
Smoothness Analysis for Probabilistic Programs
with Application to Optimised Variational Inference

Wonyeol Lee1 Xavier Rival2 Hongseok Yang3

1Stanford, USA            2INRIA/ENS/CNRS, France            3KAIST, South Korea

POPL 2023



Smoothness Analysis for Probabilistic Programs
with Application to Optimised Variational Inference

Wonyeol Lee1 Xavier Rival2 Hongseok Yang3

1Stanford, USA            2INRIA/ENS/CNRS, France            3KAIST, South Korea

POPL 2023

Part 1

Part 2



Why Care About Smoothness?

“Smoothness” = {differentiability, Lipschitz continuity, continuity, …}.
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Why Care About Smoothness?

“Smoothness” = {differentiability, Lipschitz continuity, continuity, …}.

Can apply more efficient inference algorithms.

pathwise gradient estimator Hamiltonian Monte Carlo

⋯

Can provide provable robustness.
Can give guaranteed generalization bounds.
⋯

probabilistic model

neural network

expressed by programs

Goal:  Find out smoothness properties, automatically and soundly.
of programs

⋯ many more examples! 
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• ⟦P⟧ :     ℝ3 ➝ ℝ3

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑦!
𝑧!

=
𝑥

exp 𝑥
sgn 𝑥

• P ⊢ 𝑦 is differentiable in 𝑥.
P ⊬ 𝑧 is differentiable in 𝑥. 
⋯

P ≜ ( y:=exp(x) ; if (x>0) {z:=1} else {z:=-1} )



Smoothness Properties of Programs

Smoothness = differentiability.   Programs = deterministic, imperative programs.
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• ⟦P⟧ :     ℝ3 ➝ ℝ3

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑦!
𝑧!

=
𝑥

exp 𝑥
sgn 𝑥

• P ⊢ 𝑦 is differentiable in 𝑥.
P ⊬ 𝑧 is differentiable in 𝑥. 

It is surprisingly subtle to find out such smoothness properties

(1) automatically,
(2) soundly, and
(3) precisely enough.

P ≜ ( y:=exp(x) ; if (x>0) {z:=1} else {z:=-1} )



Want to check differentiability of a program in a compositional way.

Challenging case:  Given P, P’ and 𝑈, 𝑉 ⊆ Var,  want to check

Differentiability Analysis (Composition Case)
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∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣 .
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∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇.          P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣

∃𝑇 ⊆ Var.



Differentiability Analysis (Composition Case)

Based on the chain rule:

21

• Looks sound by chain rule.
• Previously considered:

e.g., [CACM’12] for continuity.

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇.          P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣

∃𝑇 ⊆ Var.



Differentiability Analysis (Composition Case)

Based on the chain rule:
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Is this rule indeed sound?

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇.          P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣

∃𝑇 ⊆ Var.

• Looks sound by chain rule.
• Previously considered:

e.g., [CACM’12] for continuity.



Issue 1: Soundness
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P;P’ ≜ (y:=sgn(x) ; z:=x+y).  𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 , 𝑇 ≜ 𝑥 .

𝑥!
𝑦!
𝑧!

⟼
𝑥!

sgn 𝑥
𝑧!

𝑥!
𝑦!

𝑥 + 𝑦

𝑥!
𝑦!
𝑧!

⟼
,⟦P⟧ ⟦P’⟧

Seq
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𝑥!
𝑦!
𝑧!

⟼
𝑥!

sgn 𝑥
𝑧!

𝑥!
𝑦!

𝑥 + 𝑦

𝑥!
𝑦!
𝑧!

⟼
,

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟦P⟧ ⟦P’⟧

Seq
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∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣



⟦P’⟧

Issue 1: Soundness
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𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥
⟼ ⟼

𝑥!
sgn 𝑥
𝑧!

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟦P⟧

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇.          P’ ⊢ 𝑢 is differentiable in 𝑡
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∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣



⟦P’⟧⟦P⟧

Issue 1: Soundness
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𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥
⟼ ⟼

𝑥!
sgn 𝑥
𝑧!

This rule is unsound!  But why?

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇.          P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .
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⟼ ⟼

Issue 1: Soundness
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𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!
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𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

non-differentiable used

Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇.          P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .
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Seq

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇.          P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟦P’⟧⟦P⟧
⟼ ⟼

𝑥!
𝑦!
𝑧!
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sgn(𝑥)
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𝑥!
sgn 𝑥
𝑧!

non-differentiable used



Issue 1: Soundness

30

⟦P’⟧⟦P⟧
⟼ ⟼

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

non-differentiable used

Seq

Lesson: Need to consider dependency between variables.

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇.          P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .



P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

Issue 1: Possible Fix

31

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥
⟼ ⟼

𝑥!
sgn 𝑥
𝑧! ⟦P’⟧⟦P⟧

Seq’

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇. P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣

Var



⟼ ⟼

Issue 1: Possible Fix
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𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧! ⟦P’⟧⟦P⟧

non-differentiable

Seq’

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇.          P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣

Var
P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .



Issue 1: Possible Fix
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𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

⟼ ⟼
⟦P’⟧⟦P⟧

non-differentiable

This rule now looks sound. Are we done?

Seq’

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇.          P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣

Var
P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑧 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .



Issue 2: Precision
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𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

⟼ ⟼
⟦P’⟧⟦P⟧

Seq’

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇.          P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣

Var
P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑥 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .



⟼ ⟼

Issue 2: Precision

35

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑥 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

⟦P’⟧⟦P⟧

non-differentiable

Seq’

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇.          P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣

Var



Issue 2: Precision

36

𝑥!
𝑦!
𝑧!

𝑥!
sgn(𝑥)

𝑥 + sgn 𝑥

𝑥!
sgn 𝑥
𝑧!

⟼ ⟼
⟦P’⟧⟦P⟧

non-differentiable

This rule is too imprecise!

Seq’

∀𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇.          P’ ⊢ 𝑢 is differentiable in 𝑡
∀ 𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉.          P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.     P;P’ ⊢ 𝑢 is differentiable in 𝑣

Var
P;P’ ≜ (y:=sgn(x) ; z:=x+y).   𝑈 ≜ 𝑥 , 𝑇 ≜ 𝑥 , 𝑉 ≜ 𝑥 .

cannot
deduce



Issue 2: Precision

37

Admit the imprecision for now.
Is this rule indeed sound?

∀𝑢 ∈ 𝑈,    ∀𝑡 ∈ Var.    P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢ 𝑢 is differentiable in 𝑣
Seq’



Issue 3: Soundness (Again)

38

P;P’ ≜ (y:=x ; z:=f(x,y)) for   𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

𝑥!
𝑦!

𝑓(𝑥, 𝑦)

𝑥!
𝑦!
𝑧!

⟼
⟦P⟧ ⟦P’⟧

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡 ∈ Var.    P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢ 𝑢 is differentiable in 𝑣
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P;P’ ≜ (y:=x ; z:=f(x,y)) for   𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

𝑥!
𝑦!

𝑓(𝑥, 𝑦)

𝑥!
𝑦!
𝑧!

⟼
⟦P⟧ ⟦P’⟧

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡 ∈ Var.    P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢ 𝑢 is differentiable in 𝑣
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P;P’ ≜ (y:=x ; z:=f(x,y)) for   𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

⟼
⟦P⟧ ⟦P’⟧

𝑥!
𝑥!

1 𝑥 ≠ 0 ⋅ #$

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡 ∈ Var.    P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢ 𝑢 is differentiable in 𝑣
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⟼
⟦P⟧ ⟦P’⟧

𝑥!
𝑥!

1 𝑥 ≠ 0 ⋅ #$

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

This rule is still unsound!  But why?

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡 ∈ Var.    P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=x ; z:=f(x,y)) for   𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .



⟼
⟦P⟧ ⟦P’⟧

𝑥!
𝑥!

1 𝑥 ≠ 0 ⋅ #$

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

Issue 3: Soundness (Again)
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⟼
id, id

𝑓

partially differentiable

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡 ∈ Var.    P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢ 𝑢 is differentiable in 𝑣

P;P’ ≜ (y:=x ; z:=f(x,y)) for   𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .



P;P’ ≜ (y:=x ; z:=f(x,y)) for   𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

⟼
⟦P⟧ ⟦P’⟧

𝑥!
𝑥!

1 𝑥 ≠ 0 ⋅ #$

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

Issue 3: Soundness (Again)
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⟼

Fact:  𝑔, ℎ are partially differentiable  ⟹ 𝑔 ∘ ℎ does so.

id, id
𝑓

partially differentiable

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡 ∈ Var.    P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢ 𝑢 is differentiable in 𝑣



P;P’ ≜ (y:=x ; z:=f(x,y)) for   𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

⟼
⟦P⟧ ⟦P’⟧

𝑥!
𝑥!

1 𝑥 ≠ 0 ⋅ #$

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

Issue 3: Soundness (Again)
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⟼

𝑔,ℎ are partially differentiable  ⟹ 𝑔 ∘ ℎ does so.

id, id
𝑓

partially differentiable

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡 ∈ Var.    P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢ 𝑢 is differentiable in 𝑣

assumed implicitly, 
but invalid.



P;P’ ≜ (y:=x ; z:=f(x,y)) for   𝑓 𝑥, 𝑦 ≜ & ⁄𝑥𝑦 𝑥! + 𝑦!
0

if 𝑥, 𝑦 ≠ 0,0 .
if 𝑥, 𝑦 = 0,0 .

𝑈 ≜ 𝑧 , 𝑉 ≜ 𝑥 .

⟼
⟦P⟧ ⟦P’⟧

𝑥!
𝑥!

1 𝑥 ≠ 0 ⋅ #$

𝑥!
𝑦!
𝑧!

⟼
𝑥!
𝑥!
𝑧!

Issue 3: Soundness (Again)

45

⟼
id, id

𝑓

partially differentiable

Lesson: Need to identify & check assumptions on target smoothness.

Seq’

∀𝑢 ∈ 𝑈,    ∀𝑡 ∈ Var.    P’ ⊢ 𝑢 is differentiable in 𝑡
∀𝑡 ∈ Var, ∀𝑣 ∈ 𝑉.       P  ⊢ 𝑡 is differentiable in 𝑣

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉.      P;P’ ⊢ 𝑢 is differentiable in 𝑣

𝑔, ℎ are partially differentiable  ⟹ 𝑔 ∘ ℎ does so.

assumed implicitly, 
but invalid.
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It is subtle to do smoothness analysis, soundly and precisely.

➝ Our approach for smoothness analysis



Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)
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Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ% → ℝ& :  any set of “smooth” functions.

• E.g., {𝑓: partially differentiable}.
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Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ% → ℝ& :  any set of “smooth” functions.

• E.g., {𝑓: partially differentiable},  {𝑓: jointly differentiable},  {𝑓: continuous},  ⋯.
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Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ% → ℝ& :  any set of “smooth” functions.

• E.g., {𝑓: partially differentiable},  {𝑓: jointly differentiable},  {𝑓: continuous},  ⋯.

• P ⊢ 𝑥, 𝑦, 𝑧 is 𝜙-smooth in 𝑦, 𝑧
⋯
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Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ% → ℝ& :  any set of “smooth” functions.

• E.g., {𝑓: partially differentiable},  {𝑓: jointly differentiable},  {𝑓: continuous},  ⋯.

• P ⊢ 𝑥, 𝑦, 𝑧 is 𝜙-smooth in 𝑦, 𝑧
𝑓 :  ℝ2 ➝ ℝ3 ∈ 𝜙 for any 𝑥" ∈ ℝ.
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⟼
𝑥!
𝑦!
𝑧!

⟦P⟧
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Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ% → ℝ& :  any set of “smooth” functions.

• E.g., {𝑓: partially differentiable},  {𝑓: jointly differentiable},  {𝑓: continuous},  ⋯.

• P ⊢ 𝑥, 𝑦, 𝑧 is 𝜙-smooth in 𝑦, 𝑧
𝑓 :  ℝ2 ➝ ℝ3 ∈ 𝜙 for any 𝑥" ∈ ℝ.
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⟼
𝑥!
𝑦!
𝑧!
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Our Approach: Smoothness Property

P ⊢ 𝑈 is 𝜙-smooth in 𝑉 (𝑈, 𝑉 ⊆ Var)

• 𝜙 ⊆ 𝑓:ℝ% → ℝ& :  any set of “smooth” functions.

• E.g., {𝑓: partially differentiable},  {𝑓: jointly differentiable},  {𝑓: continuous},  ⋯.

• P ⊢ 𝑥, 𝑦, 𝑧 is 𝜙-smooth in 𝑦, 𝑧
𝑓 :  ℝ2 ➝ ℝ3 ∈ 𝜙 for any 𝑥" ∈ ℝ.
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𝑥"
𝑦!
𝑧!

⟼
𝑥!
𝑦!
𝑧!

⟦P⟧

⟺



Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*
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Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .
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Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .
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Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .

𝑠';'! 𝑉 ≜ 𝑠' 𝑑'! 𝑉 ∩ 𝑑' 𝑠'! 𝑉 , ,.
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Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .

𝑠';'! 𝑉 ≜ 𝑠' 𝑑'! 𝑉 ∩ 𝑑' 𝑠'! 𝑉 , ,.
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𝑢 ∈

Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .

𝑠';'! 𝑉 ≜ 𝑠' 𝑑'! 𝑉 ∩ 𝑑' 𝑠'! 𝑉 , ,.
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Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .

𝑠';'! 𝑉 ≜ 𝑠' 𝑑'! 𝑉 ∩ 𝑑' 𝑠'! 𝑉 , ,.
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Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .

𝑠';'! 𝑉 ≜ 𝑠' 𝑑'! 𝑉 ∩ 𝑑' 𝑠'! 𝑉 , ,.
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𝑢 ∈

Our Approach: Smoothness Analysis

𝑑', 𝑠' ∶ 2()* → 2()*

• Invariants: P ⊢ 𝑉 is dependent at most on 𝑑' 𝑉 .

P ⊢ 𝑉 is 𝜙-smooth in 𝑠' 𝑉 .

• Rules: 𝑑';'! 𝑉 ≜ 𝑑' 𝑑'! 𝑉 .

𝑠';'! 𝑉 ≜ 𝑠' 𝑑'! 𝑉 ∩ 𝑑' 𝑠'! 𝑉 , ,.
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Var → 2()*

P : first-order, imperative language
(+ probabilistic prog. constructs)

More details are in the paper.



Our Approach: Soundness

Theorem Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• ⋯ ∀𝑓 = proj"→$: ℝ" → ℝ$. 𝑓 ∈ 𝜙.
• ⋯ ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ" → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑓, 𝑔 ∈ 𝜙.
• ⋯
• ⋯
• ⋯
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Our Approach: Soundness

Theorem Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• Composition: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ$ → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑔 ∘ 𝑓 ∈ 𝜙.
• Pairing: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ" → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑓, 𝑔 ∈ 𝜙.
• ⋯
• ⋯
• ⋯
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Our Approach: Soundness

Theorem Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• Composition: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ$ → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑔 ∘ 𝑓 ∈ 𝜙.
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• ⋯
• ⋯
• ⋯
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Theorem Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• Composition: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ$ → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑔 ∘ 𝑓 ∈ 𝜙.
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Our Approach: Soundness

Theorem Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• Composition: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ$ → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑔 ∘ 𝑓 ∈ 𝜙.
• Pairing: ∀𝑓:ℝ" → ℝ$, 𝑔: ℝ" → ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑓, 𝑔 ∈ 𝜙.
• ⋯
• ⋯
• ⋯
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Variational Inference

• Problem:  Given probability density functions 𝑝 𝑧, 𝑥 and 𝑞- 𝑧 ,

minimize     ℒ 𝜃 ≜ 𝔼."(0) log
." 0
2 0,4

over 𝜃 ∈ ℝ%.

• Typical approach:  Apply a gradient descent algorithm.

𝜃56# ≔ 𝜃5 − 𝜂 ⋅ ∇-ℒ 𝜃5 .
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Variational Inference

• Problem:  Given probability density functions 𝑝 𝑧, 𝑥 and 𝑞- 𝑧 ,

minimize     ℒ 𝜃 ≜ 𝔼."(0) log
." 0
2 0,4

over 𝜃 ∈ ℝ%.

• Typical approach:  Apply a gradient descent algorithm.

𝜃56# ≔ 𝜃5 − 𝜂 ⋅ ∇-ℒ 𝜃5 .
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Gradient Estimators

• Basic estimator (called score estimator):

∇-ℒ 𝜃 ≈ ⋯ log ." 0
2 0,4 × ∇- log 𝑞- 𝑧 for  𝑧 ∼ 𝑞- − .

Requirements:  𝑞- 𝑧 is differentiable in 𝜃, ⋯.

• “Optimized” estimator (called pathwise gradient estimator):

∇-ℒ 𝜃 ≈ ⋯∇- log ." 5" 7
2 5" 7 ,4 for  𝑧 ∼ 𝑟 − .

Requirements:  𝑞- 𝑧 and 𝑝 𝑧, 𝑥 are differentiable in 𝜃 and 𝑧 = 𝑧#, … , 𝑧& , ⋯.
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Gradient Estimators
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In practice, we apply optimized estimator selectively to some of 𝑧#, ⋯ , 𝑧&.
To do so soundly, we need to know differentiable parts of 𝑞- 𝑧 and 𝑝 𝑧, 𝑥 . 
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In practice, we apply optimized estimator selectively to some of 𝑧#, ⋯ , 𝑧&.
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expressed by programs

Part 1 is used here.



Example in Pyro LoC
Our optimizer Pyro’s default optimizer
# rv (Sound) # rv (Sound) # rv (Unsound)

Splitting normal 16 1 1 1
⋯ (7 examples omitted) ⋯ ⋯ ⋯ ⋯
Deep exponential family 105 6 6 0
Deep Markov model 112 1 1 0
Hidden Markov model 137 2 2 0
Single-cell annotation 147 3 3 0
Attend-infer-repeat 174 1 1 1
Conditional VAE 205 1 1 0

Evaluation Results
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• Ours checks req’s using smoothness analysis.
• Pyro does not check req’s, so it can be unsound.
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PL for variational inference
(with neural nets, ⋯)

# of “optimized” random var’s

Loss
(ℒ) 

Iterations

Pyro’s default optimizer

Our optimizer

due to div-by-0

due to branching



High-Level Messages

• It is subtle to do smoothness analysis properly (automatically, soundly, precisely enough).

One reason: Make assumptions on target smoothness, which are easily violated.

• There are some PL research opportunities for ML (which are less explored).
This work: Static analysis for automatic planning of inference algorithms.
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Thanks for your attention!





Our Approach: Soundness

Theorem Our 𝜙-smoothness analysis is sound if 𝜙 satisfies five assumptions:

• Strictness: ∀𝑓 = 𝜆𝑥. ⊥ ∶ ℝ" ⇀ ℝ$. 𝑓 ∈ 𝜙.
• Projection: ∀𝑓 = proj"→$ ∶ ℝ" ⇀ ℝ$. 𝑓 ∈ 𝜙.
• Restriction: ∀𝑓:ℝ" ⇀ ℝ$, 𝑥 ∈ ℝ& 𝑘 ≤ 𝑛 . 𝑓 ∈ 𝜙 ⟹ 𝑓(𝑥,−) ∈ 𝜙.
• Composition: ∀𝑓:ℝ" ⇀ ℝ$, 𝑔: ℝ$ ⇀ ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑔 ∘ 𝑓 ∈ 𝜙.
• Pairing: ∀𝑓:ℝ" ⇀ ℝ$, 𝑔: ℝ" ⇀ ℝ% . 𝑓, 𝑔 ∈ 𝜙 ⟹ 𝑓, 𝑔 ∈ 𝜙.
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Evaluation Results
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