
Reasoning about Floating Point
in Real-World Systems

Wonyeol Lee (Stanford CS)

PhD Oral Exam (05/15/2023)

“Continuous” Computations

Continuous values Operations on them

6, 2.5, !", 2, 0.9𝜋, ... 6 + 2.5, !" × 2, cos 0.9𝜋 , ...

2

“Continuous” Computations

Continuous values Operations on them

6, 2.5, !", 2, 0.9𝜋, ... 6 + 2.5, !" × 2, cos 0.9𝜋 , ...

3

Scientific computing Machine learning Computer graphics

⋯

Theory and Practice

Continuous values Operations on them

Real numbers (ℝ) Exact operations (+, ×, ...)

4

Theory

Theory and Practice

Continuous values Operations on them

Real numbers (ℝ) Exact operations (+, ×, ...)

Floating-point numbers (𝔽) Floating-point operations (+𝔽, ×𝔽, ...)

5

Theory

Practice

e.g., 64-bit double-precision floats

significand

1 01111111111 1100⋯00 (2)

= −1 ! (2!"#$%!"#$ (1.110⋯00 #

Discrepancy

Continuous values Operations on them

Real numbers (ℝ) Exact operations (+, ×, ...)

Floating-point numbers (𝔽) Floating-point operations (+𝔽, ×𝔽, ...)

6

finitely many

uncountably many exact

inexact

Theory

Practice

Discrepancy

Continuous values Operations on them

Real numbers (ℝ) Exact operations (+, ×, ...)

Floating-point numbers (𝔽) Floating-point operations (+𝔽, ×𝔽, ...)

• Discrepancy between the theory and practice of “continuous” computations.

• Can we better understand/characterize this discrepancy arising in real-world systems?

7

finitely many

uncountably many exact

inexact

Theory

Practice

My Work

Continuous values Operations on them

Real numbers (ℝ) Exact operations (+, ×, ...)

Floating-point numbers (𝔽) Floating-point operations (+𝔽, ×𝔽, ...)

• Discrepancy between the theory and practice of “continuous” computations.

• Can we better understand/characterize this discrepancy arising in real-world systems?

8

Programs that implement math.h. Correctness: [PLDI’16], [POPL’18].

Programs that train ML models. Acceleration: [Submitted].

Programs that compute derivatives. Correctness: [ICML’23].

My Work

Continuous values Operations on them

Real numbers (ℝ) Exact operations (+, ×, ...)

Floating-point numbers (𝔽) Floating-point operations (+𝔽, ×𝔽, ...)

• Discrepancy between the theory and practice of “continuous” computations.

• Can we better understand/characterize this discrepancy arising in real-world systems?

9

Programs that implement math.h. Correctness: [PLDI’16], [POPL’18].

Probabilistic / differentiable programming. Correctness: [NeurIPS’18/20], [POPL’20/23].

Programs that train ML models. Acceleration: [Submitted].

Programs that compute derivatives. Correctness: [ICML’23].

done during my 3-year leave from Stanford

My Work

Continuous values Operations on them

Real numbers (ℝ) Exact operations (+, ×, ...)

Floating-point numbers (𝔽) Floating-point operations (+𝔽, ×𝔽, ...)

10

Programs that implement math.h. Correctness: [PLDI’16], [POPL’18].

Probabilistic / differentiable programming. Correctness: [NeurIPS’18/20], [POPL’20/23].

Programs that train ML models. Acceleration: [Submitted].

Programs that compute derivatives. Correctness: [ICML’23].

math.h Implementations

11

math.h implementation 𝑷

<log>
...
subsd %xmm5, %xmm1
mulpd %xmm0, %xmm5
...
psllq $0xc, %xmm1
pshufd $0xe4, %xmm5, %xmm6
...

log 𝑥
mathematical
specification 𝒇

𝑿 = 0,2!"#$

input interval 𝑿

math.h Implementations

12

math.h implementation 𝑷

<log>
...
subsd %xmm5, %xmm1
mulpd %xmm0, %xmm5
...
psllq $0xc, %xmm1
pshufd $0xe4, %xmm5, %xmm6
...

∃ precision losslog 𝑥
mathematical
specification 𝒇

infinite # bits fixed # bits

𝑿 = 0,2!"#$

input interval 𝑿

Problem

• Can we find a tight bound on the maximum precision loss automatically?

13

math.h implementation 𝑷

<log>
...
subsd %xmm5, %xmm1
mulpd %xmm0, %xmm5
...
psllq $0xc, %xmm1
pshufd $0xe4, %xmm5, %xmm6
...

log 𝑥
mathematical
specification 𝒇

𝑿 = 0,2!"#$

input interval 𝑿

∃ precision loss

Problem

• Can we find a tight bound on the maximum precision loss automatically?
• Goal: Find a small Θ > 0 in an automatic way such that

err 𝒇 𝑥 , 𝑷 𝑥 ≤ Θ for all 𝑥 ∈ 𝑿.

14

math.h implementation 𝑷

<log>
...
subsd %xmm5, %xmm1
mulpd %xmm0, %xmm5
...
psllq $0xc, %xmm1
pshufd $0xe4, %xmm5, %xmm6
...

log 𝑥
mathematical
specification 𝒇

𝑿 = 0,2!"#$

input interval 𝑿

∃ precision loss

Two Challenges

15

math.h implementation 𝑷

<log>
...
subsd %xmm5, %xmm1
mulpd %xmm0, %xmm5
...
psllq $0xc, %xmm1
pshufd $0xe4, %xmm5, %xmm6
...

log 𝑥
mathematical
specification 𝒇

(1) 𝑷 often mixes floating-point and bit-level operations. [PLDI’16]
(2) 𝑷 is often claimed to have a very small precision loss. [POPL’18]

Two Challenges

16

math.h implementation 𝑷

<log>
...
subsd %xmm5, %xmm1
mulpd %xmm0, %xmm5
...
psllq $0xc, %xmm1
pshufd $0xe4, %xmm5, %xmm6
...

log 𝑥
mathematical
specification 𝒇

(1) 𝑷 often mixes floating-point and bit-level operations. [PLDI’16]
(2) 𝑷 is often claimed to have a very small precision loss. [POPL’18]

e.g., < 1 ulp

Two Challenges

• log has precision loss of < 1 ulp ⟺ for any 𝑥 ∈ 𝑿,

• 0.5 ulp is the best we can achieve (by definition).

17

(1) 𝑷 often mixes floating-point and bit-level operations. [PLDI’16]
(2) 𝑷 is often claimed to have a very small precision loss. [POPL’18]

…0 1…
log 𝑥

log(𝑥)

e.g., < 1 ulp

Two Challenges

18

(1) 𝑷 often mixes floating-point and bit-level operations. [PLDI’16]
(2) 𝑷 is often claimed to have a very small precision loss. [POPL’18]

Prior work on the problem [FM’15, POPL’14, FMICS’09, PLDI’03, FMCAD’00, …]:

• requires considerable manual efforts; or

• cannot handle general mixed codes and prove small error bounds.

Two Challenges

19

(1) 𝑷 often mixes floating-point and bit-level operations. [PLDI’16]
(2) 𝑷 is often claimed to have a very small precision loss. [POPL’18]

Prior work on the problem [FM’15, POPL’14, FMICS’09, PLDI’03, FMCAD’00, …]:

• requires considerable manual efforts; or

• cannot handle general mixed codes and prove small error bounds.

Bit-Level Operations

• Example: Given 𝑛 (in int), compute 2, (in double).

• Naïve solution: int_to_double(1 << n). Slow, correct for 𝑛 ∈ 0, 31 .

20

Bit-Level Operations

• Example: Given 𝑛 (in int), compute 2, (in double).

• Naïve solution: int_to_double(1 << n). Slow, correct for 𝑛 ∈ 0, 31 .

• Better solution: (n + 1023) << 52. Fast, correct for 𝑛 ∈ −1022, 1023 .

21

Bit-Level Operations

• Example: Given 𝑛 (in int), compute 2, (in double).

• Naïve solution: int_to_double(1 << n). Slow, correct for 𝑛 ∈ 0, 31 .

• Better solution: (n + 1023) << 52. Fast, correct for 𝑛 ∈ −1022, 1023 .

• Such operations are often used in highly optimized implementations of math.h.

22

It is difficult to reason about such “mixed codes”,
which intermix bit-level and floating-point operations.

Bit-Level Operations

𝑋
−1 1

𝑃(𝑥)

...
vpslld $20, ...
vpshufd $114, ...
vmulpd C1, ...
vmulpd C2, ...
...

23

≈ smooth

discrete

Our Approach

𝑋
−1 1

𝐼! 𝐼# 𝐼%
…

𝑃(𝑥)

...
vpslld $20, ...
vpshufd $114, ...
vmulpd C1, ...
vmulpd C2, ...
...

...
vpslld $20, ...
vpshufd $114, ...
vmulpd C1, ...
vmulpd C2, ...
... ...

vpslld $20, ...
vpshufd $114, ...
vmulpd C1, ...
vmulpd C2, ...
...

...

24

≈ smooth

discrete

Our Approach

𝑋
−1 1

𝑃(𝑥)

...
vpslld $20, ...
vpshufd $114, ...
vmulpd C1, ...
vmulpd C2, ...
...

...
vpslld $20, ...
vpshufd $114, ...
vmulpd C1, ...
vmulpd C2, ...
... ...

vpslld $20, ...
vpshufd $114, ...
vmulpd C1, ...
vmulpd C2, ...
...

...

1
3

𝑛
2𝑛 + 1

25

partial evaluation
of bit-level operations

𝐼! 𝐼# 𝐼%
…

≈ smooth

discrete

Our Approach

𝐴!,'(𝑥)

…

𝐴%,'(𝑥)
𝐴#,'(𝑥)

𝑋
−1 1

𝑃(𝑥)

...
vpslld $20, ...
vpshufd $114, ...
vmulpd C1, ...
vmulpd C2, ...
...

...
vpslld $20, ...
vpshufd $114, ...
vmulpd C1, ...
vmulpd C2, ...
... ...

vpslld $20, ...
vpshufd $114, ...
vmulpd C1, ...
vmulpd C2, ...
...

...

1
3

𝑛
2𝑛 + 1

26

only
floating-point

operations partial evaluation
of bit-level operations

𝐼! 𝐼# 𝐼%
…

≈ smooth

discrete

abstractions

Our Approach

𝑋
−1 1

𝐼! 𝐼# 𝐼%
…

𝑃(𝑥)

...
vpslld $20, ...
vpshufd $114, ...
vmulpd C1, ...
vmulpd C2, ...
...

...
vpslld $20, ...
vpshufd $114, ...
vmulpd C1, ...
vmulpd C2, ...
... ...

vpslld $20, ...
vpshufd $114, ...
vmulpd C1, ...
vmulpd C2, ...
...

...

1
3

𝑛
2𝑛 + 1

27

only
floating-point

operations

𝐼! 𝐼# 𝐼%
…
…

𝑓 𝑥 − 𝐴!,# 𝑥
𝑓(𝑥)

𝑓 𝑥 − 𝐴$,# 𝑥
𝑓(𝑥)max max

error bound!
partial evaluation

of bit-level operations

𝐴!,'(𝑥)

…

𝐴%,'(𝑥)
𝐴#,'(𝑥)

solve optimization problems

≈ smooth

discrete

abstractions

Evaluation Results

28input

error
(ulp)

10!%
⋮

10&
⋮

sin logexpopt

Intel’s implementation of math.hOptimized implementation

Evaluation Results

29input

error
(ulp)

10!%
⋮

10&
⋮

Our error bounds [PLDI’16]
Claimed error bounds
Actual errors (between intervals)

sin logexpopt

Intel’s implementation of math.hOptimized implementation

Summary of Contributions [PLDI’16]

• We propose the first systematic, automatic method for verifying mixed codes.

• Our method is based on abstraction, analytic optimization, and testing.
Key: Split the input range into sub-intervals so that bit-level op’s can be partially evaluated.

• We apply our method to real-world binaries for math.h and prove their formal error bonds.

30

Two Challenges

31

math.h implementation 𝑷

<log>
...
subsd %xmm5, %xmm1
mulpd %xmm0, %xmm5
...
psllq $0xc, %xmm1
pshufd $0xe4, %xmm5, %xmm6
...

log 𝑥
mathematical
specification 𝒇

(1) 𝑷 often mixes floating-point and bit-level operations. [PLDI’16]
(2) 𝑷 is often claimed to have a very small precision loss. [POPL’18]

e.g., < 1 ulp

Exactness Properties

• Floating-point operations are often inexact.

𝑎 ×𝔽 2, ≠ 𝑎 × 2,

𝑎 −𝔽 𝑏 ≠ 𝑎 − 𝑏

32

Exactness Properties

• Floating-point operations are often inexact, but sometimes exact.

𝑎 ×𝔽 2, = 𝑎 × 2, if 𝑎 × 2, ≥ 2-./00. [Folklore]

𝑎 −𝔽 𝑏 = 𝑎 − 𝑏 if 𝑏/2 ≤ 𝑎 ≤ 2𝑏. [Sterbenz, 1973]

33

Exactness Properties

• Floating-point operations are often inexact, but sometimes exact.

𝑎 ×𝔽 2, = 𝑎 × 2, if 𝑎 × 2, ≥ 2-./00. [Folklore]

𝑎 −𝔽 𝑏 = 𝑎 − 𝑏 if 𝑏/2 ≤ 𝑎 ≤ 2𝑏. [Sterbenz, 1973]

[⋯] if [⋯]

• Such properties are implicitly used in highly accurate implementations of math.h.

34

Standard error analysis techniques ignore these exactness properties.

Standard error analysis techniques ignore these exactness properties.

Loose Error Bounds

35

−𝜋
𝜋

𝑃(𝑥)

This sometimes results in
too overapproximate abstractions.

Loose Error Bounds
•

36

−𝜋
𝜋

This sometimes results in
too overapproximate abstractions.

input

Intel’s implementation of math.h
10!%
⋮ log

Our error bounds [PLDI’16]
1 ulp

error
(ulp)

𝑃(𝑥)

⇒

Our Approach

37

−𝜋
𝜋

𝑃(𝑥)

Construct tighter abstractions by
automatically applying exactness results.

Our Approach

38

−𝜋
𝜋

𝑃(𝑥)

Check preconditions of exactness results.

Example: Can we apply “𝑒 𝑥 −𝔽 𝑒* 𝑥 = 𝑒 𝑥 − 𝑒* 𝑥 ”?

• Need: ⁄+ , 𝑒 𝑥 ≤ 𝑒* 𝑥 ≤ 2𝑒 𝑥 for all 𝑥 ∈ 𝐼.

• Check: min
-∈/

𝑒* 𝑥 − ⁄+ , 𝑒 𝑥 ≥ 0
∧ max

-∈/
𝑒* 𝑥 − 2𝑒 𝑥 ≤ 0.

Construct tighter abstractions by
automatically applying exactness results.

Our Approach

39

−𝜋
𝜋

𝑃(𝑥)
Solve optimization problems.

Check preconditions of exactness results.

Example: Can we apply “𝑒 𝑥 −𝔽 𝑒* 𝑥 = 𝑒 𝑥 − 𝑒* 𝑥 ”?

• Need: ⁄+ , 𝑒 𝑥 ≤ 𝑒* 𝑥 ≤ 2𝑒 𝑥 for all 𝑥 ∈ 𝐼.

• Check: min
-∈/

𝑒* 𝑥 − ⁄+ , 𝑒 𝑥 ≥ 0
∧ max

-∈/
𝑒* 𝑥 − 2𝑒 𝑥 ≤ 0.

Construct tighter abstractions by
automatically applying exactness results.

ulp error
(log scale)

input

sin

input (log scale)

log

0.583 ulps
0.530 ulps

Evaluation Results

40

Intel’s implementation of math.h

error bounds from [PLDI’16]
error bounds from [POPL’18]
1 ulp
actual ulp errors

Summary of Contributions [POPL’18]

• We propose the first automatic method for verifying math.h implementations.

• Our method is based on a reduction of this verification problem to optimization problems.
Key: Apply exactness results, after checking their preconditions by solving opt’n problems.

• We apply our method to Intel’s math.h implementations and prove their correctness.

41

Summary of Contributions [POPL’18]

• We propose the first automatic method for verifying math.h implementations.

• Our method is based on a reduction of this verification problem to optimization problems.
Key: Apply exactness results, after checking their preconditions by solving opt’n problems.

• We apply our method to Intel’s math.h implementations and prove their correctness.

42

⋯ ⋯log 𝑥𝑥

Programs that implement math.h. Correctness: [PLDI’16], [POPL’18].

Probabilistic / differentiable programming. Correctness: [NeurIPS’18/20], [POPL’20/23].

Programs that train ML models. Acceleration: [Submitted].

Programs that compute derivatives. Correctness: [ICML’23].

Agenda

43

Training in Machine Learning

44
Source: “Compute trends across three eras of machine learning”, IJCNN’22.

How to accelerate training computation while maintaining training quality?

Low-Precision Training

• Standard training: Use FP32 to represent tensors.

45

L
…Conv MaxPool Conv

dy4 dL
dConv dMaxPool dConv …

w1
w3

y1 y2 y3

dy1 dy2 dy3

y4

dw1 dw3

forward pass

backward pass

FP32

Low-Precision Training

• Standard training: Use FP32 to represent tensors.
• Low-precision training: Use <FP32 to represent tensors.

46

L
…Conv MaxPool Conv

dy4 dL
dConv dMaxPool dConv …

w1
w3

y1 y2 y3

dy1 dy2 dy3

y4

dw1 dw3

forward pass

backward pass

FP16

FP8

Low-Precision Training

• Standard training: Use FP32 to represent tensors.
• Low-precision training: Use <FP32 to represent tensors.

• Consider and apply two precision levels: high and low.
• We call a mapping from tensors to {high, low} a “precision assignment”.

47

L
…Conv MaxPool Conv

dy4 dL
dConv dMaxPool dConv …

w1
w3

y1 y2 y3

dy1 dy2 dy3

y4

dw1 dw3

forward pass

backward pass

FP16 (high)

FP8 (low)

Low-Precision Training

• Standard training: Use FP32 to represent tensors.
• Low-precision training: Use <FP32 to represent tensors.

• Consider and apply two precision levels: high and low.
• We call a mapping from tensors to {high, low} a “precision assignment”.
• Example: operator-based assignment 𝜋op.

48

L
…Conv MaxPool Conv

dy4 dL
dConv dMaxPool dConv …

w1
w3

y1 y2 y3

dy1 dy2 dy3

y4

dw1 dw3

forward pass

backward pass

FP16 (high)

FP8 (low)𝜋op =

Low-Precision Training

• Standard training: Use FP32 to represent tensors.
• Low-precision training: Use <FP32 to represent tensors.

• Consider and apply two precision levels: high and low.
• We call a mapping from tensors to {high, low} a “precision assignment”.
• Example: operator-based assignment 𝜋op, uniform assignment 𝜋unif.

49

L
…Conv MaxPool Conv

dy4 dL
dConv dMaxPool dConv …

w1
w3

y1 y2 y3

dy1 dy2 dy3

y4

dw1 dw3

forward pass

backward pass

FP8 (low)𝜋unif =

• For a given set of models, prior work uses very few precision assignments (e.g., 𝜋unif or 𝜋op).

Limitations

50

most often just one

• For a given set of models, prior work uses very few precision assignments (e.g., 𝜋unif or 𝜋op).

• But for other models, the chosen 𝜋
• may result in noticeably worse accuracy (and divergence of training).
• may admit more efficient assignments that achieve similar accuracy.

Limitations

51

• For a given set of models, prior work uses very few precision assignments (e.g., 𝜋unif or 𝜋op).

• But for other models, the chosen 𝜋
• may result in noticeably worse accuracy (and divergence of training).
• may admit more efficient assignments that achieve similar accuracy.

Limitations

52

MobileNet-v2 (CIFAR-100)

32-bit
8-bit (𝜋unif)
8-bit (𝜋op)

Precision assignment:

1.00 (original)
0.50
0.25
0.10

Width multiplier:

training diverges with 𝜋unif

Memory-Accuracy Tradeoff Problem

• Input: a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .
• Goal: Find a precision assignment 𝜋 for 𝑀 using only 𝐹𝑃01, 𝐹𝑃23 such that

acc4(𝜋) is maximized subject to ratio23 𝜋 ≥ 𝑟.

53

Memory-Accuracy Tradeoff Problem

• Input: a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .
• Goal: Find a precision assignment 𝜋 for 𝑀 using only 𝐹𝑃01, 𝐹𝑃23 such that

acc4 𝜋 is maximized subject to ratio23 𝜋 ≥ 𝑟.

54

accuracy of 𝑀 when trained with 𝜋 “low-precision ratio” of 𝜋
= ratio of 𝐹𝑃)*-tensors in 𝜋
≈ reduction in memory/time for training

E.g., ratio&' 𝜋() = 0, ratio&' 𝜋&' = 1.

Memory-Accuracy Tradeoff Problem

• Input: a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .
• Goal: Find a precision assignment 𝜋 for 𝑀 using only 𝐹𝑃01, 𝐹𝑃23 such that

acc4 𝜋 is maximized subject to ratio23 𝜋 ≥ 𝑟.

• Find 𝜋 that maximizes training accuracy under a memory/time constraint (given by 𝑟).

55

“low-precision ratio” of 𝜋
= ratio of 𝐹𝑃)*-tensors in 𝜋
≈ reduction in memory/time for training

accuracy of 𝑀 when trained with 𝜋

Challenges

• Input: a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .
• Goal: Find a precision assignment 𝜋 for 𝑀 using only 𝐹𝑃01, 𝐹𝑃23 such that

acc4 𝜋 is maximized subject to ratio23 𝜋 ≥ 𝑟.

• Practically,

§ There is no known analytic method for predicting acc4 𝜋 .
§ There are exponentially many candidates for 𝜋.

56

Challenges

• Input: a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .
• Goal: Find a precision assignment 𝜋 for 𝑀 using only 𝐹𝑃01, 𝐹𝑃23 such that

acc4 𝜋 is maximized subject to ratio23 𝜋 ≥ 𝑟.

• Practically,

§ There is no known analytic method for predicting acc4 𝜋 .
§ There are exponentially many candidates for 𝜋.

• Theoretically, we prove:

57

Theorem The memory-accuracy tradeoff problem is NP-hard.

Our Method

• Input: a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .

• Our method for the tradeoff problem:
• Initialize 𝜋 to the all-𝐹𝑃01 assignment.

58

L
…Conv MaxPool Conv

dy4 dL
dConv dMaxPool dConv …

w1
w3

y1 y2 y3

dy1 dy2 dy3

y4

dw1 dw3

𝜋 =

𝐹𝑃+,

Our Method

• Input: a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .

• Our method for the tradeoff problem:
• Initialize 𝜋 to the all-𝐹𝑃01 assignment.
• Demote the precision of largest tensors (in size) to 𝐹𝑃23.

59

L
…Conv MaxPool Conv

dy4 dL
dConv dMaxPool dConv …

w1
w3

y1 y2 y3

dy1 dy2 dy3

y4

dw1 dw3

𝜋 =

𝐹𝑃)* 𝐹𝑃+,

Our Method

• Input: a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .

• Our method for the tradeoff problem:
• Initialize 𝜋 to the all-𝐹𝑃01 assignment.
• Demote the precision of largest tensors (in size) to 𝐹𝑃23.
• Repeat it while ratio23 𝜋 ≥ 𝑟. Return the final 𝜋.

60

𝐹𝑃)*

L
…Conv MaxPool Conv

dy4 dL
dConv dMaxPool dConv …

w1
w3

y1 y2 y3

dy1 dy2 dy3

y4

dw1 dw3

𝜋 =

𝐹𝑃+,

Our Method

• Input: a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .

• Our method for the tradeoff problem:
• Initialize 𝜋 to the all-𝐹𝑃01 assignment.
• Demote the precision of largest tensors (in size) to 𝐹𝑃23.
• Repeat it while ratio23 𝜋 ≥ 𝑟. Return the final 𝜋.

61

𝐹𝑃)*

L
…Conv MaxPool Conv

dy4 dL
dConv dMaxPool dConv …

w1
w3

y1 y2 y3

dy1 dy2 dy3

y4

dw1 dw3

𝜋 =

𝐹𝑃+,

• Optimal in a very simplified setting.
• Empirically better than other orders.

Our Method

• Input: a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .

• Our method for the tradeoff problem:
• Initialize 𝜋 to the all-𝐹𝑃01 assignment.
• Demote the precision of largest tensors (in size) to 𝐹𝑃23.
• Repeat it while ratio23 𝜋 ≥ 𝑟. Return the final 𝜋.

• The above method places no explicit constraint on acc4 𝜋 .
• Observe: Training with this 𝜋 sometimes diverges, due to too many overflows.

62

Our Method

• Input: a model 𝑀, FP formats 𝐹𝑃01, 𝐹𝑃23 , and a parameter 𝑟 ∈ 0,1 .

• Our method for the tradeoff problem:
• Initialize 𝜋 to the all-𝐹𝑃01 assignment.
• Demote the precision of largest tensors (in size) to 𝐹𝑃23.
• Repeat it while ratio23 𝜋 ≥ 𝑟. Return the final 𝜋.

• The above method places no explicit constraint on acc4 𝜋 .
• Observe: Training with this 𝜋 sometimes diverges, due to too many overflows.

• Our method for handling overflows:
• Promote the precision of tensors that overflow “too much” to 𝐹𝑃01.

63

during training

before training

Evaluation Results
• Comparison with existing precision assignments.

64

ImageNet, ShuffleNet-v2

†: width multiplier of 0.25

better

Summary of Contributions [Submitted]

• We formally introduce the memory-accuracy tradeoff problem and prove its NP-hardness.

• We propose:
(i) a novel precision assignment method as a heuristic solution to the tradeoff problem;

(ii) a novel technique that can handle too many overflows arising in training.

• We demonstrate that our techniques outperform existing precision assignments.

65

Summary of Contributions [Submitted]

• We formally introduce the memory-accuracy tradeoff problem and prove its NP-hardness.

• We propose:
(i) a novel precision assignment method as a heuristic solution to the tradeoff problem;

(ii) a novel technique that can handle too many overflows arising in training.

• We demonstrate that our techniques outperform existing precision assignments.

66

min
!
ℒ NN!NN

memory & time ⇓

Agenda

67

Programs that implement math.h. Correctness: [PLDI’16], [POPL’18].

Probabilistic / differentiable programming. Correctness: [NeurIPS’18/20], [POPL’20/23].

Programs that train ML models. Acceleration: [Submitted].

Programs that compute derivatives. Correctness: [ICML’23].

Autodiff

• Autodiff (AD): a class of algorithms that compute

𝒟𝑃 𝑥 ∈ ℝ5×7 (when it exists)

for a given program 𝑃 ∶ ℝ7 → ℝ5 and input 𝑥 ∈ ℝ7, by applying the chain rule.

• Backpropagation algorithm: an instance of AD, widely used in machine learning.

68

Correctness of AD

• If 𝑃 consists of differentiable functions and language constructs, then

∃ 𝒟𝑃 𝑥 ∧ 𝒟𝑃 𝑥 = 𝒟89𝑃 𝑥 for all 𝑥 ∈ ℝ7.

69

matmul, sequential composition, …

Correctness of AD

• If 𝑃 consists of differentiable functions and language constructs, then

∃ 𝒟𝑃 𝑥 ∧ 𝒟𝑃 𝑥 = 𝒟89𝑃 𝑥 for all 𝑥 ∈ ℝ7.

• If 𝑃 uses non-differentiable functions or language constructs, then

∄ 𝒟𝑃 𝑥 ∨ 𝒟𝑃 𝑥 ≠ 𝒟89𝑃 𝑥 for some 𝑥 ∈ ℝ7.

70

ReLU, if-else statement, …

E.g., for 𝑃 𝑥 = ReLU 𝑥 − ReLU −𝑥 ,

𝒟𝑃 0 = 1 but 𝒟*+𝑃 0 = 0.

𝑃 𝑥

𝑥

Correctness of AD

• If 𝑃 consists of differentiable functions and language constructs, then

∃ 𝒟𝑃 𝑥 ∧ 𝒟𝑃 𝑥 = 𝒟89𝑃 𝑥 for all 𝑥 ∈ ℝ7.

• If 𝑃 uses non-differentiable functions or language constructs, then

∄ 𝒟𝑃 𝑥 ∨ 𝒟𝑃 𝑥 ≠ 𝒟89𝑃 𝑥 for some 𝑥 ∈ ℝ7.

• That is,

71

𝑥 ∈ ℝ,

∄ 𝒟𝑃 𝑥 ∃ 𝒟𝑃 𝑥

𝒟*+𝑃 𝑥 ≠ 𝒟𝑃 𝑥

can be nonempty

Correctness of AD

• If 𝑃 consists of differentiable functions and language constructs, then

∃ 𝒟𝑃 𝑥 ∧ 𝒟𝑃 𝑥 = 𝒟89𝑃 𝑥 for all 𝑥 ∈ ℝ7.

• If 𝑃 uses non-differentiable functions or language constructs, then

∄ 𝒟𝑃 𝑥 ∨ 𝒟𝑃 𝑥 ≠ 𝒟89𝑃 𝑥 for some 𝑥 ∈ ℝ7.

• That is,

72

𝑥 ∈ ℝ,

∄ 𝒟𝑃 𝑥 ∃ 𝒟𝑃 𝑥

𝒟*+𝑃 𝑥 ≠ 𝒟𝑃 𝑥

“piecewise analytic”

My previous result [NeurIPS’20]
include ReLU, if-else statement, …

can be nonempty
has measure zero (i.e., negligible)

Limitations

• If 𝑃 consists of differentiable functions and language constructs, then

∃ 𝒟𝑃 𝑥 ∧ 𝒟89𝑃 𝑥 = 𝒟𝑃 𝑥 for all 𝑥 ∈ ℝ7.

• If 𝑃 uses non-differentiable functions or language constructs, then

∄ 𝒟𝑃 𝑥 ∨ 𝒟𝑃 𝑥 ≠ 𝒟89𝑃 𝑥 for some 𝑥 ∈ ℝ7.

• That is,

73

𝑥 ∈ ℝ,

∄ 𝒟𝑃 𝑥 ∃ 𝒟𝑃 𝑥

𝒟*+𝑃 𝑥 ≠ 𝒟𝑃 𝑥

“piecewise analytic”

My previous result [NeurIPS’20]

(e.g., ReLU, if-else statement)

“negligible”

(1) In practice, inputs to programs are not reals, but often floats.
(2) The set of all floats 𝔽 is finite, so has measure zero in ℝ.

can be nonempty
has measure zero

Limitations

• If 𝑃 consists of differentiable functions and language constructs, then

∃ 𝒟𝑃 𝑥 ∧ 𝒟89𝑃 𝑥 = 𝒟𝑃 𝑥 for all 𝑥 ∈ ℝ7.

• If 𝑃 uses non-differentiable functions or language constructs, then

∄ 𝒟𝑃 𝑥 ∨ 𝒟89𝑃 𝑥 ≠ 𝒟𝑃 𝑥 for some 𝑥 ∈ ℝ7.

• That is,

74

𝑥 ∈ ℝ,

∄ 𝒟𝑃 𝑥 ∃ 𝒟𝑃 𝑥

𝒟*+𝑃 𝑥 ≠ 𝒟𝑃 𝑥

“piecewise analytic”

My previous result [NeurIPS’20]

(e.g., ReLU, if-else statement)

“negligible”Hence, AD can be incorrect for all 𝑥 ∈ 𝔽,, and this is indeed possible.

𝔽<

can be nonempty
has measure zero

(1) In practice, inputs to programs are not reals, but often floats.
(2) The set of all floats 𝔽 is finite, so has measure zero in ℝ.

Problem

• Study the correctness of AD when inputs are floats (not reals).

• We focus on programs 𝑃 ∶ ℝ7 → ℝ5 that represent neural networks:

𝑤 ⟼ 𝑃(𝑤).

75

Problem

• Study the correctness of AD when inputs are floats (not reals).

• We focus on programs 𝑃 ∶ ℝ7 → ℝ5 that represent neural networks:

𝑤 ⟼ 𝑃(𝑤).

• Goal: Bound the size of the incorrect set (𝑆1:;) and non-differentiable set (𝑆:<=) of 𝑃.

76

𝔽, ⊇

∄ 𝒟𝑃 𝑤 ∃ 𝒟𝑃 𝑤

𝒟89𝑃 𝑤 ≠ 𝒟𝑃 𝑤

𝑆:<= 𝑆1:;

Our Results

• Consider a neural network 𝑃 with bias parameters:

77

e.g., Conv

𝑤!

𝑥#𝑥!
ReLU(𝑥#)

𝑤$

𝑥$
𝑓$ 𝑥$, 𝑤$ + 𝑤- 𝑥-

ReLU(𝑥-) ⋯
𝑓! 𝑥!, 𝑤! + 𝑤#

𝑤# 𝑤-

Our Results

• Consider a neural network 𝑃 with bias parameters:

• Theorem 1 The incorrect set is always empty:

𝑆1:; = 0.

78

∃ 𝒟𝑃 𝑤

𝒟*+𝑃 𝑤 ≠ 𝒟𝑃 𝑤

𝑆./0 𝑆).1

𝑤!

𝑥#

𝑤#

𝑥!
ReLU(𝑥#)

𝑤$ 𝑤-

𝑥$
𝑓$ 𝑥$, 𝑤$ + 𝑤- 𝑥-

ReLU(𝑥-) ⋯
𝑓! 𝑥!, 𝑤! + 𝑤#

somewhat surprising, given that
there were no such type of results before

Our Results

• Consider a neural network 𝑃 with bias parameters:

• Theorem 2 The density of the non-differentiable set is upper-bounded by

𝑆:<=
𝔽7 ≤

ReLUs in 𝑃
𝔽 .

• Moreover, there exists some class of 𝑃 such that

𝑆:<=
𝔽7 ≥

1
2 ⋅
ReLUs in 𝑃

𝔽 .

79

2$# for 32-bit floats

∄ 𝒟𝑃 𝑤

𝑆./0 𝑆).1

𝑤!

𝑥#

𝑤#

𝑥!
ReLU(𝑥#)

𝑤$ 𝑤-

𝑥$
𝑓$ 𝑥$, 𝑤$ + 𝑤- 𝑥-

ReLU(𝑥-) ⋯
𝑓! 𝑥!, 𝑤! + 𝑤#

Our Results

• Consider a neural network 𝑃 with bias parameters:

• Theorem 2 The density of the non-differentiable set is upper-bounded by

𝑆:<=
𝔽7 ≤

ReLUs in 𝑃
𝔽 .

• Theorem 3 For many 𝑃, the above density is lower-bounded by

𝑆:<=
𝔽7 ≥

1
2 ⋅
ReLUs in 𝑃

𝔽 .

80

𝑤!

𝑥#

𝑤#

𝑥!
ReLU(𝑥#)

𝑤$ 𝑤-

𝑥$
𝑓$ 𝑥$, 𝑤$ + 𝑤- 𝑥-

ReLU(𝑥-) ⋯
𝑓! 𝑥!, 𝑤! + 𝑤#

∄ 𝒟𝑃 𝑤

𝑆./0 𝑆).1

Our Results

• Consider a neural network 𝑃 with bias parameters:

• Theorem 4 Over the non-differentiable set, AD computes a generalized derivative:

𝒟89𝑃 𝑤 ∈ 𝜕𝑃(𝑤) for all 𝑤 ∈ 𝑆:<=.

{

81

Clarke subdifferential of 𝑃
≜ conv lim

2→4
𝒟𝑃 𝑤2 ∶ 𝑤2 → 𝑤

𝑤!

𝑥#

𝑤#

𝑥!
ReLU(𝑥#)

𝑤$ 𝑤-

𝑥$
𝑓$ 𝑥$, 𝑤$ + 𝑤- 𝑥-

ReLU(𝑥-) ⋯
𝑓! 𝑥!, 𝑤! + 𝑤#

∄ 𝒟𝑃 𝑤

𝑆./0 𝑆).1

Our Results

• Consider a neural network 𝑃 with bias parameters:

• Theorem 3 On the non-differentiable set, AD computes a generalized derivative:

𝒟89𝑃 𝑤 ∈ 𝜕𝑃(𝑤) for all 𝑤 ∈ 𝑆:<=.

{

82

∄ 𝒟𝑃 𝑤 ∃𝒟𝑃 𝑤

𝒟*+𝑃 𝑤 ≠ 𝒟𝑃 𝑤

𝑆./0 𝑆).1Clarke subdifferential of 𝑃,
i.e., conv lim

2→4
𝒟𝑃 𝑤2 ∶ 𝑤2 → 𝑤

Extend previous results to more general neural networks.

Main point: Bounds become larger without bias parameters.

𝑤!

𝑥#

𝑤#

𝑥!
ReLU(𝑥#)

𝑤$ 𝑤-

𝑥$
𝑓$ 𝑥$, 𝑤$ + 𝑤- 𝑥-

ReLU(𝑥-) ⋯
𝑓! 𝑥!, 𝑤! + 𝑤#

piecewise analytic func’sno bias param’s

Summary of Contributions [ICML’23]

• We theoretically study the correctness of AD for neural networks when param’s are floats.

• We prove tight bounds on the density of the incorrect and non-differentiable sets.
We also prove what AD computes over these sets.

• Our results imply that AD for neural networks is correct on most floating-point param’s,
and it is correct more often with bias parameters.

83

• We theoretically study the correctness of AD for neural networks when param’s are floats.

• We prove tight bounds on the density of the incorrect and non-differentiable sets.
We also prove what AD computes over these sets.

• Our results imply that AD for neural networks is correct on most floating-point param’s,
and it is correct more often with bias parameters.

Summary of Contributions [ICML’23]

84

⋯ ⋯𝒟"#𝑃𝑃

Continuous values Operations on them

Real numbers (ℝ) Exact operations (+, ×, ...)

Floating-point numbers (𝔽) Floating-point operations (+𝔽, ×𝔽, ...)

⟹ Have widened our understanding of floating point in real-world systems.

Agenda

85

Programs that implement math.h. Correctness: [PLDI’16], [POPL’18].

Probabilistic / differentiable programming. Correctness: [NeurIPS’18/20], [POPL’20/23].

Programs that train ML models. Acceleration: [Submitted].

Programs that compute derivatives. Correctness: [ICML’23].

Questions?

86

