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“Continuous” Computations

Continuous values Operations on them
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Scientific computing Machine learning Computer graphics

⋯



Theory and Practice

Continuous values Operations on them

Real numbers (ℝ) Exact operations (+, ×, ...)
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Theory and Practice

Continuous values Operations on them

Real numbers (ℝ) Exact operations (+, ×, ...)

Floating-point numbers (𝔽) Floating-point operations (+𝔽, ×𝔽, ...) 
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Theory

Practice

e.g., 64-bit double-precision floats

significand

1 01111111111  1100⋯00 (2)

= −1 ! ( 2!"#$%!"#$ ( 1.110⋯00 #



Discrepancy

Continuous values Operations on them

Real numbers (ℝ) Exact operations (+, ×, ...)

Floating-point numbers (𝔽) Floating-point operations (+𝔽, ×𝔽, ...) 
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Discrepancy

Continuous values Operations on them

Real numbers (ℝ) Exact operations (+, ×, ...)

Floating-point numbers (𝔽) Floating-point operations (+𝔽, ×𝔽, ...) 

• Discrepancy between the theory and practice of “continuous” computations.

• Can we better understand/characterize this discrepancy arising in real-world systems?
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My Work
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• Can we better understand/characterize this discrepancy arising in real-world systems?
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Programs that implement math.h. Correctness:  [PLDI’16], [POPL’18].

Programs that train ML models. Acceleration: [Submitted].

Programs that compute derivatives. Correctness:  [ICML’23].
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Programs that implement math.h. Correctness:  [PLDI’16], [POPL’18].
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Programs that implement math.h. Correctness:  [PLDI’16], [POPL’18].

Probabilistic / differentiable programming. Correctness:  [NeurIPS’18/20], [POPL’20/23].

Programs that train ML models. Acceleration: [Submitted].

Programs that compute derivatives. Correctness:  [ICML’23].



math.h Implementations
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math.h implementation 𝑷

<log>
...
subsd %xmm5, %xmm1
mulpd %xmm0, %xmm5
...
psllq $0xc,  %xmm1
pshufd $0xe4, %xmm5, %xmm6
...

log 𝑥
mathematical
specification 𝒇

𝑿 = 0,2!"#$

input interval 𝑿



math.h Implementations
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math.h implementation 𝑷

<log>
...
subsd %xmm5, %xmm1
mulpd %xmm0, %xmm5
...
psllq $0xc,  %xmm1
pshufd $0xe4, %xmm5, %xmm6
...

∃ precision losslog 𝑥
mathematical
specification 𝒇

infinite # bits fixed # bits

𝑿 = 0,2!"#$

input interval 𝑿



Problem

• Can we find a tight bound on the maximum precision loss automatically?
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Problem

• Can we find a tight bound on the maximum precision loss automatically?
• Goal:  Find a small Θ > 0 in an automatic way such that

err 𝒇 𝑥 , 𝑷 𝑥 ≤ Θ for all 𝑥 ∈ 𝑿.
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Two Challenges
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(1)  𝑷 often mixes floating-point and bit-level operations. [PLDI’16]
(2)  𝑷 is often claimed to have a very small precision loss. [POPL’18]
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Two Challenges

• log has precision loss of < 1 ulp ⟺ for any 𝑥 ∈ 𝑿,

• 0.5 ulp is the best we can achieve (by definition).
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(1)  𝑷 often mixes floating-point and bit-level operations. [PLDI’16]
(2)  𝑷 is often claimed to have a very small precision loss. [POPL’18]

…0 1…
log 𝑥

log(𝑥)

e.g., < 1 ulp



Two Challenges
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(1)  𝑷 often mixes floating-point and bit-level operations. [PLDI’16]
(2)  𝑷 is often claimed to have a very small precision loss. [POPL’18]

Prior work on the problem [FM’15, POPL’14, FMICS’09, PLDI’03, FMCAD’00, …]:

• requires considerable manual efforts; or

• cannot handle general mixed codes and prove small error bounds.



Two Challenges

19

(1)  𝑷 often mixes floating-point and bit-level operations. [PLDI’16]
(2)  𝑷 is often claimed to have a very small precision loss. [POPL’18]

Prior work on the problem [FM’15, POPL’14, FMICS’09, PLDI’03, FMCAD’00, …]:

• requires considerable manual efforts; or

• cannot handle general mixed codes and prove small error bounds.



Bit-Level Operations

• Example:  Given 𝑛 (in int), compute 2, (in double).

• Naïve solution: int_to_double(1 << n). Slow, correct for 𝑛 ∈ 0, 31 .
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21



Bit-Level Operations

• Example:  Given 𝑛 (in int), compute 2, (in double).

• Naïve solution: int_to_double(1 << n). Slow, correct for 𝑛 ∈ 0, 31 .

• Better solution: (n + 1023) << 52. Fast, correct for 𝑛 ∈ −1022, 1023 . 

• Such operations are often used in highly optimized implementations of math.h.
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It is difficult to reason about such “mixed codes”,
which intermix bit-level and floating-point operations.



Bit-Level Operations

𝑋
−1 1

𝑃(𝑥)
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vmulpd C2,    ...
...
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≈ smooth

discrete



Our Approach
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Our Approach
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partial evaluation
of bit-level operations
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…

≈ smooth

discrete



Our Approach

𝐴!,'(𝑥)

…

𝐴%,'(𝑥)
𝐴#,'(𝑥)

𝑋
−1 1

𝑃(𝑥)

...
vpslld $20,   ...
vpshufd $114,  ...
vmulpd C1,    ...
vmulpd C2,    ...
...

...
vpslld $20,   ...
vpshufd $114,  ...
vmulpd C1,    ...
vmulpd C2,    ...
... ...

vpslld $20,   ...
vpshufd $114,  ...
vmulpd C1,    ...
vmulpd C2,    ...
...

...

1
3

𝑛
2𝑛 + 1

26

only
floating-point

operations partial evaluation
of bit-level operations

𝐼! 𝐼# 𝐼%
…

≈ smooth

discrete

abstractions



Our Approach
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only
floating-point

operations
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…
…
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Evaluation Results
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Evaluation Results

29input

error
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⋮

Our error bounds [PLDI’16]
Claimed error bounds
Actual errors (between intervals)

sin logexpopt

Intel’s implementation of math.hOptimized implementation



Summary of Contributions [PLDI’16]

• We propose the first systematic, automatic method for verifying mixed codes.

• Our method is based on abstraction, analytic optimization, and testing.
Key: Split the input range into sub-intervals so that bit-level op’s can be partially evaluated.

• We apply our method to real-world binaries for math.h and prove their formal error bonds.
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Two Challenges
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math.h implementation 𝑷

<log>
...
subsd %xmm5, %xmm1
mulpd %xmm0, %xmm5
...
psllq $0xc,  %xmm1
pshufd $0xe4, %xmm5, %xmm6
...

log 𝑥
mathematical
specification 𝒇

(1)  𝑷 often mixes floating-point and bit-level operations. [PLDI’16]
(2)  𝑷 is often claimed to have a very small precision loss. [POPL’18]

e.g., < 1 ulp



Exactness Properties

• Floating-point operations are often inexact.

𝑎 ×𝔽 2, ≠ 𝑎 × 2,

𝑎 −𝔽 𝑏 ≠ 𝑎 − 𝑏
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Exactness Properties

• Floating-point operations are often inexact, but sometimes exact.

𝑎 ×𝔽 2, = 𝑎 × 2, if 𝑎 × 2, ≥ 2-./00. [Folklore]

𝑎 −𝔽 𝑏 = 𝑎 − 𝑏 if 𝑏/2 ≤ 𝑎 ≤ 2𝑏. [Sterbenz, 1973]
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Exactness Properties

• Floating-point operations are often inexact, but sometimes exact.

𝑎 ×𝔽 2, = 𝑎 × 2, if 𝑎 × 2, ≥ 2-./00. [Folklore]

𝑎 −𝔽 𝑏 = 𝑎 − 𝑏 if 𝑏/2 ≤ 𝑎 ≤ 2𝑏. [Sterbenz, 1973]

[⋯] if            [⋯]

• Such properties are implicitly used in highly accurate implementations of math.h.
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Standard error analysis techniques ignore these exactness properties.



Standard error analysis techniques ignore these exactness properties.

Loose Error Bounds
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This sometimes results in
too overapproximate abstractions.



Loose Error Bounds
•
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−𝜋
𝜋

This sometimes results in
too overapproximate abstractions.

input

Intel’s implementation of math.h
10!%
⋮ log

Our error bounds [PLDI’16]
1 ulp

error
(ulp)

𝑃(𝑥)

⇒



Our Approach
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𝜋

𝑃(𝑥)

Construct tighter abstractions by
automatically applying exactness results.



Our Approach
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−𝜋
𝜋

𝑃(𝑥)

Check preconditions of exactness results.

Example: Can we apply “𝑒 𝑥 −𝔽 𝑒* 𝑥 = 𝑒 𝑥 − 𝑒* 𝑥 ”?

• Need:  ⁄+ , 𝑒 𝑥 ≤ 𝑒* 𝑥 ≤ 2𝑒 𝑥 for all 𝑥 ∈ 𝐼.

• Check:  min
-∈/

𝑒* 𝑥 − ⁄+ , 𝑒 𝑥 ≥ 0
∧ max

-∈/
𝑒* 𝑥 − 2𝑒 𝑥 ≤ 0.

Construct tighter abstractions by
automatically applying exactness results.



Our Approach
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−𝜋
𝜋

𝑃(𝑥)
Solve optimization problems.

Check preconditions of exactness results.

Example: Can we apply “𝑒 𝑥 −𝔽 𝑒* 𝑥 = 𝑒 𝑥 − 𝑒* 𝑥 ”?

• Need:  ⁄+ , 𝑒 𝑥 ≤ 𝑒* 𝑥 ≤ 2𝑒 𝑥 for all 𝑥 ∈ 𝐼.

• Check:  min
-∈/

𝑒* 𝑥 − ⁄+ , 𝑒 𝑥 ≥ 0
∧ max

-∈/
𝑒* 𝑥 − 2𝑒 𝑥 ≤ 0.

Construct tighter abstractions by
automatically applying exactness results.



ulp error
(log scale)

input

sin

input (log scale)

log

0.583 ulps
0.530 ulps

Evaluation Results
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Intel’s implementation of math.h

error bounds from [PLDI’16]
error bounds from [POPL’18]
1 ulp
actual ulp errors



Summary of Contributions [POPL’18]

• We propose the first automatic method for verifying math.h implementations.

• Our method is based on a reduction of this verification problem to optimization problems.
Key: Apply exactness results, after checking their preconditions by solving opt’n problems.

• We apply our method to Intel’s math.h implementations and prove their correctness.

41



Summary of Contributions [POPL’18]

• We propose the first automatic method for verifying math.h implementations.

• Our method is based on a reduction of this verification problem to optimization problems.
Key: Apply exactness results, after checking their preconditions by solving opt’n problems.

• We apply our method to Intel’s math.h implementations and prove their correctness. 
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⋯ ⋯log 𝑥𝑥



Programs that implement math.h. Correctness:  [PLDI’16], [POPL’18].

Probabilistic / differentiable programming. Correctness:  [NeurIPS’18/20], [POPL’20/23].

Programs that train ML models. Acceleration: [Submitted].

Programs that compute derivatives. Correctness:  [ICML’23].

Agenda
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Training in Machine Learning

44
Source: “Compute trends across three eras of machine learning”, IJCNN’22.

How to accelerate training computation while maintaining training quality?



Low-Precision Training

• Standard training:  Use FP32 to represent tensors.
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Low-Precision Training

• Standard training:  Use FP32 to represent tensors.
• Low-precision training:  Use <FP32 to represent tensors.
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Low-Precision Training

• Standard training:  Use FP32 to represent tensors.
• Low-precision training:  Use <FP32 to represent tensors.

• Consider and apply two precision levels: high and low.
• We call a mapping from tensors to {high, low} a “precision assignment”.
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Low-Precision Training

• Standard training:  Use FP32 to represent tensors.
• Low-precision training:  Use <FP32 to represent tensors.

• Consider and apply two precision levels: high and low.
• We call a mapping from tensors to {high, low} a “precision assignment”.
• Example: operator-based assignment 𝜋op.
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Low-Precision Training

• Standard training:  Use FP32 to represent tensors.
• Low-precision training:  Use <FP32 to represent tensors.

• Consider and apply two precision levels: high and low.
• We call a mapping from tensors to {high, low} a “precision assignment”.
• Example: operator-based assignment 𝜋op, uniform assignment 𝜋unif.
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L
…Conv MaxPool Conv

dy4 dL
dConv dMaxPool dConv …

w1
w3

y1 y2 y3

dy1 dy2 dy3

y4

dw1 dw3

forward pass

backward pass

FP8 (low)𝜋unif =



• For a given set of models, prior work uses very few precision assignments (e.g., 𝜋unif or 𝜋op).

Limitations
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most often just one



• For a given set of models, prior work uses very few precision assignments (e.g., 𝜋unif or 𝜋op).

• But for other models, the chosen 𝜋
• may result in noticeably worse accuracy (and divergence of training).
• may admit more efficient assignments that achieve similar accuracy.

Limitations
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• For a given set of models, prior work uses very few precision assignments (e.g., 𝜋unif or 𝜋op).

• But for other models, the chosen 𝜋
• may result in noticeably worse accuracy (and divergence of training).
• may admit more efficient assignments that achieve similar accuracy.

Limitations
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MobileNet-v2 (CIFAR-100)

32-bit
8-bit (𝜋unif)
8-bit (𝜋op)

Precision assignment:

1.00 (original)
0.50
0.25
0.10

Width multiplier:

training diverges with 𝜋unif



Memory-Accuracy Tradeoff Problem

• Input:  a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .
• Goal:  Find a precision assignment 𝜋 for 𝑀 using only 𝐹𝑃01, 𝐹𝑃23 such that

acc4(𝜋) is maximized subject to ratio23 𝜋 ≥ 𝑟.
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Memory-Accuracy Tradeoff Problem

• Input:  a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .
• Goal:  Find a precision assignment 𝜋 for 𝑀 using only 𝐹𝑃01, 𝐹𝑃23 such that

acc4 𝜋 is  maximized subject to           ratio23 𝜋 ≥ 𝑟.

54

accuracy of 𝑀 when trained with 𝜋 “low-precision ratio” of 𝜋
= ratio of 𝐹𝑃)*-tensors in 𝜋
≈ reduction in memory/time for training

E.g., ratio&' 𝜋() = 0, ratio&' 𝜋&' = 1.



Memory-Accuracy Tradeoff Problem

• Input:  a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .
• Goal:  Find a precision assignment 𝜋 for 𝑀 using only 𝐹𝑃01, 𝐹𝑃23 such that

acc4 𝜋 is  maximized           subject to           ratio23 𝜋 ≥ 𝑟.

• Find 𝜋 that maximizes training accuracy under a memory/time constraint (given by 𝑟).

55

“low-precision ratio” of 𝜋
= ratio of 𝐹𝑃)*-tensors in 𝜋
≈ reduction in memory/time for training

accuracy of 𝑀 when trained with 𝜋



Challenges

• Input:  a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .
• Goal:  Find a precision assignment 𝜋 for 𝑀 using only 𝐹𝑃01, 𝐹𝑃23 such that

acc4 𝜋 is  maximized           subject to           ratio23 𝜋 ≥ 𝑟.

• Practically,

§ There is no known analytic method for predicting acc4 𝜋 .
§ There are exponentially many candidates for 𝜋.
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Challenges

• Input:  a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .
• Goal:  Find a precision assignment 𝜋 for 𝑀 using only 𝐹𝑃01, 𝐹𝑃23 such that

acc4 𝜋 is  maximized           subject to           ratio23 𝜋 ≥ 𝑟.

• Practically,

§ There is no known analytic method for predicting acc4 𝜋 .
§ There are exponentially many candidates for 𝜋.

• Theoretically, we prove:

57

Theorem The memory-accuracy tradeoff problem is NP-hard.



Our Method

• Input:  a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .

• Our method for the tradeoff problem:
• Initialize 𝜋 to the all-𝐹𝑃01 assignment.
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Our Method

• Input:  a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .

• Our method for the tradeoff problem:
• Initialize 𝜋 to the all-𝐹𝑃01 assignment.
• Demote the precision of largest tensors (in size) to 𝐹𝑃23.
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• Optimal in a very simplified setting.
• Empirically better than other orders.



Our Method
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• Observe: Training with this 𝜋 sometimes diverges, due to too many overflows. 
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• Input:  a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .

• Our method for the tradeoff problem:
• Initialize 𝜋 to the all-𝐹𝑃01 assignment.
• Demote the precision of largest tensors (in size) to 𝐹𝑃23.
• Repeat it while ratio23 𝜋 ≥ 𝑟. Return the final 𝜋.

• The above method places no explicit constraint on acc4 𝜋 .
• Observe: Training with this 𝜋 sometimes diverges, due to too many overflows. 

• Our method for handling overflows:
• Promote the precision of tensors that overflow “too much” to 𝐹𝑃01. 
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during training

before training



Evaluation Results
• Comparison with existing precision assignments.
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ImageNet, ShuffleNet-v2

†: width multiplier of 0.25 

better



Summary of Contributions [Submitted]

• We formally introduce the memory-accuracy tradeoff problem and prove its NP-hardness.

• We propose:
(i) a novel precision assignment method as a heuristic solution to the tradeoff problem;

(ii) a novel technique that can handle too many overflows arising in training.

• We demonstrate that our techniques outperform existing precision assignments.
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Agenda
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Programs that implement math.h. Correctness:  [PLDI’16], [POPL’18].

Probabilistic / differentiable programming. Correctness:  [NeurIPS’18/20], [POPL’20/23].

Programs that train ML models. Acceleration: [Submitted].

Programs that compute derivatives. Correctness:  [ICML’23].



Autodiff

• Autodiff (AD): a class of algorithms that compute

𝒟𝑃 𝑥 ∈ ℝ5×7 (when it exists)

for a given program 𝑃 ∶ ℝ7 → ℝ5 and input 𝑥 ∈ ℝ7, by applying the chain rule.

• Backpropagation algorithm: an instance of AD, widely used in machine learning.
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Correctness of AD

• If 𝑃 consists of differentiable functions and language constructs, then

∃ 𝒟𝑃 𝑥 ∧ 𝒟𝑃 𝑥 = 𝒟89𝑃 𝑥 for all 𝑥 ∈ ℝ7.
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matmul, sequential composition, …



Correctness of AD
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∃ 𝒟𝑃 𝑥 ∧ 𝒟𝑃 𝑥 = 𝒟89𝑃 𝑥 for all 𝑥 ∈ ℝ7.

• If 𝑃 uses non-differentiable functions or language constructs, then

∄ 𝒟𝑃 𝑥 ∨ 𝒟𝑃 𝑥 ≠ 𝒟89𝑃 𝑥 for some 𝑥 ∈ ℝ7.
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ReLU, if-else statement, …

E.g.,  for 𝑃 𝑥 = ReLU 𝑥 − ReLU −𝑥 , 

𝒟𝑃 0 = 1 but  𝒟*+𝑃 0 = 0.

𝑃 𝑥

𝑥
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include ReLU, if-else statement, …

can be nonempty
has measure zero   (i.e., negligible)



Limitations

• If 𝑃 consists of differentiable functions and language constructs, then

∃ 𝒟𝑃 𝑥 ∧ 𝒟89𝑃 𝑥 = 𝒟𝑃 𝑥 for all 𝑥 ∈ ℝ7.

• If 𝑃 uses non-differentiable functions or language constructs, then

∄ 𝒟𝑃 𝑥 ∨ 𝒟𝑃 𝑥 ≠ 𝒟89𝑃 𝑥 for some 𝑥 ∈ ℝ7.

• That is,

73

𝑥 ∈ ℝ,

∄ 𝒟𝑃 𝑥 ∃ 𝒟𝑃 𝑥

𝒟*+𝑃 𝑥 ≠ 𝒟𝑃 𝑥

“piecewise analytic”

My previous result [NeurIPS’20]

(e.g., ReLU, if-else statement)

“negligible”
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(2)  The set of all floats 𝔽 is finite, so has measure zero in ℝ.
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𝑥 ∈ ℝ,

∄ 𝒟𝑃 𝑥 ∃ 𝒟𝑃 𝑥

𝒟*+𝑃 𝑥 ≠ 𝒟𝑃 𝑥

“piecewise analytic”
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(e.g., ReLU, if-else statement)

“negligible”Hence, AD can be incorrect for all 𝑥 ∈ 𝔽,, and this is indeed possible.

𝔽<

can be nonempty
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(1)  In practice, inputs to programs are not reals, but often floats.
(2)  The set of all floats 𝔽 is finite, so has measure zero in ℝ.



Problem

• Study the correctness of AD when inputs are floats (not reals).

• We focus on programs 𝑃 ∶ ℝ7 → ℝ5 that represent neural networks:

𝑤 ⟼ 𝑃(𝑤).
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Problem

• Study the correctness of AD when inputs are floats (not reals).

• We focus on programs 𝑃 ∶ ℝ7 → ℝ5 that represent neural networks:

𝑤 ⟼ 𝑃(𝑤).

• Goal: Bound the size of the incorrect set (𝑆1:;) and non-differentiable set (𝑆:<=) of 𝑃.
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𝔽, ⊇

∄ 𝒟𝑃 𝑤 ∃ 𝒟𝑃 𝑤

𝒟89𝑃 𝑤 ≠ 𝒟𝑃 𝑤

𝑆:<= 𝑆1:;



Our Results

• Consider a neural network 𝑃 with bias parameters:
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e.g., Conv

𝑤!

𝑥#𝑥!
ReLU(𝑥#)

𝑤$

𝑥$
𝑓$ 𝑥$, 𝑤$ + 𝑤- 𝑥-

ReLU(𝑥-) ⋯
𝑓! 𝑥!, 𝑤! + 𝑤#

𝑤# 𝑤-



Our Results

• Consider a neural network 𝑃 with bias parameters:

• Theorem 1 The incorrect set is always empty:

𝑆1:; = 0.
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∃ 𝒟𝑃 𝑤

𝒟*+𝑃 𝑤 ≠ 𝒟𝑃 𝑤

𝑆./0 𝑆).1

𝑤!

𝑥#

𝑤#

𝑥!
ReLU(𝑥#)

𝑤$ 𝑤-

𝑥$
𝑓$ 𝑥$, 𝑤$ + 𝑤- 𝑥-

ReLU(𝑥-) ⋯
𝑓! 𝑥!, 𝑤! + 𝑤#

somewhat surprising, given that
there were no such type of results before



Our Results

• Consider a neural network 𝑃 with bias parameters:

• Theorem 2 The density of the non-differentiable set is upper-bounded by

𝑆:<=
𝔽7 ≤

# ReLUs in 𝑃
𝔽 .

• Moreover, there exists some class of 𝑃 such that

𝑆:<=
𝔽7 ≥

1
2 ⋅
# ReLUs in 𝑃

𝔽 .
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2$# for 32-bit floats

∄ 𝒟𝑃 𝑤

𝑆./0 𝑆).1
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Our Results

• Consider a neural network 𝑃 with bias parameters:

• Theorem 2 The density of the non-differentiable set is upper-bounded by

𝑆:<=
𝔽7 ≤

# ReLUs in 𝑃
𝔽 .

• Theorem 3 For many 𝑃, the above density is lower-bounded by

𝑆:<=
𝔽7 ≥

1
2 ⋅
# ReLUs in 𝑃

𝔽 .
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𝑤!

𝑥#

𝑤#

𝑥!
ReLU(𝑥#)

𝑤$ 𝑤-

𝑥$
𝑓$ 𝑥$, 𝑤$ + 𝑤- 𝑥-

ReLU(𝑥-) ⋯
𝑓! 𝑥!, 𝑤! + 𝑤#

∄ 𝒟𝑃 𝑤

𝑆./0 𝑆).1



Our Results

• Consider a neural network 𝑃 with bias parameters:

• Theorem 4 Over the non-differentiable set, AD computes a generalized derivative:

𝒟89𝑃 𝑤 ∈ 𝜕𝑃(𝑤) for all 𝑤 ∈ 𝑆:<=.

{
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Clarke subdifferential of 𝑃
≜ conv lim

2→4
𝒟𝑃 𝑤2 ∶ 𝑤2 → 𝑤
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𝑤#

𝑥!
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ReLU(𝑥-) ⋯
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Our Results

• Consider a neural network 𝑃 with bias parameters:

• Theorem 3 On the non-differentiable set, AD computes a generalized derivative:

𝒟89𝑃 𝑤 ∈ 𝜕𝑃(𝑤) for all 𝑤 ∈ 𝑆:<=.

{
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∄ 𝒟𝑃 𝑤 ∃𝒟𝑃 𝑤

𝒟*+𝑃 𝑤 ≠ 𝒟𝑃 𝑤

𝑆./0 𝑆).1Clarke subdifferential of 𝑃,
i.e., conv lim

2→4
𝒟𝑃 𝑤2 ∶ 𝑤2 → 𝑤

Extend previous results to more general neural networks.

Main point: Bounds become larger without bias parameters.

𝑤!

𝑥#

𝑤#

𝑥!
ReLU(𝑥#)

𝑤$ 𝑤-

𝑥$
𝑓$ 𝑥$, 𝑤$ + 𝑤- 𝑥-

ReLU(𝑥-) ⋯
𝑓! 𝑥!, 𝑤! + 𝑤#

piecewise analytic func’sno bias param’s 



Summary of Contributions [ICML’23]

• We theoretically study the correctness of AD for neural networks when param’s are floats.

• We prove tight bounds on the density of the incorrect and non-differentiable sets.
We also prove what AD computes over these sets.

• Our results imply that AD for neural networks is correct on most floating-point param’s,
and it is correct more often with bias parameters.
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Summary of Contributions [ICML’23]
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⋯ ⋯𝒟"#𝑃𝑃



Continuous values Operations on them

Real numbers (ℝ) Exact operations (+, ×, ...)

Floating-point numbers (𝔽) Floating-point operations (+𝔽, ×𝔽, ...) 

⟹ Have widened our understanding of floating point in real-world systems.

Agenda
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Programs that implement math.h. Correctness:  [PLDI’16], [POPL’18].

Probabilistic / differentiable programming. Correctness:  [NeurIPS’18/20], [POPL’20/23].

Programs that train ML models. Acceleration: [Submitted].

Programs that compute derivatives. Correctness:  [ICML’23].



Questions?
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