Reasoning about Floating Point in Real-World Systems

Wonyeol Lee (Stanford CS)

PhD Oral Exam (05/15/2023)

"Continuous" Computations

Continuous values

6, 2.5,
$$\frac{3}{7}$$
, $\sqrt{2}$, 0.9 π , ...

Operations on them

$$6 + 2.5, \frac{3}{7} \times \sqrt{2}, \cos(0.9\pi), \dots$$

"Continuous" Computations

Continuous values

6, 2.5,
$$\frac{3}{7}$$
, $\sqrt{2}$, 0.9 π , ...

Operations on them

$$6 + 2.5, \frac{3}{7} \times \sqrt{2}, \cos(0.9\pi), \dots$$

Scientific computing

Machine learning

Computer graphics

Theory and Practice

	Continuous values	values Operations on them	
Theory	Real numbers (\mathbb{R})	Exact operations (+, ×,)	

Theory and Practice

Discrepancy

Discrepancy

- Discrepancy between the theory and practice of "continuous" computations.
- Can we better understand/characterize this discrepancy arising in real-world systems?

My Work

Programs that implement math.h.Correctness: [PLDI'16], [POPL'18].Programs that train ML models.Acceleration: [Submitted].Programs that compute derivatives.Correctness: [ICML'23].

- Discrepancy between the theory and practice of "continuous" computations.
- Can we better understand/characterize this discrepancy arising in real-world systems?

My Work

- done during my 3-year leave from Stanford

Programs that implement math.h.Correctness: [PLDI'16], [POPL'18].Probabilistic / differentiable programming.Correctness: [NeurIPS'18/20], [POPL'20/23].Programs that train ML models.Acceleration: [Submitted].Programs that compute derivatives.Correctness: [ICML'23].

- Discrepancy between the theory and practice of "continuous" computations.
- Can we better understand/characterize this discrepancy arising in real-world systems?

My Work

Programs that implement math.h.

Programs that train ML models.

Programs that compute derivatives. Correctness: [ICML'23].

Correctness: [PLDI'16], [POPL'18].

Probabilistic / differentiable programming. Correctness: [NeurIPS'18/20], [POPL'20/23].

Acceleration: [Submitted].

math.h Implementations

math.h implementation **P**

math.h Implementations

math.h implementation P

Problem

math.h implementation ${\it P}$

• Can we find a tight bound on the maximum precision loss automatically?

Problem

math.h implementation P

- Can we find a tight bound on the maximum precision loss automatically?
- Goal: Find a small $\Theta > 0$ in an automatic way such that

 $\operatorname{err}(\boldsymbol{f}(x), \boldsymbol{P}(x)) \leq \Theta \quad \text{for all } x \in \boldsymbol{X}.$

(1) *P* often mixes floating-point and bit-level operations. [PLDI'16]
(2) *P* is often claimed to have a very small precision loss. [POPL'18]
e.g., < 1 ulp

• **log** has precision loss of < 1 ulp \Leftrightarrow for any $x \in X$,

• 0.5 ulp is the best we can achieve (by definition).

Prior work on the problem [FM'15, POPL'14, FMICS'09, PLDI'03, FMCAD'00, ...]:

- requires considerable manual efforts; or
- cannot handle general mixed codes and prove small error bounds.

(1) *P* often mixes floating-point and bit-level operations. [PLDI'16]
(2) *P* is often claimed to have a very small precision loss. [POPL'18]

Prior work on the problem [FM'15, POPL'14, FMICS'09, PLDI'03, FMCAD'00, ...]:

- requires considerable manual efforts; or
- cannot handle general mixed codes and prove small error bounds.

(1) *P* often mixes floating-point and bit-level operations. [PLDI'16]
(2) *P* is often claimed to have a very small precision loss. [POPL'18]

- Example: Given n (in int), compute 2^n (in double).
 - Naïve solution: int_to_double(1 << n). Slow, correct for $n \in [0, 31]$.

- Example: Given n (in int), compute 2^n (in double).
 - Naïve solution: int_to_double(1 << n). Slow, correct for $n \in [0, 31]$.
 - Better solution: (n + 1023) << 52.

Fast, correct for $n \in [-1022, 1023]$.

- Example: Given n (in int), compute 2^n (in double).
 - Naïve solution: int_to_double(1 << n). Slow, correct for $n \in [0, 31]$.
 - Better solution: (n + 1023) << 52. Fast, correct for $n \in [-1022, 1023]$.
- Such operations are often used in highly optimized implementations of math.h.

It is difficult to reason about such "mixed codes", which intermix bit-level and floating-point operations.

Evaluation Results

	Optimized implementation Intel's implementation of math.h			
	exp _{opt}	sin	log	
error (ulp)	10 ⁷ :			
	2.5E+06	12 25		
	2.0E+06	10 20		
	1.5E+06	8	5	
	1.0E+06	6 4)	
	5.0E+05	2		
	0.0E+00 -4.0 -2.0 0.0 2.0 4.0	0 -1.6 -0.8 0.0 0.8 1.6	0.0 1.0 2.0 3.0 4.0	

— Our error bounds [PLDI'16]

--- Claimed error bounds

• Actual errors (between intervals)

Summary of Contributions [PLDI'16]

- We propose the first systematic, automatic method for verifying mixed codes.
- Our method is based on abstraction, analytic optimization, and testing. Key: Split the input range into sub-intervals so that bit-level op's can be partially evaluated.
- We apply our method to real-world binaries for math.h and prove their formal error bonds.

math.h implementation ${\it P}$

Exactness Properties

• Floating-point operations are often inexact.

 $a \times_{\mathbb{F}} 2^n \neq a \times 2^n$ $a -_{\mathbb{F}} b \neq a - b$

Exactness Properties

• Floating-point operations are often inexact, but sometimes exact.

$$a \times_{\mathbb{F}} 2^n = a \times 2^n$$
 if $|a \times 2^n| \ge 2^{-1022}$. [Folklore]
 $a -_{\mathbb{F}} b = a - b$ if $b/2 \le a \le 2b$. [Sterbenz, 1973]

Exactness Properties

• Floating-point operations are often inexact, but sometimes exact.

$$a \times_{\mathbb{F}} 2^{n} = a \times 2^{n} \qquad \text{if } |a \times 2^{n}| \ge 2^{-1022}. \qquad \text{[Folklore]}$$
$$a -_{\mathbb{F}} b = a - b \qquad \text{if } b/2 \le a \le 2b. \qquad \text{[Sterbenz, 1973]}$$
$$\begin{array}{c} \text{if } & [\cdots] \end{array}$$

• Such properties are implicitly used in highly accurate implementations of math.h.

Standard error analysis techniques ignore these exactness properties.

Loose Error Bounds

Loose Error Bounds

Intel's implementation of math.h

Our Approach

Construct tighter abstractions by automatically applying exactness results.

Our Approach

Construct tighter abstractions by automatically applying exactness results.

Check preconditions of exactness results.

Example: Can we apply " $e(x) -_{\mathbb{F}} e'(x) = e(x) - e'(x)$ "?

• Need: $1/2 e(x) \le e'(x) \le 2e(x)$ for all $x \in I$.

Our Approach

Summary of Contributions [POPL'18]

- We propose the first automatic method for verifying math.h implementations.
- Our method is based on a reduction of this verification problem to optimization problems. Key: Apply exactness results, after checking their preconditions by solving opt'n problems.
- We apply our method to Intel's math.h implementations and prove their correctness.

Summary of Contributions [POPL'18]

- We propose the first automatic method for verifying math.h implementations.
- Our method is based on a reduction of this verification problem to optimization problems. Key: Apply exactness results, after checking their preconditions by solving opt'n problems.
- We apply our method to Intel's math.h implementations and prove their correctness.

$$x \longrightarrow \cdots \log x \cdots$$

Agenda

Programs that implement math.h.

n. Correctness: [PLDI'16], [POPL'18].

Probabilistic / differentiable programming. Correctness: [NeurIPS'18/20], [POPL'20/23].

Programs that train ML models.

Programs that compute derivatives.

Acceleration: [Submitted].

Correctness: [ICML'23].

Training in Machine Learning

How to accelerate training computation while maintaining training quality?

• Standard training: Use FP32 to represent tensors.

- Standard training: Use FP32 to represent tensors.
- Low-precision training: Use <FP32 to represent tensors.

- Standard training: Use FP32 to represent tensors.
- Low-precision training: Use <FP32 to represent tensors.
 - Consider and apply two precision levels: high and low.
 - We call a mapping from tensors to {high, low} a "precision assignment".

- Standard training: Use FP32 to represent tensors.
- Low-precision training: Use <FP32 to represent tensors.
 - Consider and apply two precision levels: high and low.
 - We call a mapping from tensors to {high, low} a "precision assignment".
 - Example: operator-based assignment π_{op} .

- Standard training: Use FP32 to represent tensors.
- Low-precision training: Use <FP32 to represent tensors.
 - Consider and apply two precision levels: high and low.
 - We call a mapping from tensors to {high, low} a "precision assignment".
 - Example: operator-based assignment π_{op} , uniform assignment π_{unif} .

Limitations

most often just one

• For a given set of models, prior work uses very few precision assignments (e.g., π_{unif} or π_{op}).

Limitations

- For a given set of models, prior work uses very few precision assignments (e.g., π_{unif} or π_{op}).
- But for other models, the chosen π
 - may result in noticeably worse accuracy (and divergence of training).
 - may admit more efficient assignments that achieve similar accuracy.

Limitations

- For a given set of models, prior work uses very few precision assignments (e.g., π_{unif} or π_{op}).
- But for other models, the chosen π
 - may result in noticeably worse accuracy (and divergence of training).
 - may admit more efficient assignments that achieve similar accuracy.

Memory-Accuracy Tradeoff Problem

- Input: a model *M*, FP formats (FP_{hi}, FP_{lo}) , and a parameter $r \in [0,1]$.
- Goal: Find a precision assignment π for M using only (FP_{hi}, FP_{lo}) such that

Memory-Accuracy Tradeoff Problem

- Input: a model *M*, FP formats (FP_{hi}, FP_{lo}) , and a parameter $r \in [0,1]$.
- Goal: Find a precision assignment π for M using only (FP_{hi}, FP_{lo}) such that

E.g., ratio_{lo}(π_{hi}) = 0, ratio_{lo}(π_{lo}) = 1.

Memory-Accuracy Tradeoff Problem

- Input: a model *M*, FP formats (FP_{hi}, FP_{lo}) , and a parameter $r \in [0,1]$.
- Goal: Find a precision assignment π for M using only (FP_{hi}, FP_{lo}) such that

• Find π that maximizes training accuracy under a memory/time constraint (given by r).

Challenges

- Input: a model *M*, FP formats (FP_{hi}, FP_{lo}) , and a parameter $r \in [0,1]$.
- Goal: Find a precision assignment π for M using only (FP_{hi}, FP_{lo}) such that

 $\operatorname{acc}_M(\pi)$ is maximized subject to $\operatorname{ratio}_{\operatorname{lo}}(\pi) \ge r$.

- Practically,
 - There is no known analytic method for predicting $acc_M(\pi)$.
 - There are exponentially many candidates for π .

Challenges

- Input: a model *M*, FP formats (FP_{hi}, FP_{lo}) , and a parameter $r \in [0,1]$.
- Goal: Find a precision assignment π for M using only (FP_{hi}, FP_{lo}) such that

 $\operatorname{acc}_M(\pi)$ is maximized subject to $\operatorname{ratio}_{\operatorname{lo}}(\pi) \ge r$.

- Practically,
 - There is no known analytic method for predicting $acc_M(\pi)$.
 - There are exponentially many candidates for π .
- Theoretically, we prove:

<u>Theorem</u> The memory-accuracy tradeoff problem is NP-hard.

- Input: a model *M*, FP formats (FP_{hi}, FP_{lo}) , and a parameter $r \in [0,1]$.
- Our method for **the tradeoff problem**:
 - Initialize π to the all- FP_{hi} assignment.

- Input: a model *M*, FP formats (FP_{hi}, FP_{lo}) , and a parameter $r \in [0,1]$.
- Our method for **the tradeoff problem**:
 - Initialize π to the all- FP_{hi} assignment.
 - Demote the precision of largest tensors (in size) to FP_{lo} .

- Input: a model *M*, FP formats (FP_{hi}, FP_{lo}) , and a parameter $r \in [0,1]$.
- Our method for the tradeoff problem:
 - Initialize π to the all- FP_{hi} assignment.
 - Demote the precision of largest tensors (in size) to FP_{lo} .
 - Repeat it while $ratio_{lo}(\pi) \ge r$. Return the final π .

- Input: a model *M*, FP formats (FP_{hi}, FP_{lo}) , and a parameter $r \in [0,1]$.
- Our method for **the tradeoff problem**:
 - Initialize π to the all- FP_{hi} assignment.
 - Demote the precision of largest tensors (in size) to FP_{lo} .
 - Repeat it while ratio_{lo}(π) $\geq r$. Return the final π .
 - *FP*_{hi} Conv MaxPool Conv • • • **y**₄ y_2 **y**₃ π dConv dMaxPool dConv ... dy_2 dy_4 dy_3 dL

- Optimal in a very simplified setting.
- Empirically better than other orders.

- Input: a model *M*, FP formats (FP_{hi}, FP_{lo}) , and a parameter $r \in [0,1]$.
- Our method for **the tradeoff problem**:
 - Initialize π to the all- FP_{hi} assignment.
 - Demote the precision of largest tensors (in size) to FP_{lo} .
 - Repeat it while ratio_{lo}(π) $\geq r$. Return the final π .
- The above method places no explicit constraint on $\operatorname{acc}_M(\pi)$.
 - Observe: Training with this π sometimes diverges, due to too many overflows.

- Input: a model *M*, FP formats (FP_{hi}, FP_{lo}) , and a parameter $r \in [0,1]$.
- Our method for **the tradeoff problem**:
 - Initialize π to the all- FP_{hi} assignment.
 - Demote the precision of largest tensors (in size) to FP_{lo} .
 - Repeat it while ratio_{lo}(π) $\geq r$. Return the final π .
- The above method places no explicit constraint on $acc_M(\pi)$.
 - Observe: Training with this π sometimes diverges, due to too many overflows.
- Our method for **handling overflows**:
 - Promote the precision of tensors that overflow "too much" to FP_{hi}. ← during training

before training

Evaluation Results

• Comparison with existing precision assignments.

Summary of Contributions [Submitted]

- We formally introduce the memory-accuracy tradeoff problem and prove its NP-hardness.
- We propose:

(i) a novel precision assignment method as a heuristic solution to the tradeoff problem;(ii) a novel technique that can handle too many overflows arising in training.

• We demonstrate that our techniques outperform existing precision assignments.

Summary of Contributions [Submitted]

- We formally introduce the memory-accuracy tradeoff problem and prove its NP-hardness.
- We propose:

(i) a novel precision assignment method as a heuristic solution to the tradeoff problem;(ii) a novel technique that can handle too many overflows arising in training.

• We demonstrate that our techniques outperform existing precision assignments.

$$NN \longrightarrow \min_{w} \mathcal{L}(NN_{w})$$

memory & time \Downarrow

Agenda

Programs that implement math.h.

Correctness: [PLDI'16], [POPL'18].

Probabilistic / differentiable programming. Correctness: [NeurIPS'18/20], [POPL'20/23].

Programs that train ML models.

Programs that compute derivatives.

Acceleration: [Submitted].

Correctness: [ICML'23].

Autodiff

• Autodiff (AD): a class of algorithms that compute

 $\mathcal{D}P(x) \in \mathbb{R}^{m \times n}$ (when it exists)

for a given program $P : \mathbb{R}^n \to \mathbb{R}^m$ and input $x \in \mathbb{R}^n$, by applying the chain rule.

• Backpropagation algorithm: an instance of AD, widely used in machine learning.

If P consists of differentiable functions and language constructs, then

$$\exists \mathcal{D}P(x) \land \mathcal{D}P(x) = \mathcal{D}^{\mathrm{AD}}P(x) \qquad \text{for all } x \in \mathbb{R}^n.$$

• If *P* consists of differentiable functions and language constructs, then

$$\exists \mathcal{D}P(x) \land \mathcal{D}P(x) = \mathcal{D}^{AD}P(x) \qquad \text{for all } x \in \mathbb{R}^n.$$

If P uses non-differentiable functions or language constructs, then

$$\nexists \mathcal{D}P(x) \quad \forall \quad \mathcal{D}P(x) \neq \mathcal{D}^{\mathrm{AD}}P(x) \qquad \text{for some } x \in \mathbb{R}^n.$$

E.g., for
$$P(x) = \operatorname{ReLU}(x) - \operatorname{ReLU}(-x)$$
,
 $\mathcal{D}P(0) = 1$ but $\mathcal{D}^{\operatorname{AD}}P(0) = 0$.

• If *P* consists of differentiable functions and language constructs, then

$$\exists \mathcal{D}P(x) \land \mathcal{D}P(x) = \mathcal{D}^{AD}P(x) \qquad \text{for all } x \in \mathbb{R}^n.$$

• If *P* uses non-differentiable functions or language constructs, then

$$\nexists \mathcal{D}P(x) \quad \forall \quad \mathcal{D}P(x) \neq \mathcal{D}^{\mathrm{AD}}P(x) \qquad \text{for some } x \in \mathbb{R}^n.$$

• If *P* consists of differentiable functions and language constructs, then

$$\exists DP(x) \land DP(x) = D^{AD}P(x) \quad \text{for all } x \in \mathbb{R}^n.$$
My previous result [NeurIPS'20]
• If P uses non-differentiable functions or language constructs, then
$$\exists DP(x) \lor DP(x) \neq D^{AD}P(x) \quad \text{for some } x \in \mathbb{R}^n.$$
That is,
$$\exists DP(x) \quad \forall \quad DP(x) \neq D^{AD}P(x) \quad \text{for some } x \in \mathbb{R}^n.$$

Limitations

Limitations

Problem

- Study the correctness of AD when inputs are floats (not reals).
- We focus on programs $P : \mathbb{R}^n \to \mathbb{R}^m$ that represent neural networks:

$$w \mapsto P(w).$$

Problem

- Study the correctness of AD when inputs are floats (not reals).
- We focus on programs $P : \mathbb{R}^n \to \mathbb{R}^m$ that represent neural networks:

$$w \mapsto P(w).$$

• Goal: Bound the size of the incorrect set (S_{inc}) and non-differentiable set (S_{ndf}) of P.

• Consider a neural network *P* with bias parameters:

• Consider a neural network *P* with bias parameters:

$$w_1 w_2$$

$$x_1 \qquad f_1(x_1, w_1) + w_2$$

$$x_2 \qquad \text{ReLU}(x_2)$$

$$w_3 w_4$$

$$f_3(x_3, w_3) + w_4$$

$$x_4 \qquad \text{ReLU}(x_4)$$

$$\dots$$

• <u>Theorem 1</u> The incorrect set is always empty:

somewhat surprising, given that there were no such type of results before

• Consider a neural network *P* with bias parameters:

$$w_1 w_2 \xrightarrow{x_1} f_1(x_1, w_1) + w_2 \xrightarrow{x_2} \text{ReLU}(x_2) \xrightarrow{w_3 w_4} f_3(x_3, w_3) + w_4 \xrightarrow{\text{ReLU}(x_4)} \cdots$$

• <u>Theorem 2</u> The density of the non-differentiable set is upper-bounded by

• Consider a neural network *P* with bias parameters:

$$\begin{array}{c} w_1 \\ w_2 \\ x_1 \\ \end{array} \\ f_1(x_1, w_1) + w_2 \\ x_2 \\ \end{array} \\ \hline \\ x_2 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ x_3 \\ \end{array} \\ \hline \\ x_3 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ x_3 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ x_3 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ x_3 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ x_3 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ x_3 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ x_4 \\ \end{array} \\ \begin{array}{c} ReLU(x_4) \\ x_4 \\ \end{array} \\ \begin{array}{c} ReLU(x_4) \\ w_4 \\ \end{array} \\ \begin{array}{c} ReLU(x_4) \\ w_4 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ w_4 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ w_4 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ w_4 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ w_4 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ w_4 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ w_4 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ w_4 \\ w_4 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ w_4 \\ w_4 \\ w_4 \\ w_4 \\ \end{array} \\ \begin{array}{c} w_3 \\ w_4 \\ w_$$

• <u>Theorem 2</u> The density of the non-differentiable set is upper-bounded by

$$\frac{|S_{\text{ndf}}|}{|\mathbb{F}^n|} \le \frac{\# \text{ ReLUs in } P}{|\mathbb{F}|}$$

• <u>Theorem 3</u> For many *P*, the above density is lower-bounded by

$$\frac{|S_{\text{ndf}}|}{|\mathbb{F}^n|} \ge \frac{1}{2} \cdot \frac{\# \text{ ReLUs in } P}{|\mathbb{F}|}$$

• Consider a neural network *P* with bias parameters:

$$w_1 w_2$$

$$x_1 f_1(x_1, w_1) + w_2$$

$$x_2$$

$$ReLU(x_2)$$

$$w_3 w_4$$

$$f_3(x_3, w_3) + w_4$$

$$x_4$$

$$ReLU(x_4)$$

$$\dots$$

• <u>Theorem 4</u> Over the non-differentiable set, AD computes a generalized derivative:

$$\mathcal{D}^{AD}P(w) \in \partial P(w) \quad \text{for all } w \in S_{\text{ndf}}.$$

$$\mathcal{D}^{AD}P(w) \in \mathcal{D}^{P}(w) \quad \mathcal{T}_{\text{subdifferential of } P}$$

$$\triangleq \operatorname{conv}\left\{\lim_{t \to \infty} \mathcal{D}^{P}(w_{t}) : w_{t} \to w\right\}$$

• Consider a neural network *P* with bias parameters:

• <u>Theorem 3</u> On the non-differentiable set, AD computes a generalized derivative:

Summary of Contributions [ICML'23]

- We theoretically study the correctness of AD for neural networks when param's are floats.
- We prove tight bounds on the density of the incorrect and non-differentiable sets.
 We also prove what AD computes over these sets.
- Our results imply that AD for neural networks is correct on most floating-point param's, and it is correct more often with bias parameters.

Summary of Contributions [ICML'23]

- We theoretically study the correctness of AD for neural networks when param's are floats.
- We prove tight bounds on the density of the incorrect and non-differentiable sets.
 We also prove what AD computes over these sets.
- Our results imply that AD for neural networks is correct on most floating-point param's, and it is correct more often with bias parameters.

$$P \longrightarrow \cdots \mathcal{D}^{AD}P \cdots$$

Agenda

Programs that implement math.h.

Programs that train ML models.

Programs that compute derivatives.

Correctness: [PLDI'16], [POPL'18].

Probabilistic / differentiable programming. Correctness: [NeurIPS'18/20], [POPL'20/23].

Acceleration: [Submitted].

Correctness: [ICML'23].

 \Rightarrow Have widened our understanding of floating point in real-world systems.

Questions?