Reasoning about Floating Point
in Real-World Systems

Wonyeol Lee (Stanford CS)

PhD Oral Exam (05/15/2023)

“Continuous” Computations

Continuous values Operations on them

6, 2.5, % V2, 097, ... 6+ 2.5, % xv2, cos(0.97), ...

“Continuous” Computations

Continuous values Operations on them

6, 2.5 % VZ, 097, ... 6+ 2.5, % xv2, cos(0.97), ...

Scientific computing Machine learning Computer graphics

Theory and Practice

Continuous values Operations on them

Theory Real numbers (R) Exact operations (+, X, ...)

Theory and Practice

Continuous values Operations on them
Theory Real numbers (R) Exact operations (+, X, ...)
Practice | Floating-point numbers (FF) Floating-point operations (+F, X, ...)

e.g., 64-bit double-precision floats

exponent significand
sign (11 bit) (52 bit)
I I
O O O
63 52 0

\{ |01111111111; [1100-:-00] 5
) . 21023 —1023 111000(2)

Discrepancy

uncountably many exact
Continuous vaIu;s/ \ Operations on them
I’ 4 .
Theory Real numbers (RR) Exact operations (+, X, ...)
Practice | Floating-point numbers ([F) Floating-point operations (+p, X, ...)
P

finitely many inexact

Discrepancy

uncountably many exact
Continuous vaIu;s/ \ Operations on them
X N .
Theory Real numbers (R) Exact operations (+, X, ...)
Practice | Floating-point numbers (FF) Floating-point operations (+p, X, ...)
P
finitely many inexact

e Discrepancy between the theory and practice of “continuous” computations.

* Can we better understand/characterize this discrepancy arising in real-world systems?

My Work

Programs that implement math.h. Correctness: [PLDI'16], [POPL’18].
Programs that train ML models. Acceleration: [Submitted].
Programs that compute derivatives. Correctness: [ICML'23].

* Discrepancy between the theory and practice of “continuous” computations.

* Can we better understand/characterize this discrepancy arising in real-world systems?

My Work

done during my 3-year leave from Stanford

Programs that implement math.h. Correctness: [PLDI'16], [POPL’18].
Programs that train ML models. Acceleration: [Submitted].
Programs that compute derivatives. Correctness: [ICML'23].

* Discrepancy between the theory and practice of “continuous” computations.

* Can we better understand/characterize this discrepancy arising in real-world systems?

My Work

Programs that implement math.h.

Correctness: [PLDI'16], [POPL'18].

10

math.h Implementations

log x

mathematical
specification f

X = (0)21024—)
input interval X

<log>
subsd
mulpd
psllq
pshufd

%xmm5, %xmml
%Xmmo, %xmm5

$0xc, %xmml
$oxed, %xmm5, %xmmé

math.

h implementation P

11

math.h Implementations

infinite # bits

l

log x

mathematical
specification f

3 precision loss
<

>

X = (0,21024)
input interval X

fixed # bits

<log> i

subsd 7%xmm5, %xmml
mulpd 7%xmm@, %xmm5

psllq $0xc, %xmml
pshufd $0xe4, %xmm5, %xmmé

math.h implementation P

12

Problem

3 precision loss

>

logx .
X = (0,21024)

mathematical _)
input interval X

specification f

<log>
subsd
mulpd
psllq
pshufd

%xmm5, Z%xmml
%Xmmo, %xmm5

$0xc, %xmml
$oxed, %xmm5, %xmmé

math.

h implementation P

e Can we find a tight bound on the maximum precision loss automatically?

Problem

3 precision loss

>

logx .
X = (0,21024)

mathematical , _
input interval X

specification f

<log>
subsd
mulpd
psllq
pshufd

%xmm5, Z%xmml
%Xmmo, %xmm5

$0xc, %xmml
$oxed, %xmm5, %xmmé

math.

h implementation P

e Can we find a tight bound on the maximum precision loss automatically?

* Goal: Findasmall ® > 0in an automatic way such that

err(f(x),P(x)) <0 forallx€X.

14

Two Challenges

<log>

subsd
logx . . | med

psllq
mathematical pshufd
specification f o/

%xmm5, Z%xmml
%Xmmo, %xmm5

$0xc, %xmml
$0xed, %xmm5, %xXmmé

ath.

h implementation P

¥

(1) P often mixes floating-point and bit-level operations. [PLDI’16]

15

Two Challenges

<log>

subsd 7%xmm5, %xmml
lOg x mulpd 7%xmm@, %xmm5
< >

_ psllq $0xc, %xmml
mathematical pshufd $0xe4, %xmm5, %xmmé
specification f

math.h implementation P

(1) P often mixes floating-point and bit-level operations. [PLDI’16]

(2) P is often claimed to have a very small precision loss. [POPL18]

X

\
e.g., < 1lulp

16

Two Challenges

* 1log has precision loss of <1 ulp & forany x € X,

log x

-

ég ® ° ® ¢o ° °

X7

log (x)

* 0.5 ulp is the best we can achieve (by definition).

(1) P often mixes floating-point and bit-level operations. [PLDI’16]

(2) P is often claimed to have a very small precision loss. [POPL18]

X

\
e.g., < 1lulp

17

Two Challenges

Prior work on the problem [FM’15, POPL'14, FMICS'09, PLDI'03, FMCAD’00, ...]:

* requires considerable manual efforts; or

e cannot handle general mixed codes and prove small error bounds.

(1) P often mixes floating-point and bit-level operations. [PLDI’16]

(2) P is often claimed to have a very small precision loss. [POPL'18]

18

Two Challenges

Prior work on the problem [FM’15, POPL'14, FMICS'09, PLDI'03, FMCAD’00, ...]:

* requires considerable manual efforts; or

e cannot handle general mixed codes and prove small error bounds.

(1) P often mixes floating-point and bit-level operations. [PLDI’16]

(2) P is often claimed to have a very small precision loss. [POPL'18]

19

Bit-Level Operations

e Example: Given n (in int), compute 2™ (in double).

* Naive solution: int to double(1l << n). Slow, correct for n € [0, 31].

20

Bit-Level Operations

e Example: Given n (in int), compute 2™ (in double).
* Naive solution: int_to double(1l << n). Slow, correct for n € [0, 31].

e Better solution: (n + 1023) << 52. Fast, correct forn € [-1022,1023].

21

Bit-Level Operations

e Example: Given n (in int), compute 2™ (in double).
* Naive solution: int_to double(1l << n). Slow, correct for n € [0, 31].

e Better solution: (n + 1023) << 52. Fast, correct forn € [-1022,1023].

* Such operations are often used in highly optimized implementations of math.h.

It is difficult to reason about such “mixed codes”,
which intermix bit-level and floating-point operations.

22

Bit-Level Operations
P(x)
—1 1

discrete
\

")

vpslld $20,
vpshufd $114,
vmulpd C1,
vmulpd C2,

B
/
~ smooth

23

Our Approach

P(x)
:] 1
3 X |
discrete
\

N

vpslld $2e0,
vpshufd $114,
vmulpd (1,
vmulpd C2,

A
/
~ smooth

vpslld $20,
vpshufd $114,
vmulpd C1,
vmulpd C2,

\ 4

vpslld ¢$2e0,
vpshufd $114,
vmulpd (1,
vmulpd C2,

24

Our Approach

P(x)
:l
- X
discrete
\,
X

vpslld $2e0,
vpshufd $114,
vmulpd (1,
vmulpd C2,

.

/
=~ smooth

—.
I I
B . v S — |
vmulpd C1, \ 4
vmulpd C2,
wpsiid—=i20s
DGRty
vmulpd C1,

partial evaluation
of bit-level operations

vy
lSJS
|
—

25

Our Approach

P(x)
:]
- X
discrete
\,
X

vpslld $2e0,
vpshufd $114,
vmulpd (1,
vmulpd C2,

.

/
=~ smooth

abstractions Al’g(x) Az,g(x)

only
floating-point
operations _

—.
I I

wpstie—=i2e —— > 1

vmulpd C1, \ 4

vmulpd C2,
wpeike—inos >
DSty >
vmulpd C1,

partial evaluation
of bit-level operations

N S
S

26

Our Approach

— A =
flx) — A 5(x) [i (x;l 50
f(x)

N,

MaX

MaxX ‘

L I I

solve optimization problems

[

P(x) abstractions A1,§(x) Azﬁ(x)
An,??) (x)
_|1]; » 1 11 1 1 1
1 X 1 1 11 I 1 °°° 1 I 1
discrete T 2

N\

") [...

vpslld $20, ... B - 1 TV C— |

vpshufd $114, RSt ———ll 3

vmulpd (1, . vmulpd C1, ce \ 4

vmulpd C2, . < vmulpd C2, .

'/f only NS
= smooth floating-point vmulpd C1,

operations _ partial evaluation

of bit-level operations

vy
gJ:
I
p—

error bound!

27

Evaluation Results

Optimized implementation Intel’s implementation of math.h
eXPopt sin log
107
2.5E+06 12 25
2.0E+06 10 20
error 8
(ulp) 1.5E+06 15
6
1.0E+06 10
4
5.0E+05 2 5
0.0E+00 0 Lb--- R — o !
-4.0 -2.0 0.0 2.0 4.0 -1.6 -0.8 0.0 0.8 16 0.0 1.0 2.0

input

Evaluation Results

error
(ulp)

Our error bounds [PLDI’16]

=== (Claimed error bounds

Actual errors (between intervals)

Optimized implementation

Intel’s implementation of math.h

e)(pop,c S1n log
107 _____________________ 1014
2.5E+06 12 25
2.0E+06 0 20
® © 6 ¢ ¢ o ¢ o o o o o 8 ’] |

1.5E+06 15
6 ;—‘ |

1.0E+06 @ © 6 0 06 06 0 0 0 0 0 o 4 ' i | 19

5.0E+05 5
2 | 11

0.0E+00 0 08380°8308¢00°,°°,%0¢48038°08280 (e

40 -20 0.0 20 4.0 -1.6 -0.8 0.0 0.8 1.6 0.0 1.0 2.0 3.0 4.0
input

Summary of Contributions [PLDI’16]

* We propose the first systematic, automatic method for verifying mixed codes.

* Our method is based on abstraction, analytic optimization, and testing.
Key: Split the input range into sub-intervals so that bit-level op’s can be partially evaluated.

* We apply our method to real-world binaries for math.h and prove their formal error bonds.

30

Two Challenges

<log>

subsd %xmm5, %xmml
lOg x mulpd 7%xmm@, %xmm5
< >

_ psllq $0xc, %xmml
mathematical pshufd $0xe4, %xmm5, %xmmé
specification f

math.h implementation P

%often mixes floating-point and bit-level operations. [PLDI'16]

(2) P is often claimed to have a very small precision loss. [POPL 18]

X

\
e.g., < 1lulp

31

Exactness Properties

* Floating-point operations are often inexact.
aXp2t#ax2"

a—gb#a—>b

32

Exactness Properties

* Floating-point operations are often inexact, but sometimes exact.

aXp2®=aqx2" if |a x 2™ > 271022

[Folklore]

a—gb=a-—>b if b/2 <a <2b. [Sterbenz, 1973]

33

Exactness Properties

* Floating-point operations are often inexact, but sometimes exact.
aXp2t=ax2" if |a x 2™ > 271922, [Folklore]
a—gb=a-—>b if b/2 < a <2b. [Sterbenz, 1973]

-] if -]

* Such properties are implicitly used in highly accurate implementations of math.h.

Standard error analysis techniques ignore these exactness properties.

34

Loose Error Bounds

This sometimes results in
too overapproximate abstractions.

P(x)

Standard error analysis techniques ignore these exactness properties.

35

Loose Error Bounds

Intel’s implementation of math.h
This sometimes results in : 1014
too overapproximate abstractions. 7 4 log

20

P(x)

error

. (ulp) 1o

0.0 1.0 2.0 3.0 4.0
input

=== Qur error bounds [PLDI'16]
——= 1 ulp

Our Approach

Construct tighter abstractions by

automatically applying exactness results.

P(x) \

37

Our Approach

Construct tighter abstractions by
automatically applying exactness results.

P(x) \‘

Check preconditions of exactness results.

Example: Can we apply “e(x) —pe'(x) = e(x) —e'(x)"?

* Need: 1/, e(x) <e'(x) < 2e(x) forall x € 1.

38

Our Approach

Cons.truct tlghtgr abstractions by Check preconditions of exactness results.
automatically applying exactness results. ‘

\ Solve optimization problems.
P(x)

Example: Can we apply “e(x) —pe'(x) = e(x) —e'(x)"?

* Need: 1/, e(x) <e'(x) < 2e(x) forall x € I.
* Check: rgé}l(e’(x) -1/, e(x)) >0
A rgclglx(e’(x) — Ze(x)) < 0.

39

----- error bounds from [PLDI’16]
error bounds from [POPL 18]
1 ulp

® Qactual ulp errors

Evaluation Results

Intel’s implementation of math.h

sin log
16.00 1.0E+14 :
~ =

4.00 t RN - A—
ulp error 00 . 0.530 ulps 1.6E+01 |
(log scale) K

(e o o ol et e es et) / 0.583 u | PS
0.25 E. ° ::.: .f... .. 3 L[] ' 3 : " ; .. 1.OE+OO
0.06 T 6.3E-02 . : .
314 -157 000 157 3.14 22E-308 21E-154 20E+000 19E+154 18E+308

input (log scale)

40

Summary of Contributions [POPL18]

* We propose the first automatic method for verifying math.h implementations.

* Our method is based on a reduction of this verification problem to optimization problems.
Key: Apply exactness results, after checking their preconditions by solving opt’n problems.

* We apply our method to Intel’s math.h implementations and prove their correctness.

41

Summary of Contributions [POPL18]

* We propose the first automatic method for verifying math.h implementations.

 Our method is based on a reduction of this verification problem to optimization problems.
Key: Apply exactness results, after checking their preconditions by solving opt’n problems.

* We apply our method to Intel’s math. h implementations and prove their correctness.

X — e logx

42

Agenda

VPrograms that implement math.h.

Programs that train ML models.

Correctness: [PLDI'16], [POPL'18].

Acceleration: [Submitted].

43

Training in Machine Learning

© ©

- o4

w w

o ()]

£ ©

E o »T',A
= D ap L A

©

3 S

= = Ipt 7 [
Qo (]

(] -l

1]

o

Training compute (FLOPSs)

Publication date

How to accelerate training computation while maintaining training quality?

44

Source: “Compute trends across three eras of machine learning”, JICNN’22.

Low-Precision Training

Wi Conv
Y1
A 4 dConv
dy;
dw;

e/

W3
MaxPool (Conv
Yo <BZ
dMaxPool dConv
dy, < dy; |«
dw;

e Standard training: Use FP32 to represent tensors.

Va4

-
~

> forward pass

> backward pass

45

Low-Precision Training

W1 Conv
Y1
A 4 dConv
dy;
dw;

e/

W3
MaxPool (Conv
Vo 2BZ
dMaxPool dConv
dy, |« dy; [«
dws;

e Standard training: Use FP32 to represent tensors.

Va4

* Low-precision training: Use <FP32 to represent tensors.

-
~

> forward pass

> backward pass

46

Low-Precision Training

— — FP16 (high) ~
w 5
1 Conv MaxPool () Conv
Y1 2B B2 > v, L > forward pass
v Z
(low) ~
h dConv dMaxPool dConv A 4
dy; |« dy, [« dy; [« dy, [dL| > backward pass
vy dw, -

S S

e Standard training: Use FP32 to represent tensors.
* Low-precision training: Use <FP32 to represent tensors.

* Consider and apply two precision levels: high and low.
* We call a mapping from tensors to {high, low} a “precision assignment”.

47

Low-Precision Training

— — FP16 (high) ~
w W3
1 Conv MaxPool () Conv
Y1 2B B2 > v, L > forward pass
T = v g -
op R
h dConv dMaxPool dConv A 4
dy; |« dy, [« dy; [« dy, [dL| > backward pass
vy dw, -

S S

e Standard training: Use FP32 to represent tensors.
* Low-precision training: Use <FP32 to represent tensors.

* Consider and apply two precision levels: high and low.
* We call a mapping from tensors to {high, low} a “precision assignment”.
* Example: operator-based assignment 1z,.

48

Low-Precision Training

W1 Conv
Y1
T[unif —
A 4 dConv
dy;
dw;

W3
MaxPool (Conv
Vo 2BZ 2B7 L
dMaxPool dConv A 4
dy, |« dy; |« dy, < dL
dW3 —/

e/

e Standard training: Use FP32 to represent tensors.

* Low-precision training: Use <FP32 to represent tensors.

* Consider and apply two precision levels: high and low.

* We call a mapping from tensors to {high, low} a “precision assignment”.
 Example: operator-based assignment i

op’

uniform assignment

unife

-
~

> forward pass

> backward pass

49

Limitations

’/ most often just one

* For a given set of models, prior work uses very few precision assignments (e.g., T, Or 7

op)'

50

Limitations

* For a given set of models, prior work uses very few precision assignments (e.g.,

* But for other models, the chosen
* may result in noticeably worse accuracy (and divergence of training).

* may admit more efficient assignments that achieve similar accuracy.

uni

(Or T

op)'

51

Limitations

* For a given set of models, prior work uses very few precision assignments (e.g.,

* But for other models, the chosen

* may result in noticeably worse accuracy (and divergence of training).

* may admit more efficient assignments that achieve similar accuracy.

MobileNet-v2 (CIFAR-100)

45 A r l
0 50 100 150 200
epoch

training diverges with ;s

Precision assighment:

32-bit

TTynif
8-bit (1)

Width multiplier:

® 1.00 (original)
m 0.50
A0.25
4+ 0.10

uni

(Or T

op)'

52

Memory-Accuracy Tradeoff Problem

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].
* Goal: Find a precision assignment for M using only (FPy;, FP;,) such that

53

Memory-Accuracy Tradeoff Problem

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

* Goal: Find a precision assignment for M using only (FPy;, FP;,) such that

accy () is maximized subject to ratioy, () = r.

accuracy of M when trained with “low-precision ratio” of

= ratio of FP|,-tensorsinm
~ reduction in memory/time for training

E.g., ratio), (1) = 0, ratio, (my,) = 1.

Memory-Accuracy Tradeoff Problem

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].
* Goal: Find a precision assignment for M using only (FPy;, FP;,) such that

accy () is maximized subject to ratio), () = r.

accuracy of M when trained with “low-precision ratio” of
= ratio of FP),-tensorsinm

~ reduction in memory/time for training

* Find ™ that maximizes training accuracy under a memory/time constraint (given by r).

55

Challenges

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].
* Goal: Find a precision assignment for M using only (FPy;, FP;,) such that

accy () is maximized subject to ratio), () = r.

* Practically,

= There is no known analytic method for predicting accy, ().
= There are exponentially many candidates for .

56

Challenges

Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].
Goal: Find a precision assignment for M using only (FPy;, FP;,) such that

accy () is maximized subject to ratio), () = r.

Practically,

= There is no known analytic method for predicting accy, ().
= There are exponentially many candidates for .

Theoretically, we prove:

Theorem The memory-accuracy tradeoff problem is NP-hard.

57

Our Method

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

* Our method for the tradeoff problem:
* Initialize to the all-FPy; assignment.

! Conv
Vi1

4 dConv
dy;
dw;

W3
MaxPool (
. P V3
dMaxPool
dy, [¢ dys
dW3

r/FPhi

Conv

dConv

58

Our Method

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

* Our method for the tradeoff problem:
* Initialize r to the all-FPy; assignment.
* Demote the precision of largest tensors (in size) to FP,.

! Conv
Vi1
4 dConv
dy;
dw;

r/FPhi

W3
MaxPool (Conv
. > V3 >
dMaxPool dConv
dy, [¢ dys
dW3

59

Our Method

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

* Our method for the tradeoff problem:
* Initialize r to the all-FPy; assignment.
* Demote the precision of largest tensors (in size) to FPy,.
* Repeat it while ratio;,(7r) = r. Return the final .

! Conv
Vi1
4 dConv
dy;
dw;

r/FPhi

W3
MaxPool Conv
Vo 24B7Z >
dMaxPool dConv
dy, [¢ dy;
dW3

60

Our Method

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

* Our method for the tradeoff problem:
* Initialize r to the all-FPy; assignment.
* Demote the precision of largest tensors (in size) to FPy,.
* Repeat it while ratio;, () = r. Return the final m.

r/FPhi

e Optimal in a very simplified setting.
e Empirically better than other orders.

w g
1 Conv MaxPool Conv
Y1 %, > V3 > Vs
v dConv dMaxPool dConv
dy; _ dy, [« dys dy, [«
dWl dW3 —/

61

Our Method

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

* Our method for the tradeoff problem:
* Initialize r to the all-FPy; assignment.
* Demote the precision of largest tensors (in size) to FPy,.
* Repeat it while|ratio;,(7r) = r|Return the final m.

—

* The above method places no explicit constraint on|acc, (7).
* Observe: Training with this m sometimes diverges, due to too many overflows.

Our Method

Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

Our method for the tradeoff problem:
* Initialize r to the all-FPy; assignment.
* Demote the precision of largest tensors (in size) to FPy,. <— before training
* Repeat it while ratio;, () = r. Return the final m.

The above method places no explicit constraint on accy, (7).
e Observe: Training with this m sometimes diverges, due to too many overflows.

Our method for handling overflows:
* Promote the precision of tensors that overflow “too much” to FPy,;. +— during training

63

Evaluation Results

* Comparison with existing precision assignments.

94 -
g2 =]
>
© 90
3 fp32
B i
g 88 % op
"qm") /: ? OpI /:
s ® unif {g
-—@— ours
70 T T T T
0.00 0.25 0.50 0.75 1.00
low-prec. ratio
(a) CIFAR-10, SqueezeNet
g L‘*’%\
X
> 90 A
&)
o
g il | P fp32
©g6 ¥ op
‘5 -~ + op' &
g 80 a4 ¢ unif 1
-@— ours 3’5
78 T T T T
0.00 0.25 0.50 0.75 1.00

low-prec. ratio

(d) CIFAR-10, ShuffleNet-v2

72
2 70 -
3 68 -
o
0 66 —— fp32
© ? op
% b op' >
8 2] %1: unif e
—8— ours
o T T T T
0.00 0.25 0.50 0.75 1.00

low-prec. ratio

(b) CIFAR-100, SqueezeNet

L
>
(&)
268- =
S == fp32
® 664 ¥ op
e B -
-8 2: ® unif A
-&— ours
0 , , , ,
0.00 025 050 0.75 1.00

low-prec. ratio

(e) CIFAR-100, ShuffleNet-v2

test accuracy (%)

test accuracy (%)

w
(o)}
1

(0]
B
1

9]
N
1

w
o
L

0.25 0.50 0.75 1.00

low-prec. ratio

(c) CIFAR-100, SqueezeNet'

g + op' >~
o4 % unif T
-&— ours
0 T T T T
0.00 0.25 0.50 0.75 1.00

low-prec. ratio

(f) CIFAR-100, ShuffleNet-v2'

test accuracy (%)

(o)} (e))
H (o)}
1 1

(o)}
N
1

w o
~ O
1\ 1

W
N

—@— ours +

0.00

1.

0.50 0.75 1.00

low-prec. ratio

ImageNet, ShuffleNet-v2

0.25

: width multiplier of 0.25
64

Summary of Contributions [Submitted]

 We formally introduce the memory-accuracy tradeoff problem and prove its NP-hardness.

* We propose:
(i) a novel precision assignment method as a heuristic solution to the tradeoff problem;
(ii) a novel technique that can handle too many overflows arising in training.

 We demonstrate that our techniques outperform existing precision assignments.

65

Summary of Contributions [Submitted]

 We formally introduce the memory-accuracy tradeoff problem and prove its NP-hardness.

* We propose:
(i) a novel precision assignment method as a heuristic solution to the tradeoff problem;
(ii) a novel technique that can handle too many overflows arising in training.

 We demonstrate that our techniques outperform existing precision assignments.

g
NN — | minL(NN,,) W
w

\ memory & time U

66

Agenda

VPrograms that train ML models.

Programs that compute derivatives.

Acceleration: [Submitted].

Correctness: [ICML'23].

67

Autodiff

e Autodiff (AD): a class of algorithms that compute

DP(x) € R™" (when it exists)

for a given program P : R™ — R™ and input x € R", by applying the chain rule.

* Backpropagation algorithm: an instance of AD, widely used in machine learning.

68

Correctness of AD

matmul, sequential composition, ...

 If P consists of differentiable functions and language constructs, then

3DP(x) A DP(x)=DAPP(x) for all x € R™.

69

Correctness of AD

 If P consists of differentiable functions and language constructs, then

3DP(x) A DP(x)=DAPP(x) for all x € R™.

RelU, if-else statement, ...

 If P uses non-differentiable functions or language constructs, then

ADP(x) V DP(x)# DAPP(x) for some x € R,

P(x) '

E.g., for P(x) = ReLU(x) — ReLU(—x),
DP(0) = 1 but DAPP(0) = 0.

70

Correctness of AD

 If P consists of differentiable functions and language constructs, then

3DP(x) A DP(x)=DAPP(x) for all x € R™.

 If P uses non-differentiable functions or language constructs, then

ADP(x) VvV DP(x)# DAPP(x) for some x € R".
That is, A Djli(x) 3 Z)J}i(x)

[—)
x € R" M can be nonempty
Ly

DAPP(x) ;t DP(x)

71

Correctness of AD

 If P consists of differentiable functions and language constructs, then

3DP(x) A DP(x)=DAPP(x) for all x € R™.

My previous result [NeurlPS’20]

”piecewise analytic” include ReLU, if-else statement, ...
e If P uses i i functions or language constructs, then
ADP(x) VvV DP(x)# DAPP(x) for some x € R".
That is, A DP(x) 3 DP(x)
g - N has measure zero _ (i.e., negligible)
—] (€., neglig
x € R" ‘ﬁ,

N

\
DAPP(x) #= DP(x)
72

Limitations

(1) In practice, inputs to programs are not reals, but often floats.

(2) The set of all floats [F is finite, so has measure zero in R.

That is,

A Djli(x) 3 Dﬁ(x)
e ~1- ﬁ has measure zero
< \
x € R" { M’
N

DAPP(x) L DP(x)

73

Limitations

(1) In practice, inputs to programs are not reals, but often floats.

(2) The set of all floats [F is finite, so has measure zero in R.

Hence, AD can be incorrect for all x € [F", and this is indeed possible.

That is,

F DP(x) 3 DP(x)

<
] \ has measure zero

|

DAPP(x) ;t DP(x)

74

Problem

e Study the correctness of AD when inputs are floats (not reals).

* We focus on programs P : R"™ - R™ that represent neural networks:

w P(W).

75

Problem

e Study the correctness of AD when inputs are floats (not reals).

* We focus on programs P : R"™ - R™ that represent neural networks:

w — P(w).

* Goal: Bound the size of the incorrect set (Sj,c) and non-differentiable set (S, 4¢) of P.

ADP(w) 3IDP(w)

SIS
Inc

R

DAPP (W) = DP(w)

76

Our Results

* Consider a neural network P with bias parameters:

Wq IW2

f1Cx, wy) +wy

X1
—

e.g., Conv

(o
Xy >

W3 IW4

X3
—

f3(x3,w3) +w, l I ReLU(x,)
X4 P> ...

77

Our Results

* Consider a neural network P with bias parameters:

Wq !WZ

X1 X3
* Theorem 1 The incorrect set is always empty:
|Sinc| = 0.

f1(xg, wi) + wy l I ReLU(x,)
Xo >

W3]W4

/

f3(x3,w3) + w, I I ReLU(x,)
X4 » ...

3 Z)i (w)

e

U . Sndf
somewhat surprising, given that Sine

there were no such type of results before

DAPP(w) = DP(w)

78

Our Results

* Consider a neural network P with bias parameters:

Wq]WZ

X1

) e —

f1(xg, wi) + wy ReLU(x,)
>| X5 I >

W3]W4

|Shasl - # ReLUs in P

[F*

|F|

232 for 32-bit floats

A DP(w)
—

f3(x3,w3) + w, l I ReLU(x,)
X3 X4 » ...

 Theorem 2 The density of the non-differentiable set is upper-bounded by

[Sndf

N

79

Our Results

* Consider a neural network P with bias parameters:

Wq !WZ W3]W4

 Theorem 2 The density of the non-differentiable set is upper-bounded by

|Shasl - # ReLUs in P

filx, wy) +w, ReLU(x,) fz(x3,w3) +w, ReLU(x,)
X4 >| Xo I > X3 >| X4 I >

< A DP(w)
|F"| | FF| —
* Theorem 3 For many P, the above density is lower-bounded by { Sndf

N

ISnde 1 #ReLUsmP
|| =7 | FF|

80

Our Results

* Consider a neural network P with bias parameters:

W1]WZ W3]W4
filx, wy) +w, ReLU(x,) fz(x3,w3) +w, ReLU(x,)
X1 X2 > X3 X4 > ...

* Theorem 4 Over the non-differentiable set, AD computes a generalized derivative:

DAPP(w) € 9P(w) forallw € Spgs A DP(w)
[Sndf ©]
Clarke subdifferential of P inc

2 conv {tlim DP(w;) : wy = W}

31

Our Results

* Consider a neural network P with bias parameters:

W, !Wz no bias param’s Waq]W4 piecewise analytic func’s
i Gy, wi)) ReLU(x;) f3 (3, w3) + w, \Rebtrp)
X1 X2 > X3 X4 > ...

Extend previous results to more general neural networks.

Main point: Bounds become larger without bias parameters.

82

Summary of Contributions [ICML'23]

* We theoretically study the correctness of AD for neural networks when param’s are floats.

* We prove tight bounds on the density of the incorrect and non-differentiable sets.
We also prove what AD computes over these sets.

e Our results imply that AD for neural networks is correct on most floating-point param’s,
and it is correct more often with bias parameters.

33

Summary of Contributions [ICML'23]

* We theoretically study the correctness of AD for neural networks when param’s are floats.

* We prove tight bounds on the density of the incorrect and non-differentiable sets.
We also prove what AD computes over these sets.

e Our results imply that AD for neural networks is correct on most floating-point param’s,
and it is correct more often with bias parameters.

r

p — ... DADp

34

Agenda

VPrograms that compute derivatives. Correctness: [ICML23].

— Have widened our understanding of floating point in real-world systems.

85

Questions?

86

