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Discrepancy

uncountably many exact
Continuous vaIu;s/ \ Operations on them
X N .
Theory Real numbers (R) Exact operations (+, X, ...)
Practice | Floating-point numbers (FF) Floating-point operations (+p, X, ...)
P
finitely many inexact

e Discrepancy between the theory and practice of “continuous” computations.

* Can we better understand/characterize this discrepancy arising in real-world systems?



My Work

Programs that implement math.h. Correctness: [PLDI'16], [POPL’18].
Programs that train ML models. Acceleration: [Submitted].
Programs that compute derivatives. Correctness: [ICML'23].

* Discrepancy between the theory and practice of “continuous” computations.

* Can we better understand/characterize this discrepancy arising in real-world systems?




My Work

done during my 3-year leave from Stanford

Programs that implement math.h. Correctness: [PLDI'16], [POPL’18].
Programs that train ML models. Acceleration: [Submitted].
Programs that compute derivatives. Correctness: [ICML'23].

* Discrepancy between the theory and practice of “continuous” computations.

* Can we better understand/characterize this discrepancy arising in real-world systems?




My Work

Programs that implement math.h.

Correctness: [PLDI'16], [POPL'18].
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math.h Implementations

log x
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<log>
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math.

h implementation P
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math.h Implementations

infinite # bits

l

log x

mathematical
specification f

3 precision loss
<

>

X = (0,21024)
input interval X

fixed # bits

<log> i

subsd 7%xmm5, %xmml
mulpd 7%xmm@, %xmm5

psllq $0xc, %xmml
pshufd $0xe4, %xmm5, %xmmé

math.h implementation P
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3 precision loss
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e Can we find a tight bound on the maximum precision loss automatically?




Problem

3 precision loss

>

logx .
X = (0,21024)

mathematical , _
input interval X

specification f

<log>
subsd
mulpd
psllq
pshufd

%xmm5, Z%xmml
%Xmmo, %xmm5

$0xc, %xmml
$oxed, %xmm5, %xmmé

math.

h implementation P

e Can we find a tight bound on the maximum precision loss automatically?

* Goal: Findasmall ® > 0in an automatic way such that

err(f(x),P(x)) <0 forallx€X.
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Two Challenges

<log>

subsd
logx . . | med

psllq
mathematical pshufd
specification f o/

%xmm5, Z%xmml
%Xmmo, %xmm5

$0xc, %xmml
$0xed, %xmm5, %xXmmé

ath.

h implementation P

¥

(1) P often mixes floating-point and bit-level operations. [PLDI’16]
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Two Challenges

<log>

subsd 7%xmm5, %xmml
lOg x mulpd 7%xmm@, %xmm5
< >

_ psllq $0xc, %xmml
mathematical pshufd $0xe4, %xmm5, %xmmé
specification f

math.h implementation P

(1) P often mixes floating-point and bit-level operations. [PLDI’16]

(2) P is often claimed to have a very small precision loss. [POPL18]

X

\
e.g., < 1lulp
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Two Challenges

* 1log has precision loss of <1 ulp & forany x € X,

log x

-

ég ® ° ® ¢o ° °

X7

log (x)

* 0.5 ulp is the best we can achieve (by definition).

(1) P often mixes floating-point and bit-level operations. [PLDI’16]

(2) P is often claimed to have a very small precision loss. [POPL18]

X

\
e.g., < 1lulp
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Two Challenges

Prior work on the problem [FM’15, POPL'14, FMICS'09, PLDI'03, FMCAD’00, ...]:

* requires considerable manual efforts; or

e cannot handle general mixed codes and prove small error bounds.

(1) P often mixes floating-point and bit-level operations. [PLDI’16]

(2) P is often claimed to have a very small precision loss. [POPL'18]
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Two Challenges

Prior work on the problem [FM’15, POPL'14, FMICS'09, PLDI'03, FMCAD’00, ...]:

* requires considerable manual efforts; or

e cannot handle general mixed codes and prove small error bounds.

(1) P often mixes floating-point and bit-level operations. [PLDI’16]

(2) P is often claimed to have a very small precision loss. [POPL'18]
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Bit-Level Operations

e Example: Given n (in int), compute 2™ (in double).

* Naive solution: int to double(1l << n). Slow, correct for n € [0, 31].
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Bit-Level Operations

e Example: Given n (in int), compute 2™ (in double).
* Naive solution: int_to double(1l << n). Slow, correct for n € [0, 31].

e Better solution: (n + 1023) << 52. Fast, correct forn € [-1022,1023].
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Bit-Level Operations

e Example: Given n (in int), compute 2™ (in double).
* Naive solution: int_to double(1l << n). Slow, correct for n € [0, 31].

e Better solution: (n + 1023) << 52. Fast, correct forn € [-1022,1023].

* Such operations are often used in highly optimized implementations of math.h.

It is difficult to reason about such “mixed codes”,
which intermix bit-level and floating-point operations.
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Bit-Level Operations
P(x)
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Our Approach
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Our Approach
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Our Approach
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Our Approach
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Evaluation Results

Optimized implementation Intel’s implementation of math.h
eXPopt sin log
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Evaluation Results

error
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Our error bounds [PLDI’16]
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Summary of Contributions [PLDI’16]

* We propose the first systematic, automatic method for verifying mixed codes.

* Our method is based on abstraction, analytic optimization, and testing.
Key: Split the input range into sub-intervals so that bit-level op’s can be partially evaluated.

* We apply our method to real-world binaries for math.h and prove their formal error bonds.
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Two Challenges

<log>

subsd %xmm5, %xmml
lOg x mulpd 7%xmm@, %xmm5
< >

_ psllq $0xc, %xmml
mathematical pshufd $0xe4, %xmm5, %xmmé
specification f

math.h implementation P

%often mixes floating-point and bit-level operations. [PLDI'16]

(2) P is often claimed to have a very small precision loss. [POPL 18]

X

\
e.g., < 1lulp
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Exactness Properties

* Floating-point operations are often inexact.
aXp2t#ax2"

a—gb#a—>b
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Exactness Properties

* Floating-point operations are often inexact, but sometimes exact.

aXp2®=aqx2" if |a x 2™ > 271022

[Folklore]

a—gb=a-—>b if b/2 <a <2b. [Sterbenz, 1973]
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Exactness Properties

* Floating-point operations are often inexact, but sometimes exact.
aXp2t=ax2" if |a x 2™ > 271922, [Folklore]
a—gb=a-—>b if b/2 < a <2b. [Sterbenz, 1973]

-] if -]

* Such properties are implicitly used in highly accurate implementations of math.h.

Standard error analysis techniques ignore these exactness properties.
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Loose Error Bounds

This sometimes results in
too overapproximate abstractions.

P(x)

Standard error analysis techniques ignore these exactness properties.
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Loose Error Bounds

Intel’s implementation of math.h
This sometimes results in : 1014
too overapproximate abstractions. 7 4 log

20

P(x)

error

. (ulp) 1o

0.0 1.0 2.0 3.0 4.0
input

=== Qur error bounds [PLDI'16]
——= 1 ulp



Our Approach

Construct tighter abstractions by

automatically applying exactness results.

P(x) \
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Our Approach

Construct tighter abstractions by
automatically applying exactness results.

P(x) \‘

Check preconditions of exactness results.

Example: Can we apply “e(x) —pe'(x) = e(x) —e'(x)"?

* Need: 1/, e(x) <e'(x) < 2e(x) forall x € 1.
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Our Approach

Cons.truct tlghtgr abstractions by Check preconditions of exactness results.
automatically applying exactness results. ‘

\ Solve optimization problems.
P(x)

Example: Can we apply “e(x) —pe'(x) = e(x) —e'(x)"?

* Need: 1/, e(x) <e'(x) < 2e(x) forall x € I.
* Check: rgé}l(e’(x) -1/, e(x)) >0
A rgclglx(e’(x) — Ze(x)) < 0.
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----- error bounds from [PLDI’16]
error bounds from [POPL 18]
1 ulp

® Qactual ulp errors

Evaluation Results

Intel’s implementation of math.h

sin log
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input (log scale)
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Summary of Contributions [POPL18]

* We propose the first automatic method for verifying math.h implementations.

* Our method is based on a reduction of this verification problem to optimization problems.
Key: Apply exactness results, after checking their preconditions by solving opt’n problems.

* We apply our method to Intel’s math.h implementations and prove their correctness.
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Summary of Contributions [POPL18]

* We propose the first automatic method for verifying math.h implementations.

 Our method is based on a reduction of this verification problem to optimization problems.
Key: Apply exactness results, after checking their preconditions by solving opt’n problems.

* We apply our method to Intel’s math. h implementations and prove their correctness.

X — e logx
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Agenda

VPrograms that implement math.h.

Programs that train ML models.

Correctness: [PLDI'16], [POPL'18].

Acceleration: [Submitted].
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Training in Machine Learning

© ©
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o

Training compute (FLOPSs)

Publication date

How to accelerate training computation while maintaining training quality?
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Low-Precision Training

Wi Conv
Y1
A 4 dConv
dy;
dw;

e/

W3
MaxPool ( Conv
Yo <BZ
dMaxPool dConv
dy, < dy; |«
dw;

e Standard training: Use FP32 to represent tensors.

Va4

-
~

> forward pass

> backward pass
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Low-Precision Training

W1 Conv
Y1
A 4 dConv
dy;
dw;

e/

W3
MaxPool ( Conv
Vo 2BZ
dMaxPool dConv
dy, |« dy; [«
dws;

e Standard training: Use FP32 to represent tensors.

Va4

* Low-precision training: Use <FP32 to represent tensors.

-
~

> forward pass

> backward pass
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Low-Precision Training

— — FP16 (high) ~
w 5
1 Conv MaxPool () Conv
Y1 2B B2 > v, L > forward pass
v Z
(low) ~
h dConv dMaxPool dConv A 4
dy; |« dy, [« dy; [« dy, [ dL| > backward pass
vy dw, -

S S

e Standard training: Use FP32 to represent tensors.
* Low-precision training: Use <FP32 to represent tensors.

* Consider and apply two precision levels: high and low.
* We call a mapping from tensors to {high, low} a “precision assignment”.
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Low-Precision Training

— — FP16 (high) ~
w W3
1 Conv MaxPool () Conv
Y1 2B B2 > v, L > forward pass
T = v g -
op R
h dConv dMaxPool dConv A 4
dy; |« dy, [« dy; [« dy, [ dL| > backward pass
vy dw, -

S S

e Standard training: Use FP32 to represent tensors.
* Low-precision training: Use <FP32 to represent tensors.

* Consider and apply two precision levels: high and low.
* We call a mapping from tensors to {high, low} a “precision assignment”.
* Example: operator-based assignment 1z,.
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Low-Precision Training

W1 Conv
Y1
T[unif —
A 4 dConv
dy;
dw;

W3
MaxPool ( Conv
Vo 2BZ 2B7 L
dMaxPool dConv A 4
dy, |« dy; |« dy, < dL
dW3 —/

e/

e Standard training: Use FP32 to represent tensors.

* Low-precision training: Use <FP32 to represent tensors.

* Consider and apply two precision levels: high and low.

* We call a mapping from tensors to {high, low} a “precision assignment”.
 Example: operator-based assignment i

op’

uniform assignment

unife

-
~

> forward pass

> backward pass
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Limitations

’/ most often just one

* For a given set of models, prior work uses very few precision assignments (e.g., T, Or 7

op)'
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Limitations

* For a given set of models, prior work uses very few precision assignments (e.g.,

* But for other models, the chosen
* may result in noticeably worse accuracy (and divergence of training).

* may admit more efficient assignments that achieve similar accuracy.

uni

(Or T

op)'
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Limitations

* For a given set of models, prior work uses very few precision assignments (e.g.,

* But for other models, the chosen

* may result in noticeably worse accuracy (and divergence of training).

* may admit more efficient assignments that achieve similar accuracy.

MobileNet-v2 (CIFAR-100)

45 A r l
0 50 100 150 200
epoch

training diverges with ;s

Precision assighment:

32-bit

TTynif
8-bit (1)

Width multiplier:

® 1.00 (original)
m 0.50
A0.25
4+ 0.10

uni

(Or T

op)'
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Memory-Accuracy Tradeoff Problem

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].
* Goal: Find a precision assignment  for M using only (FPy;, FP;,) such that
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Memory-Accuracy Tradeoff Problem

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

* Goal: Find a precision assignment  for M using only (FPy;, FP;,) such that

accy () is maximized subject to ratioy, () = r.

accuracy of M when trained with “low-precision ratio” of

= ratio of FP|,-tensorsinm
~ reduction in memory/time for training

E.g., ratio), (1) = 0, ratio, (my,) = 1.



Memory-Accuracy Tradeoff Problem

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].
* Goal: Find a precision assignment  for M using only (FPy;, FP;,) such that

accy () is maximized subject to ratio), () = r.

accuracy of M when trained with “low-precision ratio” of
= ratio of FP),-tensorsinm

~ reduction in memory/time for training

* Find ™ that maximizes training accuracy under a memory/time constraint (given by r).

55



Challenges

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].
* Goal: Find a precision assignment  for M using only (FPy;, FP;,) such that

accy () is maximized subject to ratio), () = r.

* Practically,

= There is no known analytic method for predicting accy, ().
= There are exponentially many candidates for .

56



Challenges

Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].
Goal: Find a precision assignment  for M using only (FPy;, FP;,) such that

accy () is maximized subject to ratio), () = r.

Practically,

= There is no known analytic method for predicting accy, ().
= There are exponentially many candidates for .

Theoretically, we prove:

Theorem The memory-accuracy tradeoff problem is NP-hard.
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Our Method

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

* Our method for the tradeoff problem:
* Initialize  to the all-FPy; assignment.

! Conv
Vi1

4 dConv
dy;
dw;

W3
MaxPool (
. P V3
dMaxPool
dy, [¢ dys
dW3

r/FPhi

Conv

dConv
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Our Method

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

* Our method for the tradeoff problem:
* Initialize r to the all-FPy; assignment.
* Demote the precision of largest tensors (in size) to FP,.

! Conv
Vi1
4 dConv
dy;
dw;

r/FPhi

W3
MaxPool ( Conv
. > V3 >
dMaxPool dConv
dy, [¢ dys
dW3
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Our Method

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

* Our method for the tradeoff problem:
* Initialize r to the all-FPy; assignment.
* Demote the precision of largest tensors (in size) to FPy,.
* Repeat it while ratio;,(7r) = r. Return the final .

! Conv
Vi1
4 dConv
dy;
dw;

r/FPhi

W3
MaxPool Conv
Vo 24B7Z >
dMaxPool dConv
dy, [¢ dy;
dW3
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Our Method

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

* Our method for the tradeoff problem:
* Initialize r to the all-FPy; assignment.
* Demote the precision of largest tensors (in size) to FPy,.
* Repeat it while ratio;, () = r. Return the final m.

r/FPhi

e Optimal in a very simplified setting.
e Empirically better than other orders.

w g
1 Conv MaxPool Conv
Y1 %, > V3 > Vs
v dConv dMaxPool dConv
dy; _ dy, [« dys dy, [«
dWl dW3 —/
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Our Method

* Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

* Our method for the tradeoff problem:
* Initialize r to the all-FPy; assignment.
* Demote the precision of largest tensors (in size) to FPy,.
* Repeat it while|ratio;,(7r) = r|Return the final m.

—

* The above method places no explicit constraint on|acc, (7).
* Observe: Training with this m sometimes diverges, due to too many overflows.




Our Method

Input: a model M, FP formats (FPy;, FPy,), and a parameter r € [0,1].

Our method for the tradeoff problem:
* Initialize r to the all-FPy; assignment.
* Demote the precision of largest tensors (in size) to FPy,. <— before training
* Repeat it while ratio;, () = r. Return the final m.

The above method places no explicit constraint on accy, (7).
e Observe: Training with this m sometimes diverges, due to too many overflows.

Our method for handling overflows:
* Promote the precision of tensors that overflow “too much” to FPy,;. +— during training
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Evaluation Results

* Comparison with existing precision assignments.
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Summary of Contributions [Submitted]

 We formally introduce the memory-accuracy tradeoff problem and prove its NP-hardness.

* We propose:
(i) a novel precision assignment method as a heuristic solution to the tradeoff problem;
(ii) a novel technique that can handle too many overflows arising in training.

 We demonstrate that our techniques outperform existing precision assignments.
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Summary of Contributions [Submitted]

 We formally introduce the memory-accuracy tradeoff problem and prove its NP-hardness.

* We propose:
(i) a novel precision assignment method as a heuristic solution to the tradeoff problem;
(ii) a novel technique that can handle too many overflows arising in training.

 We demonstrate that our techniques outperform existing precision assignments.

g
NN — | minL(NN,,) W
w

\ memory & time U
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Agenda

VPrograms that train ML models.

Programs that compute derivatives.

Acceleration: [Submitted].

Correctness: [ICML'23].
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Autodiff

e Autodiff (AD): a class of algorithms that compute

DP(x) € R™" (when it exists)

for a given program P : R™ — R™ and input x € R", by applying the chain rule.

* Backpropagation algorithm: an instance of AD, widely used in machine learning.
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Correctness of AD

matmul, sequential composition, ...

 If P consists of differentiable functions and language constructs, then

3DP(x) A DP(x)=DAPP(x) for all x € R™.
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Correctness of AD

 If P consists of differentiable functions and language constructs, then

3DP(x) A DP(x)=DAPP(x) for all x € R™.

RelU, if-else statement, ...

 If P uses non-differentiable functions or language constructs, then

ADP(x) V DP(x)# DAPP(x) for some x € R,

P(x) '

E.g., for P(x) = ReLU(x) — ReLU(—x),
DP(0) = 1 but DAPP(0) = 0.
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Correctness of AD

 If P consists of differentiable functions and language constructs, then

3DP(x) A DP(x)=DAPP(x) for all x € R™.

 If P uses non-differentiable functions or language constructs, then

ADP(x) VvV DP(x)# DAPP(x) for some x € R".
That is, A Djli(x) 3 Z)J}i(x)

[ — )
x € R" M can be nonempty
Ly

DAPP(x) ;t DP(x)
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Correctness of AD

 If P consists of differentiable functions and language constructs, then

3DP(x) A DP(x)=DAPP(x) for all x € R™.

My previous result [NeurlPS’20]

”piecewise analytic” include ReLU, if-else statement, ...
e If P uses i i functions or language constructs, then
ADP(x) VvV DP(x)# DAPP(x) for some x € R".
That is, A DP(x) 3 DP(x)
g - N has measure zero _ (i.e., negligible)
— ] ( €., neglig
x € R" ‘ﬁ,

N

\
DAPP(x) #= DP(x)
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Limitations

(1) In practice, inputs to programs are not reals, but often floats.

(2) The set of all floats [F is finite, so has measure zero in R.

That is,

A Djli(x) 3 Dﬁ(x)
e ~1- ﬁ has measure zero
< \
x € R" { M’
N

DAPP(x) L DP(x)
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Limitations

(1) In practice, inputs to programs are not reals, but often floats.

(2) The set of all floats [F is finite, so has measure zero in R.

Hence, AD can be incorrect for all x € [F", and this is indeed possible.

That is,

F DP(x) 3 DP(x)

<
] \ has measure zero

|

DAPP(x) ;t DP(x)
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Problem

e Study the correctness of AD when inputs are floats (not reals).

* We focus on programs P : R"™ - R™ that represent neural networks:

w P(W).
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Problem

e Study the correctness of AD when inputs are floats (not reals).

* We focus on programs P : R"™ - R™ that represent neural networks:

w —  P(w).

* Goal: Bound the size of the incorrect set (Sj,c) and non-differentiable set (S, 4¢) of P.

ADP(w) 3IDP(w)

SIS
Inc

R

DAPP (W) = DP(w)
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Our Results

* Consider a neural network P with bias parameters:

Wq IW2

f1Cx, wy) +wy

X1
—

e.g., Conv

(o
Xy >

W3 IW4

X3
—

f3(x3,w3) +w, l I ReLU(x,)
X4 P> ...
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Our Results

* Consider a neural network P with bias parameters:

Wq !WZ

X1 X3
* Theorem 1 The incorrect set is always empty:
|Sinc| = 0.

f1(xg, wi) + wy l I ReLU(x,)
Xo >

W3 ]W4

/

f3(x3,w3) + w, I I ReLU(x,)
X4 » ...

3 Z)i (w)

e

U . Sndf
somewhat surprising, given that Sine

there were no such type of results before

DAPP(w) = DP(w)
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Our Results

* Consider a neural network P with bias parameters:

Wq ]WZ

X1

) e —

f1(xg, wi) + wy ReLU(x,)
>| X5 I >

W3 ]W4

|Shasl - # ReLUs in P

[F*

|F|

232 for 32-bit floats

A DP(w)
—

f3(x3,w3) + w, l I ReLU(x,)
X3 X4 » ...

 Theorem 2 The density of the non-differentiable set is upper-bounded by

[ Sndf

N
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Our Results

* Consider a neural network P with bias parameters:

Wq !WZ W3 ]W4

 Theorem 2 The density of the non-differentiable set is upper-bounded by

|Shasl - # ReLUs in P

filx, wy) +w, ReLU(x,) fz(x3,w3) +w, ReLU(x,)
X4 >| Xo I > X3 >| X4 I >

< A DP(w)
|F"| | FF| —
* Theorem 3 For many P, the above density is lower-bounded by { Sndf

N

ISnde 1 #ReLUsmP
|| =7 | FF|
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Our Results

* Consider a neural network P with bias parameters:

W1 ]WZ W3 ]W4
filx, wy) +w, ReLU(x,) fz(x3,w3) +w, ReLU(x,)
X1 X2 > X3 X4 > ...

* Theorem 4 Over the non-differentiable set, AD computes a generalized derivative:

DAPP(w) € 9P(w) forallw € Spgs A DP(w)
[ Sndf © ]
Clarke subdifferential of P inc

2 conv {tlim DP(w;) : wy = W}
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Our Results

* Consider a neural network P with bias parameters:

W, !Wz no bias param’s Waq ]W4 piecewise analytic func’s
i Gy, wi) ) ReLU(x;) f3 (3, w3) + w, \Rebtrp)
X1 X2 > X3 X4 > ...

Extend previous results to more general neural networks.

Main point: Bounds become larger without bias parameters.
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Summary of Contributions [ICML'23]

* We theoretically study the correctness of AD for neural networks when param’s are floats.

* We prove tight bounds on the density of the incorrect and non-differentiable sets.
We also prove what AD computes over these sets.

e Our results imply that AD for neural networks is correct on most floating-point param’s,
and it is correct more often with bias parameters.
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Summary of Contributions [ICML'23]

* We theoretically study the correctness of AD for neural networks when param’s are floats.

* We prove tight bounds on the density of the incorrect and non-differentiable sets.
We also prove what AD computes over these sets.

e Our results imply that AD for neural networks is correct on most floating-point param’s,
and it is correct more often with bias parameters.

r

p — ... DADp
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Agenda

VPrograms that compute derivatives. Correctness: [ICML23].

— Have widened our understanding of floating point in real-world systems.
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Questions?
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