(z)$ should be differentiable in θ ,

• "Optimized" estimator (called pathwise gradient estimator):

$$\mathcal{T}_{\theta}\mathcal{L}(\theta) \approx \nabla_{\theta} \left(\log \frac{q_{\theta}(t_{\theta}(z))}{p(t_{\theta}(z), x)} \right)$$
 for $z \sim r(-)$.

Requirements: $q_{\theta}(z)$ and p(z, x) should be differentiable in θ and z, \dots .

In practice, we apply optimized estimator selectively to some of z_1, \dots, z_m . To do so soundly, we need to know differentiable parts of $q_{\theta}(z)$ and p(z, x).

Gradient Estimators

• Basic estimator (called score estimator):

$$\nabla_{\theta} \mathcal{L}(\theta) \approx \log \frac{q_{\theta}(z)}{p(z,x)} \times \nabla_{\theta}(\log q_{\theta}(z)) \quad \text{for } z \sim q_{\theta}(-).$$

Requirements: $q_{\theta}(z)$ should be differentiable in θ ,

• "Optimized" estimator (called pathwise gradient estimator):

$$\nabla_{\theta} \mathcal{L}(\theta) \approx \nabla_{\theta} \left(\log \frac{q_{\theta}(t_{\theta}(z))}{p(t_{\theta}(z), x)} \right) \qquad \text{for } z \sim r(-).$$
Requirements: $q_{\theta}(z)$ and $p(z, x)$ should be diferentiable programs
Part 1 is used here.
In practice, we apply optimized estimator selectively to some of z_1, \cdots, z_m .
To do so soundly, we need to know differentiable parts of $q_{\theta}(z)$ and $p(z, x)$.

PL for variational inference		# of "optimized" random var's			
(with neural nets, ···)					
Example in Pyro		Our optimizer Pyro's default optimizer			
	LUC	# rv (Sound) # rv (Sound) # rv (Unsound)			
Splitting normal	16				
··· (7 examples omitted)	•••				
Deep exponential family	105				
Deep Markov model	112				
Hidden Markov model	137				
Single-cell annotation	147				
Attend-infer-repeat	174				
Conditional VAE	205				

PL for variational inference (with neural nets, …)		# of "opt	# of "optimized" random var's			
Evample in Dure	LoC	Our optimizer	Pyro's default optimizer			
Example in Pyro		# rv (Sound)	# rv (Sound)	# rv (Unsound)		
Splitting normal	16	1	1	1		
··· (7 examples omitted)	•••	•••	•••	•••		
Deep exponential family	105	6	6	0		
Deep Markov model	112	1	1	0		
Hidden Markov model	137	2	2	0		
Single-cell annotation	147	3	3	0		
Attend-infer-repeat	174	1	1	1		
Conditional VAE	205	1	1	0		

PL for variational inference (with neural nets, …)	2	# of "optimized" random var's			
Example in Pyro		Our optimizer	Pyro's defa	ult optimizer	
	LUC	# rv (Sound)	# rv (Sound)	# rv (Unsound)	
Splitting normal	16	1	1	1	
··· (7 examples omitted)	•••	•••	•••		
Deep exponential family	105	6	6	0 due to branching	
Deep Markov model	112	1	1	0	
Hidden Markov model	137	2	2	0 due te div by 0	
Single-cell annotation	147	3	3		
Attend-infer-repeat	174	1	1	1	
Conditional VAE	205	1	1	0	

High-Level Messages

- It is subtle to do smoothness analysis properly (automatically, soundly, precisely enough). One reason: Make assumptions on target smoothness, which are easily violated.
- There are some PL research opportunities for ML (which are less explored). This work: Static analysis for automatic planning of inference algorithms.

Thanks for your attention!

Our Approach: Soundness

<u>Theorem</u> Our ϕ -smoothness analysis is sound if ϕ satisfies five assumptions:

 $\begin{array}{lll} \text{Strictness:} & \forall f = \lambda x. \bot : \mathbb{R}^n \to \mathbb{R}^m. & f \in \phi. \\ \text{Projection:} & \forall f = \operatorname{proj}_{n \to m} : \mathbb{R}^n \to \mathbb{R}^m. & f \in \phi. \\ \text{Restriction:} & \forall f : \mathbb{R}^n \to \mathbb{R}^m, x \in \mathbb{R}^k (k \le n). & f \in \phi \implies f(x, -) \in \phi. \\ \text{Composition:} & \forall f : \mathbb{R}^n \to \mathbb{R}^m, g : \mathbb{R}^m \to \mathbb{R}^l. & f, g \in \phi \implies (g \circ f) \in \phi. \\ \text{Pairing:} & \forall f : \mathbb{R}^n \to \mathbb{R}^m, g : \mathbb{R}^n \to \mathbb{R}^l. & f, g \in \phi \implies (f, g) \in \phi. \end{array}$

77 · · · · · ·	10/ 1)	A 4 / · · ·	A = ()	1 ()	A = ()
Target smoothness property	A3 (proj.)	A4 (pair.)	A5 (rest.)	A6 (comp.)	A7 (stri.)
cont. (C^0)	0	0	0	0	0
locally Lipschitz (= $\phi^{(l)}$)	0	0	0	0	0
uniformly cont.	0	0	0	0	0
Lipschitz cont.	0	0	0	0	0
jointly diff.	0	0	0	0	0
continuously diff. (C^1)	0	0	0	0	0
smooth (C^{∞})	0	0	0	0	0
real analytic (C^{ω})	0	0	0	0	0
partially cont. (= $\phi^{(pc)}$)	0	0	0	×	0
partially diff. (= $\phi^{(pd)}$)	0	0	0	×	0
almost-everywhere cont.	0	0	×	×	0

Our Approach: Soundness

Target smoothness property	A3 (proj.)	A4 (pair.)	A5 (rest.)	A6 (comp.)	A7 (stri.)
$\overline{\operatorname{cont.}(\mathcal{C}^0)}$	0	0	0	0	0
locally Lipschitz (= $\phi^{(l)}$)	0	0	0	0	0
uniformly cont.	0	0	0	0	0
Lipschitz cont.	0	0	0	0	0
diff. (= $\phi^{(d)}$)	0	0	0	0	0
continuously diff. (C^1)	0	0	0	0	0
smooth (C^{∞})	0	0	0	0	0
real analytic (C^{ω})	0	0	0	0	0
partially cont. (= $\phi^{(pc)}$)	0	0	0	×	0
partially diff. (= $\phi^{(pd)}$)	0	0	0	×	0
almost-everywhere cont.	0	0	×	×	0
almost-everywhere diff.	0	0	×	\times	0
coordinatewise non-decreasing	0	0	0	0	0
locally bounded	0	0	0	0	0
bounded	\times	0	0	0	0
Borel measurable	0	0	0	0	0
locally integrable	0	0	×	\times	0
integrable	×	0	×	×	0

Reparametrization trick is incorrect in presence of discontinuity #2277

