
REASONING ABOUT FLOATING POINT IN REAL-WORLD SYSTEMS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Wonyeol Lee
August 2023

Abstract

Continuous computations, which involve continuous data and operations on them, are ubiquitous
in diverse areas such as machine learning and scientific computing. In theoretical studies of such
computations, we typically use real numbers and exact operations. In practice, however, we often
substitute floating-point numbers for the reals and apply inexact floating-point operations, which
presents a clear discrepancy between the theory and practice of continuous computations.

In this dissertation, we aim at better understanding this discrepancy, especially for three different
classes of real-world computations. First, for computations that implement math libraries using
floats, we present automatic techniques to formally verify their correctness. Next, for computations
that calculate derivatives of neural networks at floating-point inputs, we show theoretical results on
their correctness. Lastly, for computations that train deep neural networks using floats, we present
a systematic way to accelerate them using lower-precision floats.

iv

Acknowledgments

Without the help of many great people around me, I could not have achieved anything I did during
my Ph.D. studies. I deeply thank my advisor, Alex Aiken, not only for teaching me how to do
research (i.e., how to find a good problem, how to approach a technical problem, how to write a
good paper, and how to give a good talk), but also for encouraging me all the time especially when I
went through difficulties. I thank Clark Barrett and Fredrik Kjolstad for serving on my reading/oral
committee, and Thomas Icard and Caroline Trippel for serving on my oral committee. I also thank
all the collaborators I worked with during my Ph.D. studies (and my military service in South Korea):
Gwonsoo Che, Hyoungjin Lim, Sejun Park, Xavier Rival, Rahul Sharma, Hongseok Yang, and
Hangyeol Yu. Finally, I thank all my friends and family members for supporting me unconditionally.

v

Contents

Abstract iv

Acknowledgments v

Contents ix

1 Introduction 1
1.1 Contributions . 2
1.2 Publications . 3

2 Background 5
2.1 Floating-Point Formats and Numbers . 5
2.2 Floating-Point Operations and Rounding Errors . 6

3 Correctness of Highly Optimized Math Libraries 9
3.1 Introduction . 9
3.2 Motivation . 11
3.3 Algorithm . 15

3.3.1 Core Language . 15
3.3.2 Symbolic Abstractions . 16
3.3.3 Construction of Symbolic Abstractions . 17
3.3.4 Computation of Precision Loss . 21

3.4 Case Studies . 23
3.4.1 The sin Implementation . 26
3.4.2 The tan Implementation . 27
3.4.3 The log Implementation . 28

3.5 Related Work . 29
3.6 Discussion . 31
3.7 Conclusion . 31

vi

4 Correctness of Highly Accurate Math Libraries 32
4.1 Introduction . 32
4.2 Motivation . 34
4.3 Abstraction . 37

4.3.1 Core Language . 37
4.3.2 Sound Abstractions . 38
4.3.3 Construction of Sound Abstractions . 40

4.4 Exploiting Exactness Properties . 43
4.4.1 Simple Exact Operations . 43
4.4.2 Sterbenz’s Theorem . 44
4.4.3 Dekker’s Theorem . 46
4.4.4 Nonzero Significand Bits . 49
4.4.5 Refined (1 + ε)-property . 52
4.4.6 Ulp Error Bound . 55

4.5 Implementation . 56
4.6 Case Studies . 57

4.6.1 The exp Implementation . 60
4.6.2 The sin Implementation . 60
4.6.3 The tan Implementation . 60
4.6.4 The log Implementation . 61

4.7 Related Work . 61
4.8 Conclusion . 63

5 Correctness of Automatic Differentiation 64
5.1 Introduction . 64
5.2 Preliminaries . 67

5.2.1 Notation and Definitions . 67
5.2.2 Neural Networks . 67
5.2.3 Automatic Differentiation . 68
5.2.4 Incorrect and Non-Differentiable Sets . 69

5.3 Neural Networks with Bias Parameters . 70
5.3.1 Characterization of the Incorrect Set . 71
5.3.2 Characterization of the Non-Differentiable Set 71
5.3.3 Connection to Clarke Subderivatives . 73

5.4 Neural Networks without Bias Parameters . 74
5.4.1 Bounds for Non-Differentiable and Incorrect Sets 75
5.4.2 Bounds for the Incorrect Set . 76
5.4.3 Conditions for Computing Standard Derivatives and Clarke Subderivatives . 77

vii

5.5 Related Work . 78
5.6 Discussion . 78
5.7 Conclusion . 79

6 Acceleration of Deep Neural Network Training 81
6.1 Introduction . 81
6.2 Problem . 84

6.2.1 Low-Precision Floating-Point Training . 84
6.2.2 Memory-Accuracy Tradeoff Problem . 86
6.2.3 NP-Hardness of the Problem . 87

6.3 Algorithm . 87
6.3.1 Precision Demotion for Saving Memory . 87
6.3.2 Precision Promotion for Handling Overflows 88

6.4 Experiments . 90
6.4.1 Implementation . 90
6.4.2 Experiment Setups . 91
6.4.3 Comparison with Existing Precision Assignments 92
6.4.4 Ablation Study: Precision Demotion and Promotion 94
6.4.5 Choosing the Value of r . 96

6.5 Related Work . 97
6.6 Conclusion . 98

7 Conclusion 99

A Appendix for Chapter 4 100
A.1 Complete Definitions and Rules . 100

A.1.1 Definition of Operations on Abstractions . 100
A.1.2 Rules for Constructing Abstractions . 101

B Appendix for Chapter 5 105
B.1 Formal Setup . 105

B.1.1 Piecewise-Analytic Functions . 105
B.1.2 Neural Networks . 107
B.1.3 Automatic Differentiation . 109

B.2 Upper Bounds on |ndfΩ(zL) ∪ incΩ(zL)| . 112
B.2.1 Lemmas (Basic) . 112
B.2.2 Lemmas (Technical: Part 1) . 113
B.2.3 Theorem 5.7 (Main Lemmas) . 115
B.2.4 Theorem 5.7 (Main Proof) . 115

viii

B.2.5 Lemmas (Technical: Part 2) . 116
B.2.6 Theorem 5.12 (Main Lemmas) . 119
B.2.7 Theorem 5.12 (Main Proof) . 121

B.3 Upper Bounds on |incΩ(zL)| . 122
B.3.1 Lemmas (Basic) . 122
B.3.2 Lemmas (Technical: Part 1) . 123
B.3.3 Lemmas (Technical: Part 2) . 125
B.3.4 Theorem 5.6 (Main Lemmas) . 129
B.3.5 Theorem 5.6 (Main Proof) . 132
B.3.6 Lemmas (Technical: Part 3) . 132
B.3.7 Theorem 5.14 (Main Lemma) . 135
B.3.8 Theorem 5.14 (Main Proof) . 135

B.4 Lower Bounds on |ndfΩ(zL)| and |incΩ(zL)| . 136
B.4.1 Theorem 5.8 (Main Proof) . 136
B.4.2 Theorem 5.13 (Main Proof) . 138
B.4.3 Theorem 5.15 (Main Proof) . 140

B.5 Computation of Standard Derivatives . 142
B.5.1 Lemmas (Basic) . 142
B.5.2 Lemmas (Technical: Part 1) . 143
B.5.3 Lemmas (Technical: Part 2) . 144
B.5.4 Theorems 5.9 and 5.16 (Main Lemmas) . 146
B.5.5 Theorems 5.9 and 5.16 (Main Proofs) . 147

B.6 Computation of Clarke Subderivatives . 148
B.6.1 Lemmas (Basic) . 148
B.6.2 Lemmas (Technical) . 150
B.6.3 Theorems 5.10 and 5.17 (Main Lemmas) . 151
B.6.4 Theorems 5.10 and 5.17 (Main Proofs) . 154

C Appendix for Chapter 6 156
C.1 Problem: Deferred Proof . 156
C.2 Experiments: Deferred Details . 162
C.3 Experiments: Deferred Results . 163

C.3.1 Comparison with Existing Precision Assignments 163
C.3.2 Ablation Study: Precision Demotion and Promotion 163

Bibliography 173

ix

List of Tables

3.1 Important statistics of each implementation for case studies. 24
3.2 Summary of results. 24

4.1 Summary of results. 58

x

List of Figures

2.1 Bit representation of 64-bit double-precision floats. 6

3.1 The x86 assembly code of exp that ships with S3D. 12
3.2 The x86 assembly code of expopt automatically generated by Stoke. 12
3.3 The syntax of the core language. 16
3.4 The rules for constructing a symbolic abstraction. 19
3.4 The rules for constructing a symbolic abstraction (continued). 20
3.5 Bounds on precision loss between implementations and mathematically exact results. 25

4.1 The computation of r(x) in Intel’s implementation of the log function. 36
4.2 The abstract syntax of our core language . 37
4.3 Rules for constructing an abstraction of an expression 40
4.4 Rules for simple exact operations . 44
4.5 Rules for applying Sterbenz’s theorem . 46
4.6 Rules for applying Dekker’s theorem . 47
4.7 Rule for using σ(·) . 50
4.8 Rules for applying the refined (1 + ε)-property . 53
4.9 The ulp error of each implementation over an input interval. 59

6.1 Training trajectory of various models on CIFAR-100. 82
6.2 A diagram showing the tensors and operators used in a gradient computation. . . . 85
6.3 Results of training ShuffleNet-v2 on ImageNet with πfp32, πunif , πop, πop′ , and πours,r. 94
6.4 Memory-accuracy tradeoffs of πunif , πop, πop′ , and πours,r for four models and their

smaller variants on CIFAR-10 and CIFAR-100. 95
6.5 Memory-accuracy tradeoffs of πours,r, πours[inc],r, and πours[rand],r for three models on

CIFAR-100. 96
6.6 Training ShuffleNet-v2 on ImageNet with πours,r and πours[no-promo],r. 96
6.7 Memory-accuracy tradeoffs of πours,r for ShuffleNet-v2 on ImageNet-200-i (i ∈ [5]). . 97

C.1 The model networkM and the loss network L used in the proof of Theorem 6.2. . . 157

xi

C.2 A zoomed-in version of Figure 6.3 (left). 164
C.3 Results continued from Figure 6.4. 165
C.4 Training trajectories for the configurations shown in Figure 6.4. 166
C.5 Training trajectories for the configurations shown in Figure C.3. 167
C.6 Results corresponding to Figure 6.3. 168
C.7 Results corresponding to Figure 6.4. 169
C.8 Results corresponding to Figure C.3. 170
C.9 Results continued from Figure 6.5. 171
C.10 Results continued from Figure 6.6. 172

xii

Chapter 1

Introduction

Continuous computations, which involve continuous data and operations on them, are becoming
ever more prevalent in computer science (e.g., in machine learning, graphics, and security) as well as
outside computer science (e.g., in scientific computing, statistics, and finance). Rigorous reasoning
about these computations, therefore, is increasingly important as it can guarantee that desired results
are computed and they are computed in a desired amount of time.

Doing this reasoning, however, is challenging due to a fundamental discrepancy between what is con-
sidered in theory and what is used in practice for continuous computations. In theory, we usually work
with real numbers and arithmetic to model continuous values and operations, while in practice, even
representing all the real numbers is impossible because actual computers have only finitely many bits.
Hence, real numbers and arithmetic are approximated in practical computations, and floating-point
numbers and arithmetic are “by far the most widely used” approximation [109, page 3] among many
others (e.g., fixed-point numbers [157], posit numbers [59], and computable real numbers [156]); see
Chapter 2 for background on floating point. We point out that the discrepancy between reals and floats
is fundamental and not easily reconcilable: the set of all real numbers is uncountable and complete (i.e.,
does not have any “missing points” between the numbers), while the set of all floating-point numbers
is finite and incomplete; further, real arithmetic is exact by definition and enjoys many nice properties
(such as associativity), while floating-point arithmetic is mostly inexact due to rounding errors and
lacks some of those properties (including associativity). These fundamental differences between reals
and floats make it difficult to rigorously reason about continuous computations performed in practice.

To better understand the discrepancy between the theory and practice of continuous computations,
considerable efforts have been made in several different areas. For example, rigorous rounding error
analysis appeared as early as the 1940s in the work of John von Neumann, Alan Turing, and others
[150, 153]; since then it has been actively studied, with an emphasis on numerical linear algebra, by
numerical analysts [68, 157, 158]. As another example, many floating-point algorithms to compute
elementary functions (e.g., exp, log, and sin) have been proposed, theoretically analyzed, and further

1

CHAPTER 1. INTRODUCTION 2

improved for more than a half century by computer scientists [64, 100, 108].
Despite such efforts, our theoretical understanding of practical continuous computations is still

limited, for at least three reasons. First, even if some computations (e.g., algorithms for elementary
functions) have been thoroughly studied from a theoretical perspective, what we actually use in
practice is often not these computations, but rather their variants (e.g., implementations of the
algorithms) that deviate from the original computations (e.g., to achieve better performance). This
makes already established theoretical results inapplicable to practically used computations. Second,
some computations are just beyond what we can analyze with existing theoretical tools. Donald Knuth
stated this point in [82, page 229]: “Many serious mathematicians have attempted to analyze a sequence
of floating point operations rigorously, but have found the task so formidable that they have tried
to be content with plausibility arguments instead.” Third, some computations (e.g., those from deep
learning) started to be considered only recently, relative to the long history of floating point. Hence,
simply not enough time has been given to us to develop a full understanding of these computations.

1.1 Contributions

Given this status, we aim to better understand and characterize the discrepancy between the theory
and practice of continuous computations. In particular, we focus on three different classes of real-
world computations that make use of floating point: computations that implement math libraries
using floats; computations that calculate derivatives of neural networks at floating-point inputs; and
computations that train deep neural networks using floats.

First, in Chapters 3 and 4, we consider floating-point implementations of math libraries, such
as Intel’s implementation of the C math library math.h. Due to the use of floats, these implemen-
tations inevitably have some errors in the outputs with respect to their theoretical specifications
(e.g., exp : R → R), and these errors can be unexpectedly large as illustrated in [45, 46]. It is
therefore important to formally verify the correctness of these implementations (i.e., bound their
maximum errors), ideally automatically. This verification problem, however, has two challenges.
First, highly optimized implementations of math libraries often intermix floating-point operations
with bit-level operations (e.g., bit-shifts), and reasoning about such “mixed” code is challenging
because floating-point operations behave “smoothly” while bit-level operations behave “discretely.”
Second, industry standard implementations of math libraries are often claimed to have extremely
small error bounds, and proving such small bounds is in general challenging even for human beings.
We present automatic techniques for the verification problem that address these two challenges
based on abstraction, analytical optimization, and testing. We apply these techniques to Intel’s
implementations of math.h and prove correctness automatically.

Second, in Chapter 5, we consider automatic differentiation (AD), a class of algorithms for

CHAPTER 1. INTRODUCTION 3

computing the derivative of a given program, which includes the well-known backpropagation algo-
rithm. Recent work has shown that AD over the reals is almost always correct in a mathematically
precise sense [18, 71, 92, 101]. However, actual programs work with floating-point numbers (or
machine-representable numbers in general), not reals. To better understand this gap, we study the
correctness of AD when applied to a neural network with machine-representable parameters. In
particular, we analyze two sets of parameters on which AD can be incorrect: the incorrect set on
which the network is differentiable but AD does not compute its derivative, and the non-differentiable
set on which the network is non-differentiable. For a neural network with “bias parameters”, we
first prove that the incorrect set is always empty. We then prove a tight bound on the size of the
non-differentiable set, which is linear in the number of non-differentiabilities in activation functions,
and give a simple necessary and sufficient condition for a parameter to be in this set. We further
prove that AD always computes a Clarke subderivative even on the non-differentiable set. We also
extend these results to neural networks possibly without bias parameters.

Third, in Chapter 6, we consider the training of deep neural networks. When training a network,
keeping all tensors in high precision (e.g., 32-bit or 16-bit floats) is often wasteful, while keeping all
tensors in low precision (e.g., 8-bit floats) can lead to unacceptable accuracy loss [78, 104, 147, 155].
It is therefore important to use a precision assignment—a mapping from all tensors to precision
levels (high or low)—that keeps most of the tensors in low precision and leads to sufficiently accurate
models. However, how to explore this memory-accuracy tradeoff in a systematic way has not been
well-understood even empirically. We provide a heuristic technique that achieves the tradeoff by
generating precision assignments that (i) use less memory and (ii) lead to more accurate models at the
same time, compared to existing precision assignments. We evaluate our technique on convolutional
networks for image classification tasks, and show that our method typically provides > 2× memory
reduction over a baseline precision assignment while preserving training accuracy, and gives further
reductions by trading off accuracy. Compared to other baselines which sometimes cause training
to diverge, our method provides similar or better memory reduction while avoiding divergence.

1.2 Publications

Some parts of this dissertation have appeared in the following papers, which I wrote in collaboration
with Alex Aiken, Sejun Park, and Rahul Sharma.

• Wonyeol Lee, Rahul Sharma, Alex Aiken. Verifying Bit-Manipulations of Floating-Point. In
Programming Language Design and Implementation (PLDI), Santa Barbara, CA, June 2016.
Cited as [90].

• Wonyeol Lee, Rahul Sharma, Alex Aiken. On Automatically Proving the Correctness of math.h
Implementations. In Principles of Programming Languages (POPL), Los Angeles, CA, January
2018. Cited as [91].

CHAPTER 1. INTRODUCTION 4

• Wonyeol Lee, Sejun Park, Alex Aiken. On the Correctness of Automatic Differentiation for
Neural Networks with Machine-Representable Parameters. In International Conference on
Machine Learning (ICML), Honolulu, HI, July 2023. Cited as [93].

• Wonyeol Lee, Rahul Sharma, Alex Aiken. Training with Mixed-Precision Floating-Point
Assignments. Transactions on Machine Learning Research (TMLR), June 2023. Cited as [94].

Chapter 2

Background

In this chapter, we introduce some basic definitions and properties related to floating point.

2.1 Floating-Point Formats and Numbers

We start with the definition of a floating-point format.

Definition 2.1. A tuple (emin, emax, p) ∈ Z3 is a floating-point format if emin ≤ emax and p ≥ 1. We
call emin (or emax) the minimum (or maximum) exponent and p the precision of the format.

The most popular floating-point formats include: the 64-bit double-precision format defined as
(−1022, 1023, 53); the 32-bit single-precision format defined as (−126, 127, 24); the 16-bit half-
precision format defined as (−14, 15, 11); and the 16-bit bfloat format defined as (−126, 127, 8). The
first three formats have been specified by the IEEE 754 standard since 1985 [73], while the last
format has been introduced by Google Brain around 2016 [2].

Let (emin, emax, p) be a floating-point format. We define the floating-point numbers (or floats)
of the format as follows. First, finite floating-point numbers are defined.

Definition 2.2. A real number x ∈ R is a finite floating-point number if

x = (−1)s × 2e × f1.f2 · · · fp (2)

for some s ∈ {0, 1}, e ∈ [emin, emax] ∩ Z, and fi ∈ {0, 1} such that (i) f1 = 1, or (ii) f1 = 0 and
e = emin. We call s the sign, e the exponent, and f1.f2 · · · fp (2) the significand (or fraction, or
mantissa) of x. We call x ∈ R a normal number if f1 = 1 or x = 0, and a subnormal (or denormal)
number otherwise. We write F ⊆ R as the set of all finite floating-point numbers.

In addition to finite ones, non-finite floating-point numbers are considered in many formats (e.g.,
those specified by the IEEE 754 standard) and usually defined as three values: +∞, −∞, and NaN

5

CHAPTER 2. BACKGROUND 6

63 52 0

sign
exponent
(11 bit)

fraction
(52 bit)

Type Exponent part (expn) Fraction part (frac) Value

Zero 0 0 (−1)sign × 0
Subnormal 0 ̸= 0 (−1)sign × 2−1022 × 0.frac(2)

Normal [1, 2046] unconstrained (−1)sign × 2expn−1023 × 1.frac(2)
Infinity 2047 0 (−1)sign ×∞
NaN 2047 ̸= 0 (−1)sign ×⊥

Figure 2.1: Bit representation of 64-bit double-precision floats. The 11-bit exponent part, when
interpreted as an unsigned integer, takes a value between 0 and 2047; it is converted to the exponent
of a float by subtracting some integer, which is 1023 (called the exponent bias) in the case of normal
floats. The 52-bit fraction part does not contain the leading fraction bit; it is converted to the
significand of a float by adding the leading fraction bit, which is 1 in the case of normal floats.

(“not a number”). These numbers can be generated by floating-point operations when the output is
mathematically infinite (e.g., one divided by positive zero), too large in magnitude (e.g., one divided
by 2−130 in the single-precision format), or mathematically undefined (e.g., zero divided by zero).

When representing floats in actual computers, we usually follow the IEEE 754 standard. Figure 2.1
illustrates the bit representation of 64-bit double-precision floats defined in the standard. In this
representation, the most significant bit denotes the sign part, the next 11 bits denote the exponent part,
and the remaining 52 bits denote the fraction part. The figure shows the values represented by different
bit patterns. The bit representations of different floating-point formats can be defined similarly.

2.2 Floating-Point Operations and Rounding Errors

We now define floating-point operations. To do so, we first introduce the rounding function which
converts a real number to a float.

Definition 2.3. The rounding function fl : R→ F is defined as

fl(r) ≜ argmin
x∈F
|r − x|

where ties are broken by choosing the x with 0 in the least significant position.

Here we use the “rounding to nearest even” instead of other rounding modes (e.g., “rounding toward
0”), since it is the default rounding mode in the IEEE 754 standard. Using the rounding function,
we define floating-point operations.

CHAPTER 2. BACKGROUND 7

Definition 2.4. For a real-valued operation ∗ ∈ {+,−,×, /}, the corresponding floating-point
operation ⊛ is defined as

x⊛ y ≜ fl(x ∗ y)

for operands x, y ∈ F with |x ∗ y| ≤ maxF.

In this dissertation, we assume that each floating-point operation is left-associative.
Floating-point operations often introduce rounding errors, yet the error from each operation is

rigorously modeled by the following (1 + ε)-property.

Theorem 2.5 ([109, Section 2.3.1]). For any ∗ ∈ {+,−,×, /} and x, y ∈ F with |x ∗ y| ≤ maxF,

x⊛ y = (x ∗ y)(1 + δ) + δ′

for some |δ| < ε and |δ′| ≤ ε′, where ε ≜ 2−p and ε′ ≜ 2−p+emin are constants.

The (1 + ε)-property states that each floating-point operation can introduce two kinds of errors, a
multiplicative error modeled by δ and an additive error modeled by δ′, but that each type of error
is always bounded by very small constants ε and ε′ respectively, regardless of the operands x and
y. Here the constant ε is often called the machine epsilon.

To measure rounding errors, we define three metrics: the absolute error, the relative error, and
the ulp (units in last place) error.

Definition 2.6. Let r ∈ R be an exact value and r′ ∈ R be an approximation to r. The absolute
error, relative error, and ulp error of r′ with respect to r are defined as

ErrAbs(r, r′) ≜ |r − r′|, ErrRel(r, r′) ≜

∣∣∣∣r − r′r

∣∣∣∣ , ErrUlp(r, r′) ≜
|r − r′|
ulp(r)

,

where

ulp(r) ≜

2e−p+1 if |r| ∈ [2e, 2e+1) with e ∈ [emin, emax] ∩ Z,

2emin−p+1 if |r| ∈ [0, 2emin).

Here, ulp(r) represents the gap between the two adjacent floats x, y ∈ F that surround r (i.e.,
x ≤ r < y if r ≥ 0, and x < r ≤ y if r < 0). For example, the ulp error of a floating-point operation
with respect to the corresponding exact operation is always bounded by 0.5 ulps:

ErrUlp(x ∗ y, x⊛ y) ≤ 1

2

for any x, y ∈ F with |x ∗ y| ≤ maxF. Although the absolute and relative errors are widely known,
the ulp error is more commonly used than the other two when measuring the rounding error of math
libraries. The absolute error can be large even when the result is incorrect only in the least significant
bit. The relative error does not suffer from this problem but it is undefined at r = 0. On the other

CHAPTER 2. BACKGROUND 8

hand, the ulp error is proportional to the relative error (Theorem 2.7), is always defined, and hence
is preferable. Therefore, Chapters 3 and 4 focus on the ulp error of floating-point implementations.

The ulp error is closely related to the relative error as follows.

Theorem 2.7 ([109, Section 2.3.3]). For any |r| ≤ maxF and r′ ∈ R,

ErrUlp(r, r′) ≤ ErrRel(r, r′) · 1
ε

if r ̸= 0,

ErrRel(r, r′) ≤ ErrUlp(r, r′) · 2ε if |r| ≥ 2emin .

As a corollary, for any |r| ∈ [2emin ,maxF] and r′ ∈ R, we have

ErrRel(r, r′)

2ε
≤ ErrUlp(r, r′) ≤ ErrRel(r, r′)

ε
.

In the following chapters, we will make use of the definitions and results presented above. More
details on floating point can be found in the following books and survey articles: [16, 52, 68, 109, 114]
and [82, Chapter 4.2].

Chapter 3

Correctness of

Highly Optimized Math Libraries

3.1 Introduction

Highly optimized implementations of math libraries rely on intermixing floating-point and bit-level
code. Even though such code is widely used, automatic formal verification of these implementations has
remained an open challenge [137]. Although it has been demonstrated that it is possible to construct
machine-checkable proofs of correctness by hand for floating-point algorithms of the level of sophistica-
tion we are interested in [61, 62], no existing automated verification technique is capable of analyzing
these implementations. In this chapter, we present a first step towards addressing this challenge.

Bit-precise floating-point reasoning is hard: floating-point is an approximation to real arithmetic,
but floating-point numbers do not obey the algebraic axioms of real numbers due to rounding
errors. The situation becomes even more difficult in the presence of bit-level operations, such
as bit-manipulations of the floating-point representation. To illustrate mixed code, consider an
implementation that computes the 64-bit floating-point number 2n from a small integer n. A naive
implementation would first compute the integer representing 2n and then perform the computationally
expensive operation of converting an integer to a 64-bit floating-point number. Alternatively, the
same result can be obtained by bit-shifting n + 1023 left by 52 bits (Figure 2.1). Existing static
analyses for floating-point arithmetic would be stumped by the bit-shift operation and would fail to
prove the functional correctness of this trick. Moreover, such tricks are routine in real code [54, 106].

Before explaining our solution, it is important to understand why existing automated techniques
(based on testing, model checking, and abstract interpretation) are inadequate. The simplest ver-
ification technique is exhaustive testing of all possible inputs. This approach is feasible for a function
like expf that computes the exponential of a 32-bit single-precision floating-point number. However,

9

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 10

the number of 64-bit double-precision floating-point numbers (or doubles) is too large for brute force
enumeration to be tractable.

A plausible verification strategy involves encoding correctness as the validity of a SMT formula [35].
However, the specifications of interest here are transcendentals and these (ex, sin (x) , etc.) cannot
be encoded precisely in existing SMT theories. Verifiers based on abstract interpretation, such as
Astree and Fluctuat, use pattern matching to handle certain bit-trick routines in commercial
floating-point avionics code [54, 106]. Our goal is a general technique.

Our approach to the problem is to divide and conquer. For a given floating-point implementation,
we consider non-overlapping intervals that are subsets of the possible range of inputs. We require
each interval I to satisfy the following property: if we statically know that the inputs are restricted
to I, the bit-level operations can be removed from the implementation by partial evaluation. Then,
for each interval, we have a specialized implementation that is composed exclusively of floating-point
operations and thus amenable to abstraction-based techniques. Our main contribution is to devise
a procedure to construct such intervals (§3.3). There is one significant subtlety: The intervals do
not always fully cover the space and we must deal with potential “gaps” between intervals. Com-
mercial tools such as Fluctuat [43, 54] also subdivide the input range (with no gaps) to improve
precision, and our technique can be seen as a systematic method to construct these subdivisions.
We analyze the implementations specialized for each interval and report the maximum error between
the implementation and the ideal mathematical specification.

We make the following contributions.

• We describe the first general technique for verification of mixed floating-point and bit-level
code. We are unaware of any automatic or semi-automatic verification technique that can prove
the functional correctness of the production grade benchmarks we consider. Prior to this work,
formal verification of such benchmarks required manual construction of machine-checkable
proofs [61, 62].

• We reduce the problem of computing bounds on numerical errors to an optimization problem
and leverage state-of-the-art techniques for analytical optimization. While our method is not
fully automatic, these techniques automate one of the most difficult aspects of the problem
and make verification of complex implementations feasible.

• Our technique performs verification at the binary level, not on source code or a model of the pro-
gram. Thus, the derived bounds apply to the actual code that executes directly on the hardware.

We evaluate our technique on three implementations of transcendental functions from Intel’s
libraries: a bounded periodic function (sin, §3.4.1), an unbounded discontinuous periodic function
(tan, §3.4.2), and an unbounded continuous function (log, §3.4.3). We are able to successfully bound
the difference between the result computed by these implementations and the exact mathematical
result. For each of these functions, we also trade precision for performance and create significantly

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 11

more efficient variants that produce approximately correct results. Using our technique, we are
able to provide a bound on the difference between the approximate variants and the mathematical
specifications. These results demonstrate the generality of our technique and address some of the
drawbacks of manually constructed proofs: modifying the manual proofs to prove even slightly
different theorems is difficult [61, 62]. To quote Harrison [61],

Nontrivial proofs, as are carried out in the work described here, often require long and
complicated sequence of rules. The construction of these proofs often requires considerable
persistence. Moreover, the resulting proof scripts can be quite hard to read, and in some
cases hard to modify to prove a slightly different theorem.

The rest of this chapter is organized as follows. §3.2 provides an overview of our verification
technique through an example, and §3.3 presents the technique in detail which combines abstraction,
analytical optimization, and testing. §3.4 discusses evaluation and §3.5 surveys prior work. Finally,
§3.6 gives a discussion of future work and §3.7 concludes.

3.2 Motivation

S3D [23] is a combustion chemistry simulation that is heavily used in research on developing more
efficient and cleaner fuels for internal combustion engines. The performance of the exponential func-
tion is so important for this task that the developers ship a hand-coded x86 assembly implementation
exp (Figure 3.1), which is inspired by the implementation of the exponential function present in
CUDA libraries for GPUs. There is no source code as it has been implemented directly in assembly.
There is also no documentation available regarding exp except that it is supposed to compute ex

for x ∈ [−2.6, 0.12]. As is characteristic of highly optimized floating-point implementations, exp
contains bit-level operations (rounding to integer on line 3, converting double to integer on line 4,
bit-vector addition on line 5, bit-shift on line 6, and bit-shuffle on line 7).

The main algorithm used by exp first computes an integer N and a reduced value d:

N = round (x · log2 e) , d = x− (log 2)N, (3.1)

where log (·) without a base denotes the natural logarithm. Then it uses the following identity to
compute ex:

ex = e(log 2)N · ed = 2N · ed.

The implementation exp computes 2N (a double in IEEE representation) from N (a 64-bit integer
in 2’s complement representation) using bit-level operations. It computes ed using a Taylor series
expansion of degree 12:

ed ≈
12∑
i=0

di

i!
.

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 12

1 vmovddup %xmm0, %xmm0
2 vmulpd L2E, %xmm0, %xmm2
3 vroundpd $0, %xmm2, %xmm2

4 vcvtpd2dqx %xmm2, %xmm3
5 vpaddd B, %xmm3, %xmm3
6 vpslld $20, %xmm3, %xmm3
7 vpshufd $114, %xmm3, %xmm3

8 vmulpd C1, %xmm2, %xmm1
9 vmulpd C2, %xmm2, %xmm2
10 vaddpd %xmm1, %xmm0, %xmm1
11 vaddpd %xmm2, %xmm1, %xmm1

12 vmovapd T1, %xmm0
13 vmulpd T12, %xmm1, %xmm2
14 vaddpd T11, %xmm2, %xmm2
15 vmulpd %xmm1, %xmm2, %xmm2
16 vaddpd T10, %xmm2, %xmm2
17 vmulpd %xmm1, %xmm2, %xmm2
18 vaddpd T9, %xmm2, %xmm2
19 vmulpd %xmm1, %xmm2, %xmm2
20 vaddpd T8, %xmm2, %xmm2
21 vmulpd %xmm1, %xmm2, %xmm2
22 vaddpd T7, %xmm2, %xmm2
23 vmulpd %xmm1, %xmm2, %xmm2
24 vaddpd T6, %xmm2, %xmm2
25 vmulpd %xmm1, %xmm2, %xmm2
26 vaddpd T5, %xmm2, %xmm2
27 vmulpd %xmm1, %xmm2, %xmm2
28 vaddpd T4, %xmm2, %xmm2
29 vmulpd %xmm1, %xmm2, %xmm2
30 vaddpd T3, %xmm2, %xmm2
31 vmulpd %xmm1, %xmm2, %xmm2
32 vaddpd T2, %xmm2, %xmm2
33 vmulpd %xmm1, %xmm2, %xmm2
34 vaddpd %xmm0, %xmm2, %xmm2
35 vmulpd %xmm1, %xmm2, %xmm1
36 vaddpd %xmm0, %xmm1, %xmm0

37 vmulpd %xmm3, %xmm0, %xmm0
38 retq

Figure 3.1: The x86 assembly code of exp
that ships with S3D [23]. Instructions have
been reordered to aid understanding, without
affecting the output.

1 vmulpd L2E, %xmm0, %xmm2
2 vroundpd C, %xmm2, %xmm2
3 // C = $0xfffffffffffffffe

4 vcvttpd2dq %xmm2, %xmm3
5 vpaddw B, %xmm3, %xmm3
6 vpsllq $0x14, %xmm3, %xmm3
7 vpshufd $0x3, %xmm3, %xmm3

8 vmulpd C1, %xmm2, %xmm1
9 vaddpd %xmm1, %xmm0, %xmm1
10
11

12 vmovapd T1, %xmm0
13 vlddqu T8, %xmm2
14 vmulpd %xmm1, %xmm2, %xmm2
15 vaddpd T7, %xmm2, %xmm2
16 vmulpd %xmm1, %xmm2, %xmm2
17 vaddpd T6, %xmm2, %xmm2
18 vmulsd %xmm1, %xmm2, %xmm2
19 vaddpd T5, %xmm2, %xmm2
20 vmulpd %xmm1, %xmm2, %xmm2
21 vaddpd T4, %xmm2, %xmm2
22 vmulpd %xmm1, %xmm2, %xmm2
23 vaddpd T3, %xmm2, %xmm2
24 vmulsd %xmm1, %xmm2, %xmm2
25 vaddpd T2, %xmm2, %xmm2
26 vmulsd %xmm1, %xmm2, %xmm2
27 vaddsd %xmm0, %xmm2, %xmm2
28 vmulpd %xmm1, %xmm2, %xmm1
29 vaddsd %xmm0, %xmm1, %xmm0
30
31
32
33
34
35
36

37 vmulpd %xmm3, %xmm0, %xmm0
38 retq

Figure 3.2: The x86 assembly code of expopt
automatically generated by Stoke [137]. This
code is less precise but has better performance
compared to exp (Figure 3.1).

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 13

Next, we relate this algorithm with Figure 3.1. Our description below elides several details that
are important for performance (such as the use of vector instructions), and focuses on functionality.
The calling convention used by exp includes storing the first argument and the return value of a
function in the register xmm0. We omit details about the x86 syntax and describe the implementation
at a high level. The code is divided into several blocks by the horizontal lines in Figure 3.1 and the
instructions within a block compute a value of interest.

• The first block (lines 1-3) computes N from the input x. The second instruction multiplies
x by L2E (the double closest to log2 e) and the third instruction rounds the result.

• The second block (lines 4-7) computes 2N from N , using bit-vector addition (line 5), bit-shift
(line 6), and bit-shuffle (line 7). The bit-vector represented by B is 0x000003ff000003ff
(in hex). Recall that 0x3ff in hex is 1023 in decimal, which is the bias used for the exponent
in doubles (Chapter 2).

• The third group (lines 8-11) computes d from x and N . This computation uses log 2 which is a
transcendental number (Eq. (3.1)). To maintain accuracy, log 2 is represented as the sum of two
doubles: c1 = −0.69315 · · · (line 8) and c2 = −2.31904 · · ·×10−17 (line 9) where log 2 ≈ −c1−c2.
This representation effectively provides more than a hundred bits to represent log 2 with the
desired accuracy. Using c1 and c2, we can compute d ≈ (x+ c1N) + c2N (lines 10-11).

• The fourth block (lines 12-36) computes ed from d, using a Taylor series expansion of degree
12. The constant Ti represents 1

i! .

• The last group (line 37-38) returns ex = 2N · ed. Recall that 2N is computed exactly by the
second block and ed is computed approximately by the fourth block.

Given this non-trivial implementation, a valid question is: What does it achieve? Fundamentally,
since there are only a finite number of floating-point numbers, no implementation can compute ex

exactly. All floating-point implementations provide only an approximate result which has finite
precision. Therefore, one possible measure of a correctness of such implementations is given by
precision loss: the deviation of the computed answer from the mathematically exact result. Our goal
in this chapter is to provide sound bounds on the maximum precision loss of such implementations.

The first challenge associated with floating-point implementations is that of rounding errors.
As is standard, we model rounding error using non-determinism. For example, line 2 of Figure 3.1
multiplies the input x and a constant L2E, and we model its output as an element chosen non-
deterministically from the set {(x×L2E)(1+δ) : |δ| < ε}, where + and × denote real-valued addition
and multiplication, respectively.1 The quantity δ models the rounding error and the machine epsilon
ε provides a bound on the rounding errors of floating-point multiplication (Chapter 2).

1This modeling is sound because in this chapter we do not consider subnormals for simplicity. It is straightforward
to incorporate them in our verification techniques, e.g., by adding δ′ (with |δ′| < ε′) to the modeling as discussed
in Chapter 2.

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 14

The next challenge, which has not been systematically addressed previously, is associated with
bit-level operations. We use a divide-and-conquer approach to address the challenge. We denote the
set of possible inputs by the interval X and create a set of intervals I = {Ik : k ∈ Z and Ik ⊆ X}
such that the following property holds:

∀x ∈ Ik. {(x× L2E)(1 + δ) : |δ| < ε} ⊆
(
k − 1

2
, k +

1

2

)
. (3.2)

This decomposition is useful because it ensures that for each input x ∈ Ik the rounded output N
of line 3 is k. We show how to obtain this decomposition in §3.3.

Given such a decomposition I, we run |I| separate analyses, where the kth analysis restricts the
inputs to Ik. In the kth analysis, the result N of rounding (line 3) is always k which is the only input
to the bit-level operations of the second block (lines 4-7). Hence, it is sound to replace the bit-level
operations by an instruction that moves the double 2k to the register xmm3. This specialized code
consists exclusively of floating-point operations.

Next, each analysis generates a separate symbolic representation that over-approximates the
possible outputs of its specialized code. The symbolic representation Aδ⃗(x) is a function of the input x
and the rounding errors δ⃗. For example, the symbolic representation of the multiplication of x and L2E
(line 2) is given by (x×L2E)(1+δ). In general, if an expression e1 has symbolic representation A′

δ⃗(x)

and e2 has symbolic representation A′′
δ⃗(x) then the symbolic representation of e1 ∗f e2 (where ∗f is

floating-point addition or multiplication) is given by (A′
δ⃗(x) ∗A

′′
δ⃗(x))(1+ δ

′), where ∗ is real-number
addition or multiplication and δ′ is a new variable representing the rounding error of the operation ∗f .

Finally, each analysis uses analytical optimization to maximize the difference between the symbolic
representation and the ideal mathematical result in the interval of interest. Several representations
of precision loss are possible. If we measure precision loss using absolute error then the kth analysis
solves the following optimization problem:

max
x∈Ik,δ⃗

∣∣Aδ⃗(x)− ex∣∣ .
For exp, we use the set of inputs X = [−4, 4] that results in 13 intervals, i.e., |I| = 13 and the
symbolic representations have a maximum of 29 δ variables for rounding errors. The maximum
absolute error reported across all intervals is 5.6× 10−14.

There is one remaining issue. The division of the entire input range X into intervals I = {Ik}
may result in some x ∈ X where x /∈ Ik for any k. For example, consider the input 1

2·L2E . Due
to rounding errors, it is not clear whether, for this input, the result N of line 3 would be 0 or 1.
Therefore, this input is not included in any Ik ∈ I (Eq. (3.2)). For exp, there are 36 such doubles
that are not included in any interval. For these inputs, we simply execute the program on each
one and directly measure the precision loss. The maximum absolute error for these 36 inputs is
2.1× 10−14 (which is close to but less than 5.6× 10−14).

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 15

Another common representation for precision loss is ulp error that signifies the number of floating-
point numbers between the computed and the mathematically exact result. We show how to compute
ulp error (for each interval) in §3.3.4. For exp, the maximum ulp error over X is 14, that is, there are
at most 14 doubles between the output of exp and ex. We are unaware of any previous automated
analysis that can prove this result.

It is possible to further improve the performance of exp by sacrificing more precision. Despite
its heavy use of the exponential function, S3D loses precision elsewhere and does not require precise
results from exp to maintain correctness. One possible strategy involves asking a developer to
create a customized implementation that has better performance at the cost of less precise results
(§3.4). Such implementations can also be automatically generated using stochastic optimizers such
as Stoke [137]. At a high level, Stoke makes random changes to binaries until they get faster and
remain “approximately correct” on some tests.

The binary expopt (Figure 3.2) is automatically generated by making random changes to exp

using Stoke. The differences between expopt and exp are that expopt computes d as x + c1N

(without using c2) and it uses a Taylor series expansion of degree 8 (instead of 12). The authors
of [137] claim that expopt has an ulp error below 107 from exp and improves the performance of the
diffusion task of S3D by 27%. However, the correctness guarantees provided by Stoke are statistical
and there is no formal guarantee that expopt cannot produce results with an ulp error much greater
than 107 for some unobserved input.

We use our analysis to bound the precision loss between exp and expopt. Our analysis reports
that the maximum absolute error between exp and expopt is 1.2 × 10−8 and the maximum ulp
error is 1.9 × 106 which though large is well below the desired bound of 107 ulps. Therefore, we
have proven formally that the Stoke generated code respects the ulp bound of 107 for all inputs
x ∈ [−4, 4]. This verification task was left as a challenge in [137].

3.3 Algorithm

We now describe our procedure for estimating the precision loss of an implementation with respect
to its mathematical specification. The procedure has two main steps. First, we construct a symbolic
abstraction that soundly over-approximates the implementation. Next, we use an analytical opti-
mization procedure to obtain a precise bound on the deviations the symbolic abstraction can have
from the mathematical specification. We start by defining the syntax of a core language that we
use for the formal development.

3.3.1 Core Language

Recall that the implementations of interest are highly optimized x86 binaries. The x86 ISA has more
than two thousand different instruction variants, so we desugar x86 programs into a core expression

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 16

expression e ::= c | χ | L[e] |
e ∗b e | e ∗s e |
e ∗i e | e ∗f e | ∗c e

bitwise operators ∗b ∈ {AND,OR, · · · }
shift operators ∗s ∈ {<<, >>, · · · }

bit-vector arithmetic operators ∗i ∈ {+i , −i , ×i , · · · }
floating-point operators ∗f ∈ {+f , ×f , / f , · · · }

casting operators ∗c ∈ {i2f, f2i, round, · · · }

Figure 3.3: The syntax of the core language.

language that is the subject of our analysis.
Figure 3.3 shows the grammar representing the expressions in this language. An expression e

in the core language can be a 64-bit constant c, a 64-bit input χ, the result of a table lookup L[·], or
the application of a unary or a binary operator to subexpression(s). All expressions in this language
evaluate to 64-bit values. The x86 implementations often use 128-bit SSE registers and SIMD
instructions for efficiency. However, these operations can be expressed in our language by desugaring
them to multiple operations applied to multiple 64-bit expressions. For brevity, we also restrict our
presentation to settings with only a single input and a single lookup table. It is straightforward to
generalize our results to implementations with multiple inputs and multiple tables (but see discussion
in §3.6 of scaling issues in handling multiple inputs).

The operators relevant for our benchmarks are shown in Figure 3.3. The bitwise operators include
bitwise-and (AND) and bitwise-or (OR) that are used for masking bits. The left shift (<<) and the
right shift (>>) operators are “logical” shifts (as opposed to “arithmetic” shifts) and introduce zeros.
The bit-vector arithmetic operators are “signed” operators that interpret the argument bits as 64-bit
integers in the 2’s complement notation. The floating-point operators interpret the argument bits
as 64-bit double-precision floating-point numbers (or doubles). The casting operator i2f consumes a
bit-string, interprets it as an integer written in the 2’s complement notation (e.g., 42), and generates
a bit-string that when interpreted as a double represents a value equal to the integer (e.g., 42.0).
The round operator rounds to the nearest integer (e.g, 42.1 is rounded to 42.0) and the f2i operator
first rounds and then converts the rounded double to a 64-bit integer.

For any expression e, the concrete semantics is denoted by E(e) : {0, 1}64 → {0, 1}64. That is,
the value obtained by evaluating e with an input x is given by E(e)(x). The definition of E(·) is
standard and we omit it.

3.3.2 Symbolic Abstractions

Our goal is to compute a symbolic representation that over-approximates the behaviors of an expression
e. Constructing this abstraction is difficult due to the interplay between floating-point and bit-level
(bitwise, shift, bit-vector arithmetic, and casting) operations. Therefore, we define this abstraction

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 17

piecewise. We restrict the inputs to small enough intervals—thus ensuring that the bit-level operations
are amenable to static analysis—and we construct multiple abstractions, one for each interval.

The description of our abstractions requires some operators relating real numbers and doubles.
The function d2R : {0, 1}64 → R ∪ {±∞,NaN} is the natural map from doubles to real numbers. It
handles infinity and not-a-number by mapping them to {±∞,NaN}. This mapping is also extended
to sets of doubles in the obvious way. If P(·) denotes the power set of a given set then the inverse map
R2d : P(R)→ P({0, 1}64) maps a subset S of real numbers to the largest set of doubles such that

∀x ∈ R2d(S). d2R(x) ∈ S.

For brevity, we use the abbreviation Ŝ ≜ R2d(S). We use X to denote the interval over real numbers
over which we want to compute the precision loss. Therefore, the input χ ranges over the set
X̂ = R2d(X).

We next define a symbolic abstraction. Let I = {[l1, r1], · · · , [ln, rn]} denote a set of intervals
in R, where [li, ri] ⊆ X for all i. The symbolic representation Aδ⃗ : R → R ∪ {⊥} is a function of
x ∈ R and δ⃗ = (δ1, · · · , δm), where each δi ∈ R represents a rounding error. The fact that (I,Aδ⃗)
is an abstraction of e is defined as follows.

Definition 3.1. (I,Aδ⃗) is a symbolic abstraction of e if for all intervals I ∈ I, for all doubles x ∈ Î,

d2R(E(e)(x)) ∈ A(d2R(x))

where A(y) ≜ [minδ⃗ Aδ⃗(y),maxδ⃗ Aδ⃗(y)].

We discuss a procedure to construct a symbolic abstraction (I,Aδ⃗) of an expression e next.

3.3.3 Construction of Symbolic Abstractions

The expressions consist of floating-point and bit-level parts. To reason about bit-level operations, we
need to keep track of subexpressions that are constant or are determined by a small subset of the bits
of the input χ. To this end, we define a book-keeping map B : {0, 1}64 → {0, 1}64 ∪ {⊥}. If B(x) ̸= ⊥
then for all i = 0, · · · , 63, the ith bit of B(x), denoted by B(x)[i], is either 0, or 1, or a boolean function
of the bits x[63], · · · , x[0]. For instance, consider an expression e = (x AND 0x8015) OR 0x3fe013

which computes a double sgn(x)× 0.5, where bi is the string with i b’s, and sgn(·) is the sign function.
The book-keeping map for e is B(x) = x[63]019053, and it represents that the sign bit of e is that
of x and the rest of the bits of e are the same as that of 0x3fe013.

Just like symbolic abstractions, the book-keeping map is also defined piecewise over different
intervals of I. We give the formal definitions of definedness next.

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 18

Definition 3.2.
(I,Aδ⃗) defined ⇐⇒ ∀I ∈ I. ∀x ∈ I. Aδ⃗(x) ̸= ⊥,
(I,B) defined ⇐⇒ ∀I ∈ I. ∀x ∈ Î . B(x) ̸= ⊥.

Next, we relate these abstractions with concrete semantics.

Definition 3.3. (I,Aδ⃗,B) is consistent with e if the following hold:

(I,Aδ⃗) defined =⇒ (I,Aδ⃗) is a symbolic abstraction of e,
(I,B) defined =⇒ ∀I ∈ I. ∀x ∈ Î . E(e)(x) = B(x).

An important case is when every bit of B is a constant over each interval and we define it separately.

Definition 3.4.

(I,B) constant ⇐⇒ ∀I ∈ I. ∃n ∈ {0, 1}64. ∀x ∈ Î . B(x) = n.

Figure 3.4 lists the rules for construction of symbolic abstractions. These rules have the following
form: e▷ (I,Aδ⃗,B), read as e is provably consistent with (I,Aδ⃗,B). These rules use the following
notations. For a set S, IdS : S → S denotes the identity function. For a function f : T → U and
a subset S ⊆ T , f↾S : S → U is a restriction of f on S.

The rules for atomic expressions are direct (CONST and INPUT). For a table lookup, the index
should be a constant over each interval (LOOKUP). Here, the result of the lookup can be obtained
via the concrete semantics. For example, consider a table lookup L[e] where e represents the bits
of the exponent of χ. Also assume that I = {Ik : ∀x ∈ Îk. exponent of x = k}. Then, the lookup
corresponding to the kth interval provides the bits L[k], which are recorded in the book-keeping map
and the symbolic representation. The rule for i2f is similar. Similarly, if all the arguments to a binary
operator ∗ are constant over each interval then the resulting values can be obtained by evaluation
(CONSTARG). For example, suppose that for all Ik ∈ I, the book-keeping map says that for all x ∈ Îk,
the expression e1 evaluates to k and e2 evaluates to k+1. Then the book-keeping map for e1+ie2 maps
x ∈ Îk to 2k + 1. Note that for bit-vector arithmetic operations, only the rule CONSTARG applies.

The rule for bitwise operations, when B is defined but the bits are not constant (BITOP), requires
a refinement of two sets of intervals. This operation is defined as follows:

refine(I1, I2) ≜ {I1 ∩ I2 ̸= ∅ : I1 ∈ I1, I2 ∈ I2}.

The refinement operation is necessary because the intervals over which B1 (or A1,δ⃗) is defined
piecewise can be different from those intervals for B2 (or A2,δ⃗). For instance, for I1 = {[−3, 0), (0, 3]}
and I2 = {[−3,−1), (−1, 1), (1, 3]}, refine(I1, I2) = {[−3,−1), (−1, 0), (0, 1), (1, 3]}. Note that the
refined intervals do not necessarily cover the original intervals: there can be inputs x ∈ I1 where
I1 ∈ I1 and x is absent from all intervals of refine(I1, I2). The shift operation also uses refine(·, ·) and

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 19

Rules for atomic expressions:

c▷ ({X},d2R(c), c) CONST
χ▷ ({X}, IdR, Id{0,1}64)

INPUT

Rules for operators (with all constant arguments):

e▷ (I, ,B) (I,B) constant
∀I ∈ I. B′↾Î = E(L[B↾Î]) ∧ A

′
δ⃗↾I = d2R(B′↾Î)

L[e]▷ (I,A′
δ⃗
,B′) LOOKUP

e▷ (I, ,B) (I,B) constant
∀I ∈ I. A′

δ⃗↾I = d2R(B↾Î)
i2f(e)▷ (I,A′

δ⃗
,B) I2F

e▷ (I, ,B) (I,B) constant
∀I ∈ I. B′↾Î = E(f2i(B↾Î)) ∧ A

′
δ⃗↾I = d2R(B′↾Î)

f2i(e)▷ (I,A′
δ⃗,B

′)
F2ICONST

e▷ (I, ,B) (I,B) constant
∀I ∈ I. B′↾Î = E(round(B↾Î)) ∧ A

′
δ⃗↾I = d2R(B′↾Î)

round(e)▷ (I,A′
δ⃗,B

′)
RNDCONST

e1 ▷ (I1, ,B1) (I1,B1) constant
e2 ▷ (I2, ,B2) (I2,B2) constant

I ′ = refine(I1, I2) ∀I ∈ I ′. B′↾Î = E(B1↾Î ∗ B2↾Î) ∧ A
′
δ⃗↾I = d2R(B′↾Î)

e1 ∗ e2 ▷ (I ′,A′
δ⃗,B

′)
CONSTARG

Rules for operators (with one or more non-constant argument(s)):

round(e)▷ (I,Aδ⃗,B) (I,B) defined
f2i(e)▷ (I,Aδ⃗,B)

F2I

e▷ (I,Aδ⃗,) (I,Aδ⃗) defined
I ′ = splitA(I,Aδ⃗) ∀Ik ∈ I ′. A′

δ⃗↾Ik = k ∧ B′↾Îk = k̂

round(e)▷ (I ′,A′
δ⃗,B

′)
RND

e1 ▷ (I1, ,B1) (I1,B1) defined
e2 ▷ (I2, ,B2) (I2,B2) defined

I ′ = refine(I1, I2) ∀I ∈ I ′. ∀x ∈ Î . B′↾Î(x) = B1↾Î(x) ∗b B2↾Î(x)
e1 ∗b e2 ▷ (I ′,⊥,B′) BITOP

e1 ▷ (I1, ,B1) (I1,B1) defined
e2 ▷ (I2, ,B2) (I2,B2) constant

I ′ = refine(I1, I2) ∀I ∈ I ′. ∀x ∈ Î . B′↾Î(x) = B1↾Î(x) ∗s B2↾Î
e1 ∗s e2 ▷ (I ′,⊥,B′) SHIFT

e1 ▷ (I1,A1,δ⃗,) (I1,A1,δ⃗) defined
e2 ▷ (I2,A2,δ⃗,) (I2,A2,δ⃗) defined

I ′ = refine(I1, I2) ∀I ∈ I ′. ∀x ∈ I. A′
δ⃗↾I(x) = (A1,δ⃗↾I(x) ∗ A2,δ⃗↾I(x))(1 + δ′),

where δ′ is a fresh variable with a condition |δ′| < ε

e1 ∗f e2 ▷ (I ′,A′
δ⃗,⊥)

FLOP

Figure 3.4: The rules for constructing a symbolic abstraction.

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 20

Rule to produce a book-keeping map that is constant on each interval:

e▷ (I, ,B) (I,B) defined
I ′ = splitB(I,B) ∀I ∈ I ′. A′

δ⃗↾I = d2R(B↾Î)
e▷ (I ′,A′

δ⃗,B)
SPLIT

Rule for masking:

e1 ▷ (I1,A1,δ⃗, _) (I1,A1,δ⃗) defined
e2 ▷ (I2, __,B2) (I2,B2) constant
∃n ∈ N. ∀I ∈ I2. B2↾Î = 112+n052−n,

I ′ = refine(I1, I2) ∀I ∈ I ′. ∀x ∈ I. A′
δ⃗↾I(x) = (A1,δ⃗↾I(x))(1 + δ′),

where δ′ is a fresh variable with a condition |δ′| < 2−n

e1 AND e2 ▷ (I ′,A′
δ⃗,⊥)

BAND

Figure 3.4: The rules for constructing a symbolic abstraction (continued).

requires the shift amount to be a constant for each interval (SHIFT). These are in contrast to the rule
CONSTARG that requires both of the arguments of a binary operator to be constant for each interval.

The symbolic representation is undefined for bit-level operations (BITOP and SHIFT). A floating-
point operation results in an undefined book-keeping map and the symbolic representation is updated
by applying the corresponding operation over real numbers and introducing a new error term δ′

(FLOP)2.
Remark. The rule FLOP describes an abstraction step: we are over-approximating the result

obtained from a floating-point operator by introducing the δ variables that model rounding errors.
Floating-point operations can be composed in non-trivial ways to generate exactly rounded results [52],
whereas in the symbolic representations that we use, the rounding errors only increase with the
number of operations. For example, there are no rounding errors if a floating-point number is
multiplied by a power of two. However, the rule FLOP introduces a new δ variable for this operation.

The rounding operation requires an auxiliary function splitA(I,Aδ⃗) (RND). This function splits
the intervals in I further so that all doubles in each sub-interval round to the same integer:

splitA(I,Aδ⃗) ≜
⋃
I∈I

{
Ik ̸= ∅ : k ∈ Z

}
,

where each Ik ⊆ I is an interval such thatA(Ik) ⊆ (k− 1
2 , k+

1
2), andA(I) ≜ [minx∈I,δ⃗ Aδ⃗,maxx∈I,δ⃗ Aδ⃗].

For instance, for I = {[−3, 3]} and Aδ⃗(x) = (0.25 × x)(1 + δ1), splitA(I,Aδ⃗) = {[−3,− 2
1−ε],

[− 2
1+ε ,

2
1+ε], [

2
1−ε , 3]} = I

′. The intervals created by splitA(I,Aδ⃗) are not guaranteed to include all
doubles that belong to the intervals of I (e.g., no interval of I ′ includes 2).

The rule SPLIT uses an auxiliary function splitB(I,B) to split the intervals in I further so that
2 Modifying the rule FLOP from A′ = (A1 ∗ A2)(1 + δ′) to A′ = (A1 ∗ A2)(1 + δ′) + δ′′ enables us to fully support

subnormals, where δ′′ is a fresh variable with |δ′′| < 2−1075.

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 21

B is constant on each sub-interval. For an interval I, we define

M(I,B) ≜ max
{
i : ∀x ∈ {0, 1}64−i. ∃n ∈ {0, 1}64. ∀y ∈ {0, 1}i. (x, y) ∈ Î ⇒ B((x, y)) = n

}
.

Intuitively, M(I,B) is the maximum bit position i such that for each choice of bits x[63], · · · , x[i]
we have B(x[63], · · · , x[0]) = n for some constant n regardless of the choice of bits x[i− 1], · · · , x[0].
By using M(I,B), we define splitB(I,B) as

splitB(I,B) ≜
⋃
I∈I

{
[d2R(l),d2R(r)] ∩ I ̸= ∅ : x ∈ {0, 1}64−i,

where i =M(I,B), l = (x, 0i), and r = (x, 1i)
}
.

Here, l and r are 64-bit vectors. For instance, for B(x) = x[63]019053, I = [−3, 3], and I = {I},
we have M(I,B) = 63 and splitB(I,B) = {[−∞,−0] ∩ I, [+0,+∞] ∩ I} = {[−3, 0], [0, 3]}. Unlike
refine(·, ·) and splitA(·, ·), the intervals created by splitB(I,B) include all the doubles that belong to
the intervals of I. This rule is useful to create intervals over which expressions evaluate to constant
values, which are required for the rules LOOKUP, I2F, F2ICONST, RNDCONST, CONSTARG and
SHIFT.

If we mask out the lower order bits of the significand using a bitwise-and operation (BAND) then
its affect on the symbolic representation can be modeled by an error term using the following result:

Lemma 3.5. Let c ∈ {0, 1}64 and d = 112+n052−n ∈ {0, 1}64 for some n ∈ N. Then d2R(c AND d) ∈
{d2R(c)(1 + δ′) : |δ′| < 2−n}.

This result bounds the difference between the masked output and the input using error terms.
Our main result follows by induction on the derivation tree:

Theorem 3.6. If e▷ (I,Aδ⃗,B), then (I,Aδ⃗,B) is consistent with e, and thus (I,Aδ⃗) is a symbolic
abstraction of e.

From the rules to construct symbolic abstractions, intervals in I cannot overlap with each other
because each interval I ∈ I has the property that for all values in Î, the value of some subexpression
is guaranteed to be a constant, and because distinct intervals correspond to distinct constants. In
constructing symbolic abstractions, the only step that requires manual intervention is the computation
of splitA(·, ·), which could be automated for our benchmarks in §3.4.

Next, we use this symbolic abstraction to bound the absolute error or the ulp error of an
implementation e from its mathematical specification.

3.3.4 Computation of Precision Loss

We describe a procedure to bound the precision loss of an implementation. Let e be an expression
that implements a mathematical specification f : R→ R. The aim is to compute a bound Θ such

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 22

that on any input the outputs of e and f differ by at most Θ. More formally,

Definition 3.7. Θa ∈ R is a sound absolute error bound for e and f over the interval I if for all x ∈ Î,

ErrAbs
(
f(d2R(x)), E(e)(x))

)
≤ Θa.

We have a similar definition for ulps.

Definition 3.8. Θu ∈ R is a sound ulp error bound for e and f over the interval I if for all x ∈ Î,

ErrUlp
(
f(d2R(x)), E(e)(x)

)
≤ Θu.

We first present a procedure to compute Θa. Let (I,Aδ⃗) be a symbolic abstraction of e. We
compute

Θ1 = max

{
max
x∈I,δ⃗

∣∣f(x)−Aδ⃗(x)∣∣ : I ∈ I
}
. (3.3)

This computation is an analytical optimization problem that can be solved by computer algebra
systems. The time and memory required to solve the optimization problem increases with the number
of variables. Moreover, Aδ⃗(x) has many variables, because a new δ variable is created for each floating-
point operation (the rule FLOP of Figure 3.4). Hence off-the-shelf solvers fail to solve Eq. (3.3) as is.

For tractability, we simplify Eq. (3.3). In our evaluation, the symbolic representations are poly-
nomials with small degrees and the inputs are restricted to small ranges (§3.4). In this setting,
we can prove that the terms in Aδ⃗(x) that involve a product of multiple δ variables are negligible
compared to other values. Informally, if the coefficients and input ranges of a polynomial are bounded
by a constant c then the rounding error introduced by all δ terms with degree > 1 is bounded by
C = (4c)nε

1−ε . The proof uses standard numerical analysis techniques and is omitted.
With this simplification, the expression

∣∣f(x)−Aδ⃗(x)∣∣ can be rearranged such that |f(x) −
Aδ⃗(x)| ≤ |M0(x)|+

∑
i |Mi(x)||δi|, where M0(x) is C plus all the terms of f(x)−Aδ⃗(x) having no δ,

and Mi(x) is the coefficient of δi in f(x)−Aδ⃗(x). We use optimization techniques to maximize |Mi(x)|
for each interval I ∈ I (which is tractable because Mi(x) is a function of a single variable) and report

max
x∈I
|M0(x)|+

∑
i

(
max
x∈I
|Mi(x)|

)(
max
δi
|δi|
)

(3.4)

as a bound on the absolute error over the interval I. The number of total optimization tasks required
to obtain Θ1 (Eq. (3.3)) is proportional to the product of the number of δ variables and the number
of intervals in I. In our evaluation, we observe that the number of optimization tasks is tractable
and the time taken by each task is less than a second (§3.4).

Recall that X represents the interval of interest and we may have
(⋃

I∈I I
)
̸= X due to the

operations used in computing symbolic abstractions (i.e., refine(·, ·) and splitA(·, ·)). Therefore, it

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 23

is possible that Θa ̸= Θ1 if the input that results in the maximum absolute error belongs to the set
H = X\

(⋃
I∈I I

)
. So we compute

Θ2 = max
{
|d2R(E(e)(x))− f(d2R(x))| : x ∈ Ĥ

}
. (3.5)

In our experiments, |Ĥ| is small enough that it is feasible to compute Θ2 by brute force testing, i.e.,
by evaluating e and f on every double in Ĥ. Note that it is not feasible to perform brute force on
X̂ as it contains an intractable number of doubles and thus symbolic abstractions are necessary. A
sound absolute error bound is then given by Θa = max{Θ1,Θ2}.

Next, we compute a sound ulp error bound Θu. It can be computed from either a bound on
absolute error or a bound on relative error (Chapter 2). The latter is the maximum of two quantities:
the maximum relative error observed during testing on inputs in Ĥ and the result of the following
optimization problem:

Θr = max

{
max
x∈I,δ⃗

∣∣∣∣f(x)−Aδ⃗(x)f(x)

∣∣∣∣ : I ∈ I
}
. (3.6)

In our evaluation, we compute bounds on the ulp error using both the relative and the absolute error
and report the better bound.

3.4 Case Studies

We evaluate our technique on Intel’s implementations of three widely used transcendental functions:
the sine function, the tangent function, and the natural logarithm function. We prove formal
bounds on how much each implementation (sin, tan, and log) deviates from the corresponding
mathematical specification (sin (·), tan (·), and log (·)). These implementations are available as
(undocumented) x86 binaries included in libimf, which is Intel’s implementation of the C numerics
library math.h. The library contains many different implementations for these functions that have
differing performance on different processors and input ranges. We choose the implementations used
in the benchmark set of [137] and perform the verification for these implementations.

Next, we manually modify these binaries to create implementations that have better performance
at the cost of less precise results (Table 3.1). Using our technique, we are also able to prove formal
bounds on the precision loss of these variants. The results are summarized in Table 3.2 and Figure 3.5.

We use Mathematica to solve Eq. (3.4), though this is largely a matter of convenience. Mathe-
matica provides functions to solve global optimization problems analytically, namely the MaxValue[·]
and the MinValue[·] functions which find exact global optima of a given optimization problem (using
several different algorithms, e.g., cylindrical algebraic decompositions).3 The analytical optimization
that we use is in contrast to typical numerical optimization that uses finite-precision arithmetic

3https://reference.wolfram.com/language/tutorial/ConstrainedOptimizationExact.html (titled “Exact
Global Optimization”; accessed on July 2023)

https://reference.wolfram.com/language/tutorial/ConstrainedOptimizationExact.html

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 24

f LoC of f LoC of fopt Reduction in size Speedup
exp 38 28 10 1.6×
sin 66 42 24 1.5×
tan 107 89 18 1.1×
log 67 54 13 1.3×

Table 3.1: Important statistics of each implementation for case studies (LoC is lines of x86 assembly).
The manually/automatically created variants have smaller number of instructions (column 4) and
are faster (column 5) than their production counterparts.

Interval Θa Θu |Ĥ| |δ⃗| |I|

exp [−4, 4] 6× 10−14 14 36 29 13

expopt [−4, 4] 1× 10−8 2× 106 36 19 13

sin
[
−π2 ,

π
2

]
2× 10−16 9 110 53 33

sinopt
[
−π2 ,

π
2

]
2× 10−11 3× 105 110 26 33

tan
[
0, 17π64

)
7× 10−16 12 89 84 10[

17π
64 ,

31π
64

)†
2× 10−13 218 89 85 7[

31π
64 ,

π
2

)†
2× 1015 9× 1018 89 85 1

tanopt
[
0, 17π64

)
3× 10−12 3× 104 89 69 10[

17π
64 ,

31π
64

)†
4× 10−10 5× 105 89 69 7[

31π
64 ,

π
2

)†
2× 1016 9× 1018 89 69 1

log (0, 4) \
[
4095
4096 , 1

)
8× 10−14 21 0 25 221[

4095
4096 , 1

)
9× 10−19 1× 1014 0 25 1

logopt (0, 4) \
[
4095
4096 , 1

)
6× 10−11 5× 105 0 12 221[

4095
4096 , 1

)
1× 10−18 1× 1014 0 12 1

Table 3.2: Summary of results: For each implementation (column 1), for all inputs in the interval
(column 2), Θa shows the bound on maximum absolute error and Θu shows the bound on maximum
ulp error between the implementation and the exact mathematical result. The number of inputs that
require testing (|Ĥ|), the number of δ variables (|δ⃗|), and the number of intervals considered (|I|) in the
symbolic abstraction are also shown. The values of Θa and Θu on the rows with † need not to be sound.

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 25

0.0E+00

2.0E-14

4.0E-14

6.0E-14

8.0E-14

-4.0 -2.0 0.0 2.0 4.0

(a) exp, Θa

0

5

10

15

20

-4.0 -2.0 0.0 2.0 4.0

(b) exp, Θu

0.0E+00

4.0E-09

8.0E-09

1.2E-08

1.6E-08

-4.0 -2.0 0.0 2.0 4.0

(c) expopt, Θa

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

-4.0 -2.0 0.0 2.0 4.0

(d) expopt, Θu

0.0E+00

4.0E-17

8.0E-17

1.2E-16

1.6E-16

2.0E-16

-1.6 -0.8 0.0 0.8 1.6

(e) sin, Θa

0

2

4

6

8

10

12

-1.6 -0.8 0.0 0.8 1.6

(f) sin, Θu

0.0E+00

5.0E-12

1.0E-11

1.5E-11

2.0E-11

2.5E-11

-1.6 -0.8 0.0 0.8 1.6

(g) sinopt, Θa

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

-1.6 -0.8 0.0 0.8 1.6

(h) sinopt, Θu

0.0E+00

5.0E-14

1.0E-13

1.5E-13

2.0E-13

2.5E-13

0.0 0.4 0.8 1.2 1.6

(i) tan, Θa

0

50

100

150

200

250

0.0 0.4 0.8 1.2 1.6

(j) tan, Θu

0.0E+00

1.0E-10

2.0E-10

3.0E-10

4.0E-10

5.0E-10

0.0 0.4 0.8 1.2 1.6

(k) tanopt, Θa

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

6.E+05

0.0 0.4 0.8 1.2 1.6

(l) tanopt, Θu

0.0E+00

2.0E-16

4.0E-16

6.0E-16

8.0E-16

1.0E-15

0.0 1.0 2.0 3.0 4.0

(m) log, Θa

0

5

10

15

20

25

0.0 1.0 2.0 3.0 4.0

(n) log, Θu

0.0E+00

2.0E-13

4.0E-13

6.0E-13

8.0E-13

1.0E-12

0.0 1.0 2.0 3.0 4.0

(o) logopt, Θa

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

0.0 1.0 2.0 3.0 4.0

(p) logopt, Θu

Figure 3.5: Each graph shows a bound on precision loss between an implementation and the
mathematically exact result. For example, (a) plots a bound on absolute error between exp(x) and
ex as a function of x. The brown lines represent the bounds obtained from symbolic abstractions
and the blue dots signify the errors observed during explicit testing on inputs in Ĥ.

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 26

without providing formal guarantees. Other techniques, such as interval arithmetic or branch and
bound optimization [143], can be used (instead of Mathematica) to solve Eq. (3.4) soundly.

To compute Θ2 in Eq. (3.5), for each x ∈ Ĥ, we compare the floating-point result E(e)(x)
computed by an evaluation of e on x, with the exact result f(d2R(x)) computed by Mathematica.

Even though Mathematica claims soundness guarantees, it does not produce a certificate of
correctness with the solution. In the future we would like to replace Mathematica with a solver that
produces machine-checkable certificates.

3.4.1 The sin Implementation

Intel’s sin implementation uses the following procedure to compute sin (x). It first computes an
integer N and a reduced value d:

N = round

(
32

π
x

)
, d = x− π

32
N. (3.7)

Then it uses the following trigonometric identity:

sin (x) = sin (d) cos
(π
32
N
)
+ cos (d) sin

(π
32
N
)
.

The terms sin (d) and cos (d) are computed by a Taylor series expansion:

sin (d) ≈ d− d3

3!
+
d5

5!
− d7

7!
+
d9

9!
, cos (d) ≈ 1− d2

2!
+
d4

4!
− d6

6!
+
d8

8!
.

The Taylor series expansion includes an infinite number of terms. However, since d is small in
magnitude, a small number of Taylor series terms shown above are sufficient to provide a good approx-
imation of sin (d) and cos (d). The remaining terms, sin

(
π
32N

)
and cos

(
π
32N

)
, are obtained by table

lookups. A table in memory stores precomputed values sin
(
π
32 i
)

and cos
(
π
32 i
)

for each i = 0, · · · , 63
and the index i = (N) AND 0x3f is used to retrieve the correct value. The sin implementation
uses bit-level operations to compute the index i and the final memory address for the lookup.

We modify sin to obtain a more efficient but less precise implementation sinopt. These mod-
ifications include removing all subcomputations that have only a small effect on the final output.
In particular, sinopt uses a Taylor series expansion of degree 5 (instead of 9). The compensation
terms are also omitted. These are terms such as (c1 −f (c1 +f c2)) +f c2 that are 0 in the absence
of rounding errors but are important for maintaining accuracy of floating-point computations (see
the remark in §3.3.3). Moreover sinopt replaces some very small constants (e.g., 7.9× 10−18) by 0.

For X = [−π2 ,
π
2], we compute a symbolic abstraction (I,Aδ⃗) of sin by applying the technique

described in §3.3.3. In the final abstraction |I| = 33 and there are 53 δ’s in Aδ⃗ (Table 3.2). The
main step in the construction of a symbolic abstraction for sin (as well as sinopt) is the application
of the rule RND so that each of the resulting intervals contains inputs that map to the same N

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 27

(Eq. (3.7)). A total of |Ĥ| = 110 inputs do not belong to any interval of I, which is easily a small
enough set that we can compute Θ2 (Eq. (3.5)) via testing on each of these inputs.

We then use the procedure described in §3.3.4 to compute Θa and Θu over the interval X for sin
and sinopt (Table 3.2 and Figure 3.5). Our main result for sin is a proof that for all inputs in

[
−π2 ,

π
2

]
,

the computed result differs from sin (x) only by 9 ulps, that is, there are at most 9 doubles between the
computed result and the mathematically exact result. For sinopt, we have successfully traded a small
loss in precision (bearable for many applications) for over 50% improvement in performance (Table 3.1).

3.4.2 The tan Implementation

Intel’s tan implementation uses the following procedure to compute tan (x). To focus on the dis-
tinctive parts of the implementation, we assume that the input x ∈ X =

[
0, π2

)
. The first step is

to compute an integer N and a reduced value d:

N =

⌊
32

π
x+

1

2

⌋
, d = x− π

32
N.

Then we compute
tan (x) ≈ bR(x) + T15(d), R(x) =

1
π
2 − x

+
c

(π2 − x)2
.

Here, b = 0 if x ∈
[
0, 17π64

)
and b = 1 if x ∈

[
17π
64 ,

π
2

)
, c = 8.84372 · · · × 10−29, and T15(d) =

∑15
i=0 qid

i

is a polynomial approximation of tan (x) − bR(x) of degree 15 where the polynomial coefficients
depend on N . The coefficients q0, · · · , q15 of T15(·) are retrieved from a lookup table based on the
index N . Note that, unlike exp and sin, tan includes rational terms 1/

(
π
2 − x

)
and 1/

(
π
2 − x

)2
in order to minimize the precision loss near x = π

2 .
The hand-optimized implementation tanopt uses a polynomial approximation of degree 12 (instead

of 15) and omits an AND operation used by tan to mask out lower order bits of the significand of an
intermediate result. We omit the compensation terms and obtain a total speed up of 1.1× (Table 3.1).

To construct a symbolic abstraction of tan (and tanopt), we apply the rules RND, SPLIT, and
BAND. Again, we use Mathematica to compute an absolute error bound. However, the analytical
optimization routines of Mathematica time out while computing Θ1 in the presence of rational terms
(i.e., if x ≥ 17π

64). Therefore, we use numerical optimization routines NMaxValue[·] and NMinValue[·] for
the intervals that are subsets of

[
17π
64 ,

π
2

)
. Since numerical optimization routines have no correctness

guarantees, the computed error bounds for x ≥ 17π
64 need not to be sound. However, soundness is still

maintained for x < 17π
64 as these intervals are optimized analytically (using MaxValue and MinValue).

In Table 3.2, we observe that the ulp error over
[
0, 17π64

)
is small (12 ulps), and the ulp error over[

17π
64 ,

31π
64

)
is slightly higher (218 ulps). For the interval J =

[
31π
64 ,

π
2

)
, we do not obtain good bounds.

The absolute error is large on the interval J as the rational terms grow quickly near π
2 . The relative

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 28

error is large on J as one of the optimization task is the following:

max
x∈J

∣∣∣∣ 1

(π2 − x)2 tan(x)

∣∣∣∣ .
For x close to π

2 , the optimization objective is unbounded so the obtained bounds on relative error are
large. Because neither the absolute error nor the relative error provides good bounds on ulp error, the
bounds on ulp error are large for x ∈ J . The results for tanopt are similar (Table 3.2 and Figure 3.5).

3.4.3 The log Implementation

Intel’s log implementation uses the following procedure to compute log (x) for x > 0. Let us
denote the exponent of x by p and f = f1, f2, . . . , f52 denotes the bits of the significand of x. The
implementation first constructs a single-precision floating-point number g = 1.f1 . . . f23. Next, the
result 1

g obtained from a single-precision reciprocal operation is converted to a double d′. Using
x = 1.f × 2p, we have the following identity:

log (x) ≈ log (2p) + log (g) + log (d′ × 1.f)

≈ p log (2) + log

(
256

i+ 128

)
+ log (1 + d) ,

where i = round (256d′ − 128) and d = d′ × 1.f − 1. The quantity p is computed exactly by bit-level
operations that extract the exponent of x. The quantity log

(
256
i+128

)
is computed by table lookups

based on the index i. The lookup table stores the value log
(

256
i+128

)
for i = 0, · · · , 128. Finally,

since d is small in magnitude, log (1 + d) is computed using a Taylor series of degree 7. The log
implementation uses bit-level operations to compute p, g, and d′.

We hand-optimize log to create an implementation logopt that uses a Taylor series of degree 4
(instead of 7) and ignores some bit-manipulations of the significand. We also remove the compensation
terms and obtain a total speedup of 1.3× (Table 3.1).

To construct a symbolic abstraction of log (as well as logopt), we apply the rule SPLIT to ensure
that, for each interval, d′ is a constant. Using X = (0, 4), we obtain a symbolic abstraction (I,Aδ⃗)
of log with |I| = 221, |Ĥ| = 0, and 25 δ variables (Table 3.2). Unlike the other benchmarks, |Ĥ| = 0

as splitA(·, ·) is not used in constructing the symbolic abstraction. Since the number of intervals, |I|,
is large, we run 32 different instances of Mathematica in parallel. The optimizations are performed
analytically and the obtained error bounds are sound. Moreover, each optimization task takes less
than a second and the total wall clock time for log (resp. logopt) was 16 hours (resp. 5 hours).

In our opinion, the analysis of the log function best illustrates the power of our technique: We
are able to automatically reduce a very complex problem to millions of tractable subproblems, and
the total time required compares favorably with the only alternative available today, which is an

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 29

expert using an interactive theorem prover to construct the proof.
We present the most interesting results. Except for the interval J =

[
4095
4096 , 1

)
, the ulp error is

small: 21 ulps (Table 3.2). For the interval J , the absolute error is very small: 9× 10−19. This small
absolute error is expected as log (x) is close to zero on this interval (log (1) = 0). However, due to
the proximity to zero, even this small absolute error leads to a large ulp error. For sin and tan,
we are able to get good bounds on ulp error near zero by using bounds on relative error. However,
the relative error of log is large on the interval J as one of the optimization tasks is the following:

max
x∈J

∣∣∣∣x− 255
256

log x

∣∣∣∣ .
For x close to one, the optimization objective is unbounded and the obtained bounds on relative
error are large. Therefore, the bounds on ulp error are large for x ∈ J . The results for logopt are
similar (Table 3.2 and Figure 3.5).

3.5 Related Work

Due to their mathematical sophistication and practical importance, transcendental functions are
used as benchmarks in many verification studies. However, prior studies have either focused on
the verification of algorithms (and not implementations) or the verification of comparatively simple
implementations that contain no bit-level operations.

In the absence of bit-level operations, a variety of techniques can be used to bound rounding
errors: Gappa uses interval arithmetic [39], Fluctuat uses affine arithmetic [43, 54], MathSAT

is an SMT solver that uses interval arithmetic for floating-point [60], and Rosa combines affine
arithmetic with SMT solvers [35, 36]. Interval arithmetic does not preserve dependencies between
variables and affine arithmetic fits poorly with non-linearities. Hence, these approaches lead to
imprecise results (see the evaluation in [143]). To address this issue, other techniques have been
used as well to bound rounding errors: FPTaylor uses optimization [143, 144], Real2Float uses
semidefinite programming [99], and Satire uses automatic differentiation [37].

The problem that our technique solves is slightly different from the problems that previous
methods do. FPTaylor bounds the difference between interpretations of an expression over the reals
and over the floating-point numbers. Formally speaking, given a function g : R→ R, FPTaylor

computes a bound on |fp(g)(x)− g(x)|, where fp(g) is a function (from floating-point numbers to
floating-point numbers) obtained from g by replacing all real-valued operations with the corresponding
floating-point operations. In contrast, our technique bounds the difference between the polynomials
obtained from symbolic abstractions of binaries and the true mathematical transcendentals. Due
to the relationship between fp(g) and g, it is impossible to have that fp(g) is a polynomial and g
is a transcendental, so FPTaylor and our technique solve different problems.

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 30

Similarly, Gappa, Fluctuat, and Rosa also aim to bound the difference between two interpre-
tations of the same expression: over the reals and over the floating-point numbers. Moreover, they
do not encode transcendentals while our method requires encoding transcendentals.

Commercial tools such as Fluctuat and Astree [15, 106] provide some support for mixed
floating-point and bit-level code. These tools use abstract domains tailored to specific code patterns
and reason soundly about low-level C implementations. In contrast, our approach is general and
systematic. Fluctuat supports subdivision of input ranges, but its subdivision strategy is generic
and requires no static analysis (e.g., repeatedly halving an input interval until the desired error
bound on each subdivision is reached). The paper [95] subdivides according to the exponent bits
to improve precision. This chapter provides a general algorithm to construct these subdivisions; the
need for this automatic interval construction to be sound leads to a distinctive characteristic of our
subdivisions, the presence of floating-point numbers that are not covered by any interval.

Intel’s processors contain instructions (e.g., fsin, fcos, etc.) that evaluate transcendental
functions. The manual4 for Pentium processors stated that a “rigorous mathematical analysis”
had been performed and that the “worst case error is less than one ulp” for the output of these
instructions. These claims were discovered to be incorrect and the instructions actually have large
errors even for small arguments [45]. This incident indicates that obtaining accurate implementations
of transcendental functions is non-trivial. Intel’s latest manual5 acknowledges the mistake (“the ulp
error will grow above these thresholds”) and recommends developers use the software implementations
in Intel’s Math Library. We are interested in verification of these implementations. A description
of implementations that are similar to the ones that we verify can be found in [63].

Harrison describes machine-checkable proofs of algorithms that compute 64-bit sin (·) [62] and
32-bit exp (·) [61]. The verified algorithms are fairly close to the one employed by the implementations
described in §3.4. Harrison’s main result is a proof in HOL Light that the algorithms compute results
within 0.57 ulps of the mathematically exact result. The proof requires an extensive mathematical
apparatus that seems necessary for such a precise bound. Harrison reports that the manual effort
required for each such proof can vary from weeks to months [61].

In contrast, we have a general verification technique that can be readily applied to a variety
of functions and their automatically or manually produced variants. This generality and better
automation is achieved at the expense of analysis precision and the bounds we infer, while sharp
enough to be useful, are loose compared to Harrison’s manual proofs. Moreover, we have evaluated
our technique only on small input ranges, whereas Harrison proves bounds for large ranges.

Techniques that provide statistical (as opposed to formal) guarantees include [107, 111, 137].
Analyses described in [6, 11, 25, 87] do not have any formal or statistical guarantees.

4Appendix G of “Pentium Processor Family Developer’s Manual, Volume 3: Architecture and Programming Manual”
(available at http://datasheets.chipdb.org/Intel/x86/Pentium/24143004.PDF; accessed on July 2023)

5Section 8.3.10 of “Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture”
(available at https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html; accessed
on July 2023).

http://datasheets.chipdb.org/Intel/x86/Pentium/24143004.PDF
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

CHAPTER 3. CORRECTNESS OF HIGHLY OPTIMIZED MATH LIBRARIES 31

3.6 Discussion

Our technique is directly applicable to trading precision for performance. Most programs do not
require all bits of precision and imprecise implementations can have better performance [131]. We
believe that our verification technique significantly lowers the barrier to entry for developers who
want to explore such trade-offs but are afraid of the subtleties associated with floating-point. The
developers can create imprecise but efficient implementations either manually or by using tools such
as [131, 137] and prove their correctness formally using our technique. Conversely, our technique
can also be used to formally prove the correctness of transformations that improve precision [115].
These transformations are currently validated via sampling.

While we believe our approach is promising, there are important limitations that would be desirable
to improve or remove altogether. Ideally, we would like to achieve bounds within 1 ulp. We have taken
a step in this direction by demonstrating the first technique that can prove sound bounds on the ulp
error for these implementations, which in some cases, are close to the desired result (e.g., 9 ulps for
sin). However, automatically proving that these routines are accurate to within 1 ulp requires further
advances in verification techniques for floating-point that can address the imprecision introduced by the
abstractions for rounding errors (see the remark in §3.3.3). Next, the inferred bounds are sound only for
small ranges of inputs. Removing this restriction introduces new challenges: if the inputs belong to a
large range then the intermediate values could include NaNs or infinities. Moreover, the simplifications
of the optimization problem described in §3.3.4 would no longer be sound. Orthogonally, our technique
cannot handle all bit-level tricks. For example, a good approximation to the inverse square root of
a single-precision floating-point number x is given by 0x5f3759df− (x>>1). During verification of
this approximation using our technique, the rule SPLIT of Figure 3.4 creates an intractable number
of intervals. Therefore, this task requires a different technique (e.g., exhaustive enumeration).

In general, the number of intervals can grow quickly with the number of arguments on which
bit-level operations are performed. However, the functions in math.h have at most three arguments.
Therefore, this situation does not arise in our particular application. We expect the number of
intervals to be tractable even for multivariate implementations. Finally, since the optimization
problems are independent, parallelization can improve scalability significantly (§3.4.3).

3.7 Conclusion

In this chapter, we present a systematic technique for verifying the behavior of mixed binaries
(i.e., those mixing floating-point and bit-level operations), which combines abstraction, analytical
optimization, and testing. We demonstrate that our technique is directly applicable to Intel’s highly
optimized implementations of transcendental functions and it proves formal error bounds of these
widely used routines.

Chapter 4

Correctness of

Highly Accurate Math Libraries

4.1 Introduction

Industry standard math libraries, such as Intel’s implementation of math.h, have very strict correct-
ness requirements. In particular, Intel guarantees that the maximum precision loss, i.e., the difference
between the computed floating-point value and the actual mathematical result, is very small. However,
to the best of our knowledge, this claim is not backed by formal proofs. Establishing the correctness of
these implementations is non-trivial: the error bounds are tight (see below), floating-point operations
have rounding errors that are non-trivial to reason about, and these high performance libraries are
full of undocumented code optimization tricks. We describe a novel automatic verification technique
capable of establishing the correctness of these implementations.

For example, consider the sin function of math.h. Since it is a transcendental, for most floating-
point inputs, sin x is an irrational number inexpressible as a 64-bit double-precision floating-point
number. Most standard libraries guarantee that the maximum precision loss is strictly below one
ulp, i.e., if the exact mathematical result sin x is in the interval (d1, d2) where d1 and d2 are two
consecutive floating-point numbers, then the computed result is generally either d1 or d2. This
requirement is difficult to meet because of floating-point rounding errors. Consider, for example,
what happens if we implement x4 using x ⊗ x ⊗ x ⊗ x. For some inputs the precision loss of this
implementation is more than one ulp.

An algorithm for computing sin x was verified to be correct, i.e., meeting the one ulp bound,
for any x ∈ [−263, 263] by Harrison using the proof assistant HOL Light [62]. Constructing such
machine-checkable proofs requires a Herculean effort and Harrison remarks that each proof can take
weeks to months of manual effort [61]. In Chapter 3 (which was published as [90]), we proved an

32

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 33

error bound of 9 ulps for Intel’s sin implementation over the input interval [−π2 ,
π
2] automatically,

i.e., in most cases there can be at most 9 floating-point numbers between the computed and the
mathematically exact result for any input in [−π2 ,

π
2]. In this chapter, we focus on automatically

proving much tighter error bounds. We describe an analysis that is fully automatic and, for example,
proves that the maximum precision loss of sin is below one ulp over the input interval [−π, π].

The main source of imprecision in Chapter 3 stems from modeling every floating-point operation as
having a rounding error about which worst-case assumptions must be made. However, floating-point
operations do not always introduce rounding errors. In particular, there are several exactness results
that describe conditions under which floating-point operations are exact, i.e., the floating-point
operation gives the mathematical result. For example, although 2100 ⊖ 1 = 2100 (due to rounding
errors), 0.5⊖ 0.25 is exactly equal to 0.25 in floating-point arithmetic. An important example of such
an exactness result is Sterbenz’s theorem [146], which says that when two floating-point numbers
are close to each other then their subtraction is exact. Our approach to improving the provable
error bounds is to identify floating-point computations that are exact and thus avoid introducing
unneeded potential rounding errors into the modeling of those computations. Our main technical
contribution is in reducing the problem of checking whether an exactness result applies to a set of
mathematical optimization problems that can be solved soundly and automatically by off-the-shelf
computer algebra systems. For example, our analysis checks the closeness conditions in Sterbenz’s
theorem by solving four optimization problems.

We apply this analysis to the benchmarks of [90, 137], i.e., Intel’s sin, tan, and log. For log, we
prove that for all valid inputs the precision loss is below one ulp. We are not aware of any other formal
correctness proof of this implementation. Previous to this work, the best known provable error bound
for log was 1014 ulps presented in Chapter 3 (i.e., [90]), which says the implementation is provably
correct only up to two decimal digits. We note that our proof is computationally intensive and took
more than two weeks of computation time on 16 cores (but is also highly parallelizable). Next, we
prove the correctness of sin for inputs between −π and π. Recall that sin x is periodic and our results
can be extended to all valid inputs at the expense of more computational resources. For tan, we
proved correctness only for a part of the input interval. In particular, our abstractions lose precision
and the inferred bounds, though sound, are imprecise for inputs near π

2 (§4.6). The previously known
bounds for tan, such as those presented in Chapter 3 (i.e., [90]), were loose (up to several orders
of magnitude greater than the bounds we prove) and sometimes not guaranteed to be sound.

Our main contributions are as follows:

• We show a novel automatic analysis that systematically uses exactness results about floating-
point arithmetic. In particular, the analysis verifies that the result of a floating-point operation
is exact by solving several mathematical optimization problems soundly.

• We describe the first technique that automatically proves the correctness of transcendental
functions in industry standard math libraries. Prior to this work, these implementations could

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 34

only be verified with significant manual effort.

• We present the properties of floating-point used in these proofs. Some of these properties are
only well-known to floating-point experts, and others are new in the sense that they have not
been stated explicitly in the literature.

The rest of this chapter is organized as follows. §4.2 motivates our analysis using an example.
§4.3 and §4.4 present the two major components of our method: An abstraction of floating-point
is described in §4.3 and proven to be sound; the analysis is described in §4.4. The analysis uses some
well-known results (§4.4.1, 4.4.2, 4.4.3, 4.4.6) and other results about floating-point that we have
proven (§4.4.4, 4.4.5) and found useful. §4.5 mentions some interesting implementation details and
§4.6 evaluates the analysis on a number of functions from math.h. Finally, §4.7 discusses related
work and §4.8 concludes.

4.2 Motivation

We discuss an example on which standard analyses produce very imprecise bounds and show how
the precision can be recovered by applying exactness results. Consider Intel’s log implementation
of the natural logarithm function over the input interval X = [4095/4096, 1). The complete log

implementation is quite complicated but if we restrict the inputs to the small interval X, it can be
significantly simplified. For an input x ∈ X, log first computes the following quantity:

r(x) =

((
(2⊗ x)⊖ 255

128

)
⊗ 1

2

)
⊕
((

255

128
⊗ 1

2

)
⊖ 1

)
(4.1)

where ⊛ denotes the floating-point operation corresponding to the real-valued operation ∗ ∈
{+,−,×, /}. Then log returns v(x) = v3 ⊕ v2 ⊕ v5 ⊕ v4 ⊕ v1, where v1, · · · , v5 are computed as:

v1 = (d1 ⊗ n)⊕ t1 ⊕ r,

v2 = (d1 ⊗ n)⊕ t1 ⊖ v1 ⊕ r,

v3 = (d2 ⊗ n)⊕ t2,

v4 = [c2 ⊕ (c3 ⊗ r)⊕ (c4 ⊗ (r ⊗ r))]⊗ (r ⊗ r),

v5 = [((c5 ⊕ (c6 ⊗ r))⊗ r)⊕ (c7 ⊗ r ⊗ (r ⊗ r))]⊗ ((r ⊗ r)⊗ (r ⊗ r)).

Here every floating-point operation is assumed to be left-associative, r denotes r(x), and the floating-
point constants ci, di, ti, and n are ci ≈ (−1)i+1/i (i = 2, · · · , 7), d1 ≈ (log 2)/16, d2 ≈ (log 2)/16−d1,
t1 ≈ log 2, t2 ≈ log 2− t1, and n = −16, where log x is the natural logarithm function.

A standard technique to automatically bound the maximum precision loss of such a floating-point
implementation is the well-known (1 + ε)-property (Chapter 2). The property states that for any

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 35

mathematical operator ∗ ∈ {+,−,×, /}, the result of a floating-point operation a⊛ b is (a ∗ b)(1 + δ)

for some |δ| < 2−53. By applying the (1 + ε)-property to each floating-point operation of r(x), we
obtain the following abstraction A(x) of r(x):

A(x) ≜

[((
(2x)(1 + δ0)−

255

128

)
(1 + δ1)×

1

2

)
(1 + δ2) +

((
255

128
× 1

2

)
(1 + δ3)− 1

)
(1 + δ4)

]
(1 + δ5)

= (x− 1) +

(
x− 255

256

)
δ1 + · · · (4.2)

where each δi ranges over (−2−53, 2−53). We call A(x) an abstraction as it over-approximates r(x),
i.e., ∀x ∈ X.∃δ0, · · · , δ5. r(x) = A(x). Observe that the rounding errors accumulate with each
floating-point operation, and the maximum precision loss of the final result v(x) (a polynomial in
r(x)) is at least as large as the maximum precision loss of r(x). Using the abstraction A(x) of r(x),
the maximum relative error of r(x) is bounded by:

max
x∈X,|δi|<2−53

∣∣∣∣A(x)− (x− 1)

x− 1

∣∣∣∣ .
Because of the term (x− 255

256)δ1 in the abstraction A(x) of r(x), this error is at least

max
x∈X

∣∣∣∣x− 255
256

x− 1

∣∣∣∣ ε. (4.3)

Unfortunately the objective function in Eq. (4.3) is unbounded for x ∈ X, and thus, using this
analysis, we are unable to bound the maximum relative error of the result.

A more precise analysis can bound the maximum relative error of r(x). The key insight is that
some floating-point operations in Eq. (4.1) are exact and do not introduce any rounding errors.
In particular, the subtraction operations in Eq. (4.1) are exact according to Sterbenz’s theorem:
a⊖ b is exact whenever a is within a factor of 2 of b (§4.4.2). Here, x ∈ [4095/4096, 1) and hence
1
2 ·

255
128 ≤ 2x ≤ 2 · 255128 holds. Moreover, multiplication and division by 2 are also exact (§4.4.1).

Using this information, we can construct a more precise abstraction of r(x). In particular, for an
exact operation a⊛ b, we have a⊛ b = a ∗ b and we do not need to introduce δ variables. Since all
the operations except ⊕ in Eq. (4.1) are exact, we have r(x) =

((
2x− 255

128

)
× 1

2

)
⊕
((

255
128 ×

1
2

)
− 1
)
.

Therefore, by applying the (1 + ε)-property only once to the operation ⊕, we obtain the following
abstraction A′(x) of r(x) which is more precise than Eq. (4.2):

A′(x) ≜

[((
2x− 255

128

)
× 1

2

)
+

((
255

128
× 1

2

)
− 1

)]
(1 + δ′) = (x− 1) + (x− 1)δ′

where δ′ ranges over (−2−53, 2−53). We use this more precise abstraction to find a better bound on

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 36

1: Let x = 2p × 1.g2 · · · g53 (2).
2: Compute s = 1.g2 · · · g53 (2) and s′ = 1.g2 · · · g80 · · · 0 (2).
3: Compute sinv = 2q × 1.h2 · · ·h80 · · · 0 (2) such that sinv ≈ 1/s.
4: Compute r(x) = (s⊖ s′)⊗ sinv ⊕ (s′ ⊗ sinv ⊖ 1).

Figure 4.1: The computation of r(x) in Intel’s implementation log of the natural logarithm function.

the maximum relative error of r(x):

max
x∈X,|δ′|<2−53

∣∣∣∣A′(x)− (x− 1)

x− 1

∣∣∣∣ ≤ 2−53. (4.4)

Note that A′(x) does not contain the term (x− 255
256)δ1 unlike A(x) (Eq. (4.2)), and we do not need

to solve the optimization problem of Eq. (4.3) that has an unbounded objective. In our analysis of
log, this step is the key to improving the error bound from the previously published bound of 1014

ulps to 0.583 ulps (§4.6).
In general, for any 64-bit double-precision floating-point number (or any double) x ≥ 2−1022,

log computes the quantity r(x) as described in Figure 4.1. The log implementation first extracts
the exponent p and the 53-bit significand 1.g2 · · · g53 (2) of the double x (line 1), and constructs
two doubles s and s′ that represent the significand of x and the result of masking out the 45 least
significant bits of the significand, respectively (line 2). It then computes a double sinv that is close to
1/s while having only an 8-bit significand (line 3). Using doubles s, s′, and sinv, log computes r(x)
that approximates s× sinv − 1 (line 4). Note that, if we restrict inputs to [4095/4096, 1), s = 2⊗ x,
s′ = 255/128, sinv = 1/2, and line 4 becomes Eq. (4.1).

By using additional properties of floating-point arithmetic, we can show that all the operations
except the addition ⊕ in line 4 of Figure 4.1 are exact for any input x ≥ 2−1022. The operation ⊖ in
s⊖ s′ is exact according to the Sterbenz’s theorem, because s′/2 ≤ s ≤ 2s′ for any x ≥ 2−1022. The
multiplication ⊗ in (s⊖ s′)⊗ sinv is also exact according to the following property: a⊗ b is exact
whenever σ(a)+σ(b) ≤ 53, where σ(d) for a double d denotes the number of significand bits of d that
are not trailing zeros (§4.4.4). Note that σ(s⊖ s′) ≤ 45 because the 8 most significant bits 1, g2, · · · , g8
of s and s′ are canceled out during the subtraction s ⊖ s′, and that σ(sinv) ≤ 8 by the definition
of sinv; thus, we have σ(s⊖ s′) + σ(sinv) ≤ 53 for any x ≥ 2−1022. Similarly, we can show that the
two operations in s′ ⊗ sinv ⊖ 1 are also exact, using Sterbenz’s theorem and the property of σ(·).

Based on the above exactness results, we can tightly bound the maximum relative error of r(x)
for any x ≥ 2−1022. Since all the operations except ⊕ in line 4 of Figure 4.1 are exact, the following
is an abstraction of r(x) for any x ≥ 2−1022 by the (1 + ε)-property:

A′′(x) ≜ [(s− s′)× sinv + (s′ × sinv − 1)](1 + δ′′) = (s× sinv − 1) + (s× sinv − 1)δ′′

where δ′′ ranges over (−2−53, 2−53). Using the abstraction A′′(x) of r(x), the maximum relative

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 37

expression e ::= c | x | e⊛ e | bit-mask(e,B)
floating-point constant c ∈ F

floating-point operation ⊛ ∈ {⊕,⊖,⊗,⊘}
bit-mask constant B ∈ {1, 2, · · · , 52}

Figure 4.2: The abstract syntax of our core language

error of r(x) for any x ≥ 2−1022 is bounded by

max
x≥2−1022,|δ′′|<2−53

∣∣∣∣A′′(x)− (s× sinv − 1)

s× sinv − 1

∣∣∣∣ ≤ 2−53.

This analysis generalizes the previous result (Eq. (4.4)) that the maximum relative error of r(x)
is bounded by 2−53 for x ∈ [4095/4096, 1) to the larger input interval x ≥ 2−1022. Note that we
cannot obtain such tight bounds on the maximum relative error without proving the exactness of
floating-point operations.

In the next three sections, we describe an analysis that automatically exploits such non-trivial
properties of floating-point arithmetic to tightly bound the maximum precision loss of floating-point
implementations. After defining metrics for precision loss, we present all the properties of floating-
point used in our analysis. Some of these are well-known to floating-point experts but not to others,
and some properties are new in the sense that they have not been stated explicitly in the literature.
Our main contribution is a reduction from the problem of automatically applying these properties
to mathematical optimization problems. For example, optimization problems are used to check
preconditions of the properties we use above (e.g., whether two values are within a factor of 2) and
to compute relevant quantities (e.g., σ(·)).

As in the previous chapter, this chapter focuses on 64-bit math.h implementations and not on
32-bit ones, because the latter can be verified by exhaustive testing while the former cannot be. For
this reason, F in this chapter denotes the set of all finite doubles.

4.3 Abstraction

In this section, we describe the syntax of the floating-point expressions we consider, the abstraction
that over-approximates behaviors of an expression, and the abstraction process.

4.3.1 Core Language

Figure 4.2 defines the abstract syntax of the core language for our formal development. An ele-
mentary expression e can be a 64-bit floating-point constant c, a 64-bit floating-point input x, an
application of a floating-point operation ⊛ to subexpressions, or an application of the bit-mask
operation bit-mask(·, ·) to a subexpression. The bit-mask operation bit-mask(e,B) masks out B

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 38

least significant bits of e’s significand (1 ≤ B ≤ 52). For brevity, we describe our techniques for
elementary or uni-variate expressions, but they can easily be extended to expressions with multiple
inputs. Let X ⊆ R denote the input interval of an expression, i.e., the floating-point input x ∈ X.
And let E(e) : X ∩ F→ F denote the concrete semantics of the language, i.e., the result of evaluating
e over an input x ∈ X ∩ F is given by E(e)(x).

4.3.2 Sound Abstractions

In the remaining parts of this chapter, we use the following abstraction to over-approximate the
behaviors of an expression e:

Aδ⃗(x) = a(x) +
∑
i

bi(x)δi where |δi| ≤ ∆i.

The abstraction Aδ⃗ : X → R is a function of x ∈ X and δ⃗ = (δ1, · · · , δn) ∈ Rn, where each δi

represents a rounding error. Aδ⃗(x) consists of two parts: a(x) and the sum over bi(x)δi. The first part
a(x) represents the exact result of e on an input x, which is obtained by replacing every floating-point
operation in e with its corresponding real-valued operation and by ignoring every bit-mask operation.
In particular, for our benchmarks a(x) is non-linear, i.e., composed of polynomials and rational
functions in x. In the second part bi(x)δi represents an error term that arises from the rounding
error of one or more floating-point/bit-mask operation(s). Here the variable δi ∈ [−∆i,∆i], where
∆i ∈ R≥0 is a constant. This abstraction is similar to the one described in [143].

We next define sound abstractions of expressions as follows:

Definition 4.1. Aδ⃗(x) is a sound abstraction of e if ∀x ∈ X ∩ F. E(e)(x) ∈ {Aδ⃗(x) : |δi| ≤ ∆i}.

The abstractions form a partial order: Aδ⃗(x) ⊑ A
′
δ⃗′(x) if ∀x ∈ X∩F. {Aδ⃗(x) : |δi| ≤ ∆i} ⊆ {A′

δ⃗′(x) :

|δ′i| ≤ ∆′
i}. The abstractions higher up in the order are more over-approximate. The goal of the next

subsection is to construct a sound abstraction of a given expression.
Before describing how to construct such an abstraction, we define the four elementary operations

on abstractions that over-approximate their real-valued counterparts. They are defined as:

Aδ⃗(x)⊞A
′
δ⃗(x) ≜ Aδ⃗(x) +A

′
δ⃗(x),

Aδ⃗(x)⊟A
′
δ⃗(x) ≜ Aδ⃗(x)−A

′
δ⃗(x),

Aδ⃗(x)⊠A
′
δ⃗(x) ≜ linearize(Aδ⃗(x)×A

′
δ⃗(x)),

Aδ⃗(x) �A′
δ⃗(x) ≜ Aδ⃗(x)⊠ inv(A′

δ⃗(x)).

Observe that ⊞ and ⊟ are defined simply as + and −. On the other hand, the real-valued multi-
plication of two abstractions may not be an abstraction because of δiδj terms. To soundly remove

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 39

such quadratic δ terms, we introduce a new operation linearize(·):

linearize

a(x) +∑
i

bi(x)δi +
∑
i,j

bi,j(x)δiδj

 ≜ a(x) +
∑
i

bi(x)δi +
∑
i,j

bi,j(x)δ
′
i,j

where |δ′i,j | ≤ ∆i∆j .

Here δ′i,j is a fresh variable ranging over [−∆i∆j ,∆i∆j]. Using the new operation, ⊠ is defined as
the application of linearize(·) to the real-valued multiplication of two abstractions. Note that this
abstraction is more precise than the ones considered in prior work that either bound all the quadratic
error terms by one ulp [90] or bound the coefficients of the quadratic terms by constants obtained
via interval analysis [143]. These constants can lead to imprecise ulp error bounds when a(x) ≈ 0

and we give an example at the end of the next subsection.
To define �, it is enough to define the operation inv(Aδ⃗(x)) that over-approximates the inverse

of Aδ⃗(x). We first over-approximate Aδ⃗(x) = a(x) +
∑
i bi(x)δi to obtain a simpler abstraction

a(x) + a(x)δ′ that has only one δ term, and then over-approximate the inverse of the simplified
abstraction, 1

a(x)+a(x)δ′ =
1

a(x) ·
1

1+δ′ , to obtain the final abstraction. This is formalized as:

inv

(
a(x) +

∑
i

bi(x)δi

)
≜

1

a(x)
+

1

a(x)
δ′′ where |δ′′| ≤ ∆′

1−∆′ (assumes ∆′ < 1).

Here δ′′ is a fresh variable and ∆′ is obtained by solving the following optimization problem:

∆′ =
∑
i

max
x∈X

∣∣∣∣bi(x)a(x)

∣∣∣∣ ·∆i

Throughout this chapter, for any function f(x) and g(x), the value of |f(x0)/g(x0)| at x0 with
g(x0) = 0 is defined as 0 if f(x0) = 0, and ∞ if f(x0) ̸= 0. Note that ∆′ bounds the relative error of
Aδ⃗(x) with respect to its exact term a(x), i.e., ErrRel(a(x),Aδ⃗(x)) ≤ ∆′ for all x ∈ X and |δi| ≤ ∆i.
Technically, the above definition of inv(·) assumes ∆′ < 1, but it can be extended to work even when
∆′ ≥ 1. However, the condition ∆′ < 1 holds for all applications of inv(·) in our benchmarks.

Next, we show that the four operations � defined above over-approximate their real-valued
counterparts:

Lemma 4.2. Aδ⃗(x) ∗ A
′
δ⃗(x) ⊑ Aδ⃗(x) �A′

δ⃗(x) for any ∗ ∈ {+,−,×, /}.

Proof. We sketch the argument that linearize(·) and inv(·) over-approximate their arguments. The
main observation is that {δiδj : |δi| ≤ ∆i, |δj | ≤ ∆j} ⊆ [−∆i∆j ,∆i∆j], and {1/(1 + δ′)− 1 : |δ′| ≤
∆′} ⊆ [−∆′/(1 +∆′),∆′/(1−∆′)] ⊆ [−∆′/(1−∆′),∆′/(1−∆′)] if ∆′ < 1. The proof of Lemma 4.5
shows a(x) + a(x)δ′ with |δ′| ≤ ∆′ over-approximates Aδ⃗(x).

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 40

e ∈ dom(K) K(e) = (Aδ⃗,)

(K, e)▷ (K,Aδ⃗)
Load

(K, c)▷ (K[c 7→ (c, false)], c)
R1

(K, x)▷ (K[x 7→ (x, false)], x)
R2

(K, e1)▷ (K1,A1,δ⃗)
(K1, e2)▷ (K2,A2,δ⃗) ∗ ∈ {+,−,×, /}

(K, e1 ⊛ e2)▷ (K′,A′
δ⃗), where

 δ′ = fresh(ε), δ′′ = fresh(ε′)
A′

δ⃗ = compress((A1,δ⃗ �A2,δ⃗)⊠ (1 + δ′)⊞ δ′′)
K′ = K2[e1 ⊛ e2 7→ (A′

δ⃗, false)]

R3

(K, bit-mask(e1, B))▷ (K1,A1,δ⃗)

(K, bit-mask(e1, B))▷ (K′,A′
δ⃗), where

 δ′ = fresh(2−52+B), δ′′ = fresh(2−1074+B)
A′

δ⃗ = compress(A1,δ⃗ ⊠ (1 + δ′)⊞ δ′′)
K′ = K1[bit-mask(e1, B) 7→ (A′

δ⃗, false)]

R4

Figure 4.3: Rules for constructing an abstraction of an expression

4.3.3 Construction of Sound Abstractions

The rules for constructing a sound abstraction of e are given in Figure 4.3. In the rules, K (and K′)
represents a cache, a mapping from expressions to tuples of size 2, which stores already computed
analysis results. A cache is defined to be sound if for any e ∈ dom(K) with K(e) = (Aδ⃗, b), Aδ⃗ is a
sound abstraction of e and b = true implies that e is not atomic and the last operation of e is exact.
The judgment (K, e)▷ (K′,Aδ⃗) denotes that given a sound cache K, our analysis of e constructs a
provably sound abstraction Aδ⃗ of e and a sound cache K′ that stores both previous and new analysis
results. The function fresh(∆) returns a fresh variable δ with the constraint |δ| ≤ ∆. The operations
Aδ⃗(x)⊠ (1 + δ′) and Aδ⃗(x)⊞ δ′ are defined as a special case of Aδ⃗(x)⊠A

′
δ⃗(x) and Aδ⃗(x)⊞A

′
δ⃗(x):

Aδ⃗(x)⊠ (1 + δ′) ≜ Aδ⃗(x)⊠A
′
δ⃗(x) where A′

δ⃗(x) = 1 + 1 · δ′,

Aδ⃗(x)⊞ δ′ ≜ Aδ⃗(x)⊞A
′
δ⃗(x) where A′

δ⃗(x) = 0 + 1 · δ′.

For now, let us ignore the operation compress(·). The rule Load is applied first whenever applicable;
other rules are applied only when the rule Load is not applicable (i.e., an analysis result of an
expression is not found in the current cache). The rule R3 is based on the (1 + ε)-property1, and
the rule R4 is based on the following lemma about abstracting the bit-mask operation:

Lemma 4.3. Given x ∈ F and B ∈ {1, 2, · · · , 52}, let y ∈ F be the result of masking out B least
1For ∗ ∈ {+,−}, we can soundly remove the term ⊞δ′′ from the rule R3 by Theorem 4.14 in §4.4.5 (see R14 in

Figure 4.8).

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 41

significant bits of x’s significand. Then for some |δ| < 2−52+B and |δ′| ≤ 2−1074+B,

y = x(1 + δ) + δ′.

The rules in Figure 4.3 (with compress(·) erased) can be used to construct a sound abstraction,
but the final abstraction can potentially have a huge number of δ variables. Specifically, for Ai,δ⃗(x)
with ki δ variables (i = 1, 2), A1,δ⃗(x) ⊠ A2,δ⃗(x) has (k1 + 1)(k2 + 1) − 1 δ variables. Using this
fact, we can prove that the abstraction of e can potentially have more than 2k δ variables, where
k is the number of floating-point/bit-mask operations in e. This property holds because for each
floating-point/bit-mask operation, we need to apply either the rule R3 or R4 both of which introduce
new (1 + δ′) terms and perform the operation (· · ·)⊠ (1 + δ′). Thus, constructing an abstraction
based on the rules in Figure 4.3 without compress(·) is intractable.

To address this issue, we re-define the operation Aδ⃗(x)⊠ (1 + δ′) as:

Aδ⃗(x)⊠ (1 + δ′) ≜ a(x) + a(x)δ′ +
∑
i

bi(x)δ
′
i where |δ′i| ≤ ∆i(1 + ∆′).

Here a given variable δ′ ranges over [−∆′,∆′] and δ′i is a fresh variable. Note that under the new
definition, Aδ⃗(x) ⊠ (1 + δ′) now has k + 1 (instead of 2k + 1) δ variables for any Aδ⃗(x) with k δ

variables, and it still over-approximates Aδ⃗(x)× (1 + δ′):

Lemma 4.4. Aδ⃗(x)× (1 + δ′) ⊑ Aδ⃗(x)⊠ (1 + δ′).

Proof. For {δi(1 + δ′) : |δi| ≤ ∆i, |δ′| ≤ ∆′} ⊆ [−∆i(1 + ∆′),∆i(1 + ∆′)].

This revised definition of Aδ⃗(x)⊠ (1 + δ′) resolves the issue to some extent, but not completely
because the number of δ variables is still exponential in the number of multiplications in e. To this
end, we define a new operation compress(Aδ⃗(x)) that significantly reduces the number of δ variables
in Aδ⃗(x), as follows:

compress(Aδ⃗(x)) ≜ a(x) + a(x)δ′ +
∑
i/∈S

bi(x)δi where |δ′| ≤
∑
i∈S

γi.

Here δ′ is a fresh variable, and γi ∈ R≥0∪{∞} and the set S are computed as

γi = max
x∈X

∣∣∣∣bi(x)a(x)

∣∣∣∣ ·∆i and S =
{
i :
γi
ε
≤ τ

}
. (4.5)

The operation compress(Aδ⃗(x)) can remove some δ variables in Aδ⃗(x), and how aggressively it re-
moves the δ variables is determined by a user-given constant τ ∈ R≥0 (τ = 10 in our experiments): if
τ is big, compress(Aδ⃗(x)) would have a small number of δ variables but can be too over-approximate,
and if τ is small, compress(Aδ⃗(x)) would capture most behaviors of Aδ⃗(x) precisely but can have

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 42

many δ variables. Note that γi is computed by solving the optimization problem (of a single variable)
that also appears in the computation of inv(·). The quantity γi represents the contribution of the i-th
error term bi(x)δi to the overall relative error of Aδ⃗(x) with respect to a(x); thus, from Theorem 2.7,
γi/ε represents how much the error term bi(x)δi contributes to the overall ulp error of Aδ⃗(x). Thus,
the set S represents the indices of the error terms whose contribution to the overall ulp error is small
enough, i.e., ≤ τ ulps. The compress(·) procedure merges all the error terms of Aδ⃗(x) that have
such small contribution to the total ulp error, into a single error term a(x)δ′, and leaves all the other
error terms of Aδ⃗(x) as is. Conceptually, we can set τ =∞ and merge all δ terms into a single term.
But for some cases, e.g., Theorem 4.8 in §4.4.3, this merging can lead to very imprecise abstractions.

Like all the previous operations on abstractions, compress(·) over-approximates its argument:

Lemma 4.5. Aδ⃗(x) ⊑ compress(Aδ⃗(x)).

Proof. First, we show that for any i with γi <∞ we have bi(x)δi ⊑ a(x)δ′i, where |δ′i| ≤ γi. Consider
any i with γi <∞ and any x ∈ X. If a(x) ̸= 0,

|bi(x)δi| = |a(x)| ·
∣∣∣∣bi(x)a(x)

δi

∣∣∣∣ ≤ |a(x)| · ∣∣∣∣bi(x)a(x)

∣∣∣∣∆i ≤ |a(x)| · γi = |a(x)γi|

which implies {bi(x)δi : |δi| ≤ ∆i} ⊆ {a(x)δ′i : |δ′i| ≤ γi}. If a(x) = 0, γi <∞ implies bi(x) = 0, so
we have {bi(x)δi : |δi| ≤ ∆i} = {0} = {a(x)δ′i : |δ′i| ≤ γi}.

Next, it is easy to see that
∑
i∈S a(x)δ

′
i ⊑ a(x)δ′, where |δ′| ≤

∑
i∈S γi. Combining the

two facts implies
∑
i∈S bi(x)δi ⊑ a(x)δ′. Hence

∑
i bi(x)δi =

∑
i∈S bi(x)δi +

∑
i/∈S bi(x)δi ⊑

a(x)δ′ +
∑
i/∈S bi(x)δi.

We remark that the previous work on similar abstractions, [53, 143], does not use the compress(·)
operation.

Let us revisit the rules in Figure 4.3. The rules R3 and R4 use the re-defined operation
(· · ·)⊠ (1 + δ′) and the newly defined operation compress(·), to reduce the number of δ variables in
the abstractions of e1 ⊛ e2 and bit-mask(e1, B). Using these two operations, the rules can be applied
to expressions of practical sizes. We note that these two operations will be re-defined again in §4.4.3.
Finally, we establish the soundness of the rules:

Theorem 4.6. If (·, e)▷ (K′,Aδ⃗) then Aδ⃗ is a sound abstraction of e.

Proof. We generalize the above statement as: if (K, e)▷ (K′,Aδ⃗) and K is a sound cache, then K′ is
a sound cache and Aδ⃗ is a sound abstraction of e. We can prove this by induction on the derivation
tree of (K, e)▷ (K′,Aδ⃗) using Theorem 2.5 and Lemmas 4.2, 4.3, 4.4, and 4.5.

We conclude this subsection by demonstrating that the abstraction used in [143] is not sufficient
to prove tight ulp error bounds. For example, consider Intel’s sin implementation of the sine function
over the input interval X = [2−252, π64]. Since sin computes x − 1

6x
3 + · · · for an input x ∈ X,

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 43

applying the (1+ε)-property produces an abstraction of sin that contains the error term − 1
6x

3δ1δ2δ3,
where |δi| < ε (i = 1, 2, 3). In the abstraction of [143], the cubic error term is over-approximated by
a first-order error term Cδ′, where |δ′| < ε and C = ε2 max{|− 1

6x
3| : x ∈ X} ≈ 2 × 10−37. Hence

with this abstraction, a bound on the maximum ulp error of sin over X (with respect to sin x) is at
least 1

ε max{|Cδ′/ sinx| : x ∈ X, |δ′| < ε} ≈ 2× 1039 ulps, which is too loose. The culprit is that this
abstraction has constant coefficients for higher-order error terms and these terms become significant
for inputs near zero.

4.4 Exploiting Exactness Properties

Although the rules in Figure 4.3 can be used to construct a sound abstraction of an expression
e, the resulting abstraction can over-approximate the behaviors of e too imprecisely and fail to
prove a tight error bound of e. Consider a part of the implementation of log discussed in §4.2:
e = (2⊗ x)⊖ 255

128 with X = [40954096 , 1). As already explained, the operations ⊗ and ⊖ in e are exact,
i.e., introduces no rounding errors due to the exactness of multiplication by 2 and Sterbenz’s theorem
(Theorem 4.7), so Aδ⃗(x) = 2x − 255

128 is a sound abstraction of e. However, the rules in Figure 4.3
generate A′

δ⃗(x) = (2x− 255
128) + (2x− 255

128)δ1 + · · · as an abstraction of e by simply applying the
(1 + ε)-property to the ⊗ and ⊖ operation. The proof then uses A′

δ⃗ as an abstraction of e, instead
of using the more precise abstraction Aδ⃗. This imprecision leads to the imprecise error bound of
1014 ulps for log over X, presented in Chapter 3.

To prove a tighter error bound, we construct a more precise abstraction by avoiding the application
of the (1 + ε)-property whenever possible while maintaining soundness (Theorem 4.6). For each
floating-point operation e1 ⊛ e2, we first determine whether the operation ⊛ is exact or not using
some properties of floating-point arithmetic. If the particular operation ⊛ is exact, we simply use
A1,δ⃗ �A2,δ⃗ as a sound abstraction of e1 ⊛ e2, where Ai,δ⃗ is a sound abstraction of ei (i = 1, 2). In
contrast, the (1 + ε)-property instead yields the less precise abstraction (A1,δ⃗ �A2,δ⃗)⊠ (1 + δ′)⊞ δ′′.
The key to this approach is automatically determining whether a given floating-point operation is
exact, i.e., produces no rounding errors.

Some of the properties of floating-point that we use are well-known to floating-point experts (§4.4.1,
4.4.2, 4.4.3, 4.4.6) and some are new (i.e., haven’t appeared explicitly in the literature) to the best of our
knowledge (§4.4.4, 4.4.5). We remark that it was challenging for us to rediscover these properties and
infer how to use them in automatic proofs of error bounds for practical floating-point implementations.

4.4.1 Simple Exact Operations

We start with the simplest situation where a floating-point addition/subtraction or a floating-point
multiplication/division is exact: for any x, y ∈ F with y = 2n for some n ∈ Z, we have x ⊛ 0 = x

if ∗ ∈ {+,−}, and x⊛ y = x ∗ y if ∗ ∈ {×, /}. In other words, floating-point addition by 0 is always

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 44

(K, e1)▷ (K1,A1,δ⃗)
(K1, e2)▷ (K2, 0) ∗ ∈ {+,−}

(K, e1 ⊛ e2)▷ (K2[e1 ⊛ e2 7→ (A1,δ⃗, true)],A1,δ⃗)
R5

(K, e1)▷ (K1,A1,δ⃗)
(K1, e2)▷ (K2, 2

n) (n ∈ Z) ∗ ∈ {×, /}
(K, e1 ⊛ e2)▷ (K2[e1 ⊛ e2 7→ (A1,δ⃗ ∗ 2

n, true)],A1,δ⃗ ∗ 2
n)

R6

(K, e1)▷ (K1, c1)
(K1, e2)▷ (K2, c2) ∗ ∈ {+,−,×, /}

(K, e1 ⊛ e2)▷ (K2[e1 ⊛ e2 7→ (c′, c′ == c1 ∗ c2)], c′), where c′ = c1 ⊛ c2
R7

Figure 4.4: Rules for simple exact operations

exact, and floating-point multiplication by an integer power of 2 is always exact because multiplying
x by a power of 2 changes only the exponent of x, not its significand.2

Figure 4.4 presents the rules based on the above property. The rule R5 considers the addition/-
subtraction case and the rule R6 considers the multiplication/division case3; their commutative
counterparts are omitted. The rule R7 considers the case where the evaluation result of e1 and e2
are exactly known as c1 and c2. In such a case, though the floating-point operation ⊛ in e1 ⊛ e2 may
not be exact, we can know the exact evaluation result of the operation, c1 ⊛ c2, by partial evaluation.
Note that all the rules in the figure do not use the (1 + ε)-property.

4.4.2 Sterbenz’s Theorem

The next situation where a floating-point addition/subtraction is exact is described in Sterbenz’s
theorem [146]:

Theorem 4.7 ([146]). Let x, y ∈ F with x, y ≥ 0. Then

x

2
≤ y ≤ 2x =⇒ x⊖ y = x− y.

The theorem says that the floating-point subtraction of x ≥ 0 and y ≥ 0 is exact whenever y is within
a factor of two of x.

Typical examples that make use of Sterbenz’s theorem are from range reduction steps that reduce
the computation of f(x) to the computation of g(r) such that the range of r is much smaller than that
of x. A range reduction step used to compute log x has been discussed in §4.2 and at the beginning

2 Technically, x ⊗ 2n = x × 2n may not hold if x × 2n is very small (e.g., x = 2−1074 and n = −1) since the
exponent of a double cannot be smaller than −1022.

3Strictly speaking, the rule R6 is unsound according to Footnote 2. For a sound version of the rule R6, refer to
the rule R6′ (Appendix A.1.2) which uses quantities σ(e) and µ(e) introduced in §4.4.4 and §4.4.5.

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 45

of this section. Another common range reduction is:

n = round(Kinv ⊗ x), r = x⊖ (K ⊗ n),

where n is an integer, and Kinv,K ∈ F>0 have a relationship that Kinv ≈ 1/K. For example, if
K = fl(π) then this range reduction can reduce the computation of sin x to sin r for r ∈ [−π2 ,

π
2]. This

range reduction relies on Sterbenz’s theorem to guarantee that the operation ⊖ in the computation
of r is exact.

Before explaining how to exploit Sterbenz’s theorem in our framework, we point out that The-
orem 4.7 considers only the case x, y ≥ 0. To cover the case x, y ≤ 0 as well, we extend the theorem
in the following way: for any x, y ∈ F, if they satisfy

x

2
≤ y ≤ 2x or 2x ≤ y ≤ x

2
, (4.6)

then x⊖ y = x− y. From now on, we refer to this extended theorem (instead of Theorem 4.7) as
Sterbenz’s theorem.

Next, we derive optimization problems, based on Sterbenz’s theorem, that can check whether an
operation ⊖ between two expressions e1 and e2 is exact. As e1 and e2 are functions of x, we would
like to check if the operation E(e1)(x)⊖ E(e2)(x) is exact for all x ∈ X ∩ F. According to Sterbenz’s
theorem (Eq. (4.6)), the operation is exact for all x ∈ X ∩ F if

∀x ∈ X ∩ F.
(
1

2
E(e1)(x) ≤ E(e2)(x) ≤ 2E(e1)(x)

)
∨
(
2E(e1)(x) ≤ E(e2)(x) ≤

1

2
E(e1)(x)

)
. (4.7)

However, we do not know E(ei)(x) statically; rather we can construct its abstraction as described
in §4.3. Let Ai,δ⃗ be a sound abstraction of ei (i = 1, 2). From the definition of a sound abstraction,
for any x ∈ X ∩ F, we have E(e1)(x) = A1,δ⃗(x) and E(e2)(x) = A2,δ⃗(x) for some δ⃗ ∈ ∆⃗, where
∆⃗ = [−∆1,∆1]× · · · × [−∆n,∆n]. Using A1,δ⃗ and A2,δ⃗, we strengthen Eq. (4.7) to Eq. (4.8):

∀x ∈ X.∀δ⃗ ∈ ∆⃗.

[(
1

2
A1,δ⃗(x) ≤ A2,δ⃗(x) ≤ 2A1,δ⃗(x)

)
∨
(
2A1,δ⃗(x) ≤ A2,δ⃗(x) ≤

1

2
A1,δ⃗(x)

)]
. (4.8)

Eq. (4.8) is stronger than Eq. (4.7) in two aspects: it is quantified over x that ranges over X (instead
of over X ∩ F), and additionally over δ⃗. The first change is motivated by the fact that checking
inequalities (and solving optimization problems) over X ⊆ R is easier than over the discrete set
X ∩ F. The second change is necessary since we do not know statically which δ⃗ ∈ ∆⃗ would satisfy
E(e1)(x) = A1,δ⃗(x) and E(e2)(x) = A2,δ⃗(x) for each x. Although Eq. (4.8) is easier to handle than
Eq. (4.7), transforming it directly into optimization problems is still difficult because of the ∨ within

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 46

(K, e1)▷ (K1,A1,δ⃗)
(K1, e2)▷ (K2,A2,δ⃗)

minx,δ⃗(A2,δ⃗ −
1
2A1,δ⃗) ≥ 0

maxx,δ⃗(A2,δ⃗ − 2A1,δ⃗) ≤ 0

(K, e1 ⊖ e2)▷ (K′,A′
δ⃗), where

{
A′

δ⃗ = compress(A1,δ⃗ ⊟A2,δ⃗)
K′ = K2[e1 ⊖ e2 7→ (A′

δ⃗, true)]

R8

(K, e1)▷ (K1,A1,δ⃗)
(K1, e2)▷ (K2,A2,δ⃗)

minx,δ⃗(A2,δ⃗ − 2A1,δ⃗) ≥ 0

maxx,δ⃗(A2,δ⃗ −
1
2A1,δ⃗) ≤ 0

(K, e1 ⊖ e2)▷ (K′,A′
δ⃗), where

{
A′

δ⃗ = compress(A1,δ⃗ ⊟A2,δ⃗)
K′ = K2[e1 ⊖ e2 7→ (A′

δ⃗, true)]

R9

Figure 4.5: Rules for applying Sterbenz’s theorem

the quantifiers. We strengthen it further to obtain Eq. (4.9):(
∀x.∀δ⃗. 1

2
A1,δ⃗(x) ≤ A2,δ⃗(x) ≤ 2A1,δ⃗(x)

)
∨
(
∀x.∀δ⃗. 2A1,δ⃗(x) ≤ A2,δ⃗(x) ≤

1

2
A1,δ⃗(x)

)
, (4.9)

where x ranges over X and δ⃗ over ∆⃗. The left clause of Eq. (4.9) is logically equivalent to(
min

x∈X,δ⃗∈∆⃗
(A2,δ⃗ −

1

2
A1,δ⃗) ≥ 0

)
∧

(
max

x∈X,δ⃗∈∆⃗
(A2,δ⃗ − 2A1,δ⃗) ≤ 0

)
(4.10)

involving two optimization problems that are sufficient to ensure e1 ⊖ e2 is exact.
The rules shown in Figure 4.5 are based on the above derivation. The rule R8 does not apply the

(1 + ε)-property if Eq. (4.10) holds. The rule R9 is based on the counterpart of Eq. (4.10) derived
from the right clause of Eq. (4.9). Note that in Figure 4.5 the rules for e1 ⊕ e2 are omitted: they
can be obtained from the rules for e1 ⊖ e2 by negating A2,δ⃗ as x⊕ y = x⊖ (−y) for any x and y.

4.4.3 Dekker’s Theorem

The next property of floating-point arithmetic that we use to construct a more precise abstraction is
Dekker’s theorem [42]. The theorem suggests a way to compute the rounding error, (x⊕ y)− (x+ y),
of an operation x ⊕ y. It is well-known that the rounding error r = (x ⊕ y) − (x + y) is in fact a
double for any x, y ∈ F, and Dekker’s theorem provides a way to recover r using only floating-point
operations on x and y:

Theorem 4.8 ([42]). Let x, y ∈ F with |x+ y| ≤ maxF and r = x⊕ y ⊖ x⊖ y. Then

|x| ≥ |y| =⇒ r = (x⊕ y)− (x+ y).

The double r = x⊕ y ⊖ x⊖ y in the theorem represents the rounding error of x⊕ y.
Let us start with the rule R11 of Figure 4.6 that constructs a tighter abstraction of an expression

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 47

(K, e1)▷ (K1,A1,δ⃗)
(K1, e2)▷ (K2,A2,δ⃗) hasDekker(e1 ⊕ e2)

(K, e1 ⊕ e2)▷ (K′,A′
δ⃗), where

 δ′ = fresh(ε, true)
A′

δ⃗ = compress((A1,δ⃗ ⊞A2,δ⃗)⊠ (1 + δ′))
K′ = K2[e1 ⊕ e2 7→ (A′

δ⃗, false⟨δ
′⟩)]

R10

(K, e1 ⊕ e2)▷ (K1,)
K1(e1) = (A1,δ⃗,)
K1(e2) = (A2,δ⃗,)

K1(e1 ⊕ e2) = (, false⟨δ′⟩)
minx,δ⃗ |A1,δ⃗| ≥ maxx,δ⃗ |A2,δ⃗|

(K, e1 ⊕ e2 ⊖ e1 ⊖ e2)▷ (K′,A′
δ⃗), where

{
A′

δ⃗ = compress((A1,δ⃗ ⊞A2,δ⃗)⊠ δ′)
K′ = K1[e1 ⊕ e2 ⊖ e1 ⊖ e2 7→ (A′

δ⃗, false)]

R11

(K, e1 ⊕ e2)▷ (K1,) K1(e1 ⊕ e2) = (, true)

(K, e1 ⊕ e2 ⊖ e1 ⊖ e2)▷ (K1[e1 ⊕ e2 ⊖ e1 ⊖ e2 7→ (0, true)], 0)
R12

Figure 4.6: Rules for applying Dekker’s theorem

er = e1 ⊕ e2 ⊖ e1 ⊖ e2 based on Dekker’s theorem. The rule first checks whether Dekker’s theorem is
applicable to the expression er, i.e., whether the condition P1 ≜ ∀x ∈ X∩F. |E(e1)(x)| ≥ |E(e2)(x)| is
satisfied. However, P1 cannot be checked statically and the rule actually checks a stronger condition
P2 ≜ minx,δ⃗ |A1,δ⃗(x)| ≥ maxx,δ⃗ |A2,δ⃗(x)| by solving optimization problems on a sound abstraction
Ai,δ⃗ of ei (i = 1, 2). The derivation of P2 from P1 is similar to the derivation of Eq. (4.10) from
Eq. (4.7) in §4.4.2. Once the rule successfully checks that P2 is true, it constructs a sound abstraction
of er not by applying the (1 + ε)-property, but by applying Dekker’s theorem which says er is the
rounding error of e1 ⊕ e2. Note that the rule requires a new operation Aδ⃗(x)⊠ δ′:

Aδ⃗(x)⊠ δ′ ≜ Aδ⃗(x)⊠A
′
δ⃗(x) where A′

δ⃗(x) = 0 + 1 · δ′.

Although the rule R11 constructs a tighter abstraction of er = e1⊕ e2⊖ e1⊖ e2 than the rule R3,
it does not fully capture the essence of Dekker’s theorem: the possibility of the rounding error of x⊕y
being exactly canceled out by x⊕y⊖x⊖y. Such cancellation may not occur even with the rule R11 be-
cause some δ variables can be replaced with or merged into fresh ones by Aδ⃗⊠(1+δ′) and compress(·).

We re-define the operations Aδ⃗ ⊠ (1 + δ′) and compress(·) and introduce the rule R10 to ensure
that δ variables related to Dekker’s theorem are preserved (i.e., not replaced with or merged into
fresh variables). As a first step, each variable δi is associated with the predicate preserve(δi) which
indicates whether δi should be preserved: preserve(δi) = true denotes that δi should be preserved,
whereas preserve(δi) = false denotes that merging δi is allowed. Using preserve(·), we re-define the
following operations on abstractions:

Aδ⃗(x)⊠ (1 + δ′) ≜ a(x) + a(x)δ′ +
∑
i∈R

bi(x)δ
′
i +
∑
i/∈R

(bi(x)δi + bi(x)δ
′′
i) where

|δ′i| ≤ ∆i(1 + ∆′)

|δ′′i | ≤ ∆i∆
′

,

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 48

compress(Aδ⃗(x)) ≜ a(x) + a(x)δ′ +
∑
i/∈R∩S

bi(x)δi where |δ′| ≤
∑
i∈R∩S

γi.

Here δ′, δ′i, and δ′′i are fresh variables, S and γi are defined as before (Eq. (4.5)), and R = {i :
preserve(δi) = false}. The re-defined operations preserve any δi with preserve(δi) = true. Note that
the previous definition of Aδ⃗(x)⊠ (1+δ′) and compress(·) is obtained by setting preserve(δi) = false

for all i.
In the rule R10 of Figure 4.6, the predicate hasDekker(e1 ⊕ e2) denotes that a given expression

contains er = e1⊕ e2⊖ e1⊖ e2 as a subexpression, and the value false⟨δ′⟩ denotes that the operation
⊕ in e1 ⊕ e2 may not be exact and the rounding error from this ⊕ operation is modeled by the
variable δ′. The function fresh(∆, b) returns a fresh variable δ with the constraint |δ| ≤ ∆ and
preserve(δ) = b; the previous function fresh(∆) now denotes fresh(∆,∆ > ε), which implies that by
default only those δ variables from bit-mask operations are preserved. The antecedent of the rule
R10 indicates that Dekker’s theorem can possibly be applied to e1 ⊕ e2 and er. In this case the rule
sets preserve(δ′) to be true, where δ′ denotes the rounding error of e1 ⊕ e2, and prevents δ′ from
being removed. Note that the rule R11 uses this δ′ in an abstraction of er to make the cancellation
possible. The rule R10 does not add an absolute error term δ′′ (|δ′′| ≤ ε′) in its consequent by the
refined (1 + ε)-property (Theorem 4.14 in §4.4.5).

To illustrate how the rules R10 and R11 are applied, consider an expression e = e1⊖(e2⊕e3) over
X = [1, 2], where e1 = x⊕1, e2 = x⊕1⊖x⊖1, and e3 = 0.01⊗x⊗x. The expression e accurately com-
putes 1+x−0.01x2 by subtracting e2 (which evaluates exactly to the rounding error of e1 by Dekker’s
theorem) from e1. Analyzing e with the rules R10 and R11 produces the following derivation tree:

· · ·
hasDekker(e1)

R10
(·, e1)▷ (K1,A1,δ⃗)

x⊕ 1 ∈ dom(K1)
Load

(K1, x⊕ 1)▷ (K1,)

K1(x) = (x,)

K1(1) = (1,)

K1(x⊕ 1) = (, false⟨δ1⟩)
minx,δ⃗ |x| ≥ maxx,δ⃗ |1|

R11
(K1, e2)▷ (K2,A2,δ⃗) (K2, e3)▷ · · ·

R3
(K1, e2 ⊕ e3)▷ · · ·

R3
(·, e1 ⊖ (e2 ⊕ e3))▷ (· · · ,A′

δ⃗)

Here A1,δ⃗(x) = (x+ 1) + (x+ 1)δ1, K1 = [1 7→ (1, false), x 7→ (x, false), e1 7→ (A1,δ⃗, false⟨δ1⟩)],
A2,δ⃗(x) = (x+1)δ1, K2 = K1[e2 7→ (A2,δ⃗, false)], and A′

δ⃗(x) = (1+x−0.01x2)+(1+x−0.01x2)δ′,
where |δ1| ≤ ε and |δ′| ≤ 1.041ε. The above derivation tree states that an abstraction of e1 and of e2
are constructed as A1,δ⃗ and A2,δ⃗. Note that the abstraction A2,δ⃗ of e2 is (x+ 1)δ1, the error term of
A1,δ⃗ which models the rounding error of x⊕ 1. Hence the final abstraction A′

δ⃗ of e does not contain
the error term (x+ 1)δ1 due to its cancellation, which is what we desired.

The rule R12 in Figure 4.6, based on Lemma 4.9, deals with the specific case when e1⊕e2 is exact.
The lemma says that if x⊕y is exact then x⊕y⊖x⊖y = 0 regardless of the ordering between x and y.

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 49

Lemma 4.9. Let x, y ∈ F and r = x⊕ y ⊖ x⊖ y. Then

x⊕ y = x+ y =⇒ r = 0.

Note that there are several variants of Theorem 4.8 and Lemma 4.9, and Figure 4.6 omits the
corresponding variants of the rules R10, R11, and R12 for brevity. For instance, one variant of
Theorem 4.8 is: |y| ≥ |x| implies r = −((x⊖ y)− (x− y)) where r = x⊖ (x⊖ y⊕ y). The rules based
on each such variant of Theorem 4.8 and Lemma 4.9 can be designed analogously to the rules R10,
R11, and R12 by focusing on different expressions (e.g., x⊖ y and x⊖ (x⊖ y ⊕ y)) and extending
the definition of hasDekker(·) accordingly.

4.4.4 Nonzero Significand Bits

The next floating-point property we exploit is based on σ(d), the number of the significand bits of
d ∈ F that are not trailing zeros. To formally define σ(·) over a subset of R, we define the exponent
function expnt(·) as:

expnt(r) ≜

k for |r| ∈ [2k, 2k+1) where k ∈ [−1022, 1023] ∩ Z

−1022 for |r| ∈ [0, 2−1022).

Using expnt(·), we define the function σ : [−maxF,maxF]→ Z≥0 ∪ {∞} as follows: for r ̸= 0,

σ(r) ≜

max{i ∈ Z≥1 : fi ̸= 0} if defined

∞ otherwise

where f1.f2f3 · · ·(2) is the binary representation of r/2expnt(r) (fi ∈ {0, 1} for all i), and σ(0) ≜ 0.
For example, σ(5/8) = 3 since expnt(5/8) = −1 and 5/8 = 2−1 × 1.01(2), and σ(1/5) = ∞ since
1/5 = 2−3 × 1.10011001 · · ·(2).

The following theorem uses σ(·) to determine if a floating-point operation is exact:

Theorem 4.10. Let x, y ∈ F with |x ∗ y| ≤ maxF where ∗ ∈ {+,−,×, /}. Then

σ(x ∗ y) ≤ 53 =⇒ x⊛ y = x ∗ y.

To make use of this theorem, we must compute σ(x ∗ y). The following two lemmas can be
used to bound σ(x ∗ y), given σ(x) and σ(y) (or their upper bounds). First, Lemma 4.11 handles
multiplication:

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 50

(K, e1)▷ (K1,A1,δ⃗)
(K1, e2)▷ (K2,A2,δ⃗)

K1(e1) = (, , σ1)
K2(e2) = (, , σ2)

σ′ = bound-σ(∗,A1,δ⃗,A2,δ⃗, σ1, σ2)
∗ ∈ {+,−,×, /}

σ′ ≤ 53

(K, e1 ⊛ e2)▷ (K′,A′
δ⃗), where

{
A′

δ⃗ = compress(A1,δ⃗ �A2,δ⃗)
K′ = K2[e1 ⊛ e2 7→ (A′

δ⃗, true, σ
′)]

R13

Figure 4.7: Rule for using σ(·)

Lemma 4.11. Let x, y ∈ F with |xy| ≤ maxF. Assume x, y ̸= 0. Then

σ(x× y) ≤ σ(x) + σ(y) + k

where k = min{n ∈ Z≥0 : |xy| ≥ 2−1022−n}.

Second, Lemma 4.12 handles addition and subtraction:

Lemma 4.12. Let x, y ∈ F with |x+ y| ≤ maxF. Assume x, y > 0 and expnt(x) ≥ expnt(y). Then

σ(x+ y) ≤ max{σ(x), σ(y) + ∆e}+ k,

σ(x− y) ≤ max{max{σ(x), σ(y) + ∆e} −min{l, expnt(x) + 1022}, 0},

where ∆e = expnt(x) − expnt(y), k = min{n ∈ Z≥0 : |x+ y| < 2expnt(x)+1+n}, and l = max{n ∈
Z≥0 : |x− y| < 2expnt(x)+1−n}.

The lemma says that when σ(x) and σ(y) are fixed, σ(x+ y) and σ(x− y) decrease as x and y get
closer to each other (since it makes ∆e smaller and l larger). In the lemma, the integer k represents
whether there is a carry-over during the addition x+ y, as k = 0 if no carry-over and k = 1 otherwise.
The integer l is subtracted from the upper bound on σ(x− y) to consider the case when x and y

are close: if they are close enough, some of x’s most significant bits can be canceled out by y’s
corresponding significant bits during the subtraction x − y, thereby reducing σ(x− y). The term
min{· · · , expnt(x) + 1022} is necessary to consider the case when |x− y| < 2−1022.

Note that Lemma 4.12 is a generalization of Sterbenz’s theorem. We are unaware of any previous
work that proves this lemma. Moreover, this lemma is a general fact about floating-point that may
have applicability beyond this dissertation.

We present the rule based on Theorem 4.10 in Figure 4.7. To apply Theorem 4.10, we need to
track σ(e) for each expression e, which is defined as:

σ(e) ≜ max{σ(E(e)(x)) : x ∈ X ∩ F}.

The cache K is extended to store an upper bound of σ(e) for each e. The rule R13 computes σ′ that
upper bounds σ(e1 ∗ e2) via Algorithm 1, and then checks whether σ′ ≤ 53. If the check passes, the

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 51

Algorithm 1 bound-σ(∗, f1, f2, σ1, σ2)
1: Let D = dom(f1)
2: if ∗ = + then
3: Compute ∆e ∈ Z≥0 such that ∀x⃗ ∈ D. |expnt(f1(x⃗))− expnt(f2(x⃗))| ≤ ∆e
4: if ∀x⃗ ∈ D. expnt(f1(x⃗)) ≥ expnt(f2(x⃗)) then
5: if ∀x⃗ ∈ D. f1(x⃗)f2(x⃗) ≥ 0 then
6: Compute k ∈ Z≥0 such that ∀x⃗ ∈ D. |f1(x⃗) + f2(x⃗)| < 2expnt(f1(x⃗))+1+k

7: return max{σ1, σ2 +∆e}+ k
8: end if
9: if ∀x⃗ ∈ D. f1(x⃗)f2(x⃗) < 0 then

10: Compute
{
l ∈ Z≥0 such that ∀x⃗ ∈ D. |f1(x⃗) + f2(x⃗)| < 2expnt(f1(x⃗))+1−l

em1 ∈ Z such that ∀x⃗ ∈ D. expnt(f1(x⃗)) ≥ em1

11: return max{max{σ1, σ2 +∆e} −min{l, em1 + 1022}, 0}
12: end if
13: end if
14: if ∀x⃗ ∈ D. expnt(f1(x⃗)) ≤ expnt(f2(x⃗)) then
15: [symmetric to the above case]
16: end if
17: return max{σ1, σ2}+∆e+ 1
18: end if
19: if ∗ = − then
20: [similar to the case ∗ = +]
21: end if
22: if ∗ = × then
23: Compute k ∈ Z≥0 such that ∀x⃗ ∈ D. |f1(x⃗)f2(x⃗)| ≥ 2−1022−k

24: return σ1 + σ2 + k
25: end if
26: if ∗ = / then
27: return ∞
28: end if

rule constructs an abstraction of e1 ⊛ e2 without applying the (1 + ε)-property.
Next, we discuss Algorithm 1 in more detail. For brevity, the algorithm uses the notation fi

to represent an abstraction Ai,δ⃗ (i = 1, 2); D represents X × [−∆1,∆1] × · · · × [−∆n,∆n] and x⃗

represents (x, δ1, · · · , δn). With this notation Algorithm 1 upper bounds σ(f1 ∗ f2), given upper
bounds on σ(f1) and σ(f2). Formally, the algorithm meets the following specification:

Lemma 4.13. Consider ∗ ∈ {+,−,×, /}, fi : D → R, and σi ∈ Z≥0 for i ∈ {1, 2} and D ⊆ Rm.
Let σ′ = bound-σ(∗, f1, f2, σ1, σ2). Then for any x⃗ ∈ D such that ∀i ∈ {1, 2}. σ(fi(x⃗)) ≤ σi,

|f1(x⃗) ∗ f2(x⃗)| ≤ maxF =⇒ σ(f1(x⃗) ∗ f2(x⃗)) ≤ σ′.

Algorithm 1 (conservatively) returns ∞ for division because the result of dividing two doubles often
has no representation with finite binary digits (e.g., 1/5 = 2−3 × 1.10011001 · · ·(2)).

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 52

Algorithm 1 solves multiple optimization problems to compute the final bound. For exam-
ple, to obtain ∆e, we first compute [emi, eMi] (i = 1, 2), an interval bounding the range of
expnt(fi(x⃗)) over x⃗ ∈ D, by solving optimization problems: emi = expnt(min{|fi(x⃗)| : x⃗ ∈ D})
and eMi = expnt(max{|fi(x⃗)| : x⃗ ∈ D}). Next, ∆e is set to ∆e = max{eM1− em2, eM2− em1}. For
another example, consider the if condition on line 5. The condition can be conservatively checked by
deciding whether (fm1 ≥ 0∧fm2 ≥ 0)∨(fM1 ≤ 0∧fM2 ≤ 0) holds, where fmi = min{fi(x⃗) : x⃗ ∈ D}
and fMi = max{fi(x⃗) : x⃗ ∈ D}.

Now that the cache has been extended to store an upper bound of σ(e), we need to extend all
the previous rules accordingly and ensure that Theorem 4.6 holds. For instance, the rule R4 is
extended to

(K, bit-mask(e1, B))▷ (K1,A1,δ⃗) K1(e1) = (, , σ1)

(K, bit-mask(e1, B))▷ (K′,A′
δ⃗), where


δ′ = fresh(2−52+B), δ′′ = fresh(2−1074+B)

A′
δ⃗ = compress(A1,δ⃗ ⊠ (1 + δ′)⊞ δ′′)

σ′ = min{σ1, 53−B}
K′ = K1[bit-mask(e1, B) 7→ (A′

δ⃗, false, σ
′)]

R4′

because bit-mask(e1, B) masks out B least significant bits of e1’s significand. We can prove that
Theorem 4.6 still holds, using the extended definition of a sound cache: a cache K is sound if for any
e ∈ dom(K) with K(e) = (Aδ⃗, b, σ), Aδ⃗ and b satisfy the previous condition and σ(e) ≤ σ.

4.4.5 Refined (1 + ε)-property

In some cases, the absolute error term δ′ in Theorem 2.5 can be soundly removed according to the
following refined (1 + ε)-property:

Theorem 4.14 ([66, 109]). Let x, y ∈ F and ∗ ∈ {+,−,×, /}. Assume |x ∗ y| ≤ maxF. For any
∗ ∈ {+,−}, and for any ∗ ∈ {×, /} with either x ∗ y = 0 or |x ∗ y| ≥ 2−1022, we have

x⊛ y = (x ∗ y)(1 + δ) for some |δ| < ε.

The theorem states that the absolute error term δ′ is always unnecessary for addition and subtraction,
and for the other operations it is unnecessary if the exact result of the operation is not in the
subnormal range. The theorem is standard and follows from three properties of floating-point:
ErrRel(r, fl(r)) < ε for any r ∈ R not in the subnormal range (i.e., 0 < |r| < 2−1022), every double
is a multiple of ulp(0), and any multiple of ulp(0) is a double if it is in the subnormal range.

To use Theorem 4.14 in constructing an abstraction of an expression e, we need to know whether
e can evaluate to a number between 0 and ±2−1022. To this end, define a function µ(e) > 0 over

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 53

(K, e1)▷ (K1,A1,δ⃗)
(K1, e2)▷ (K2,A2,δ⃗)

K1(e1) = (, , σ1, µ1)
K2(e2) = (, , σ2, µ2)

σ′ = bound-σ(∗,A1,δ⃗,A2,δ⃗, σ1, σ2)
µ′ = bound-µ(∗,A1,δ⃗,A2,δ⃗, µ1, µ2) ∗ ∈ {+,−}

(K, e1 ⊛ e2)▷ (K′,A′
δ⃗), where


δ′ = fresh(ε)
A′

δ⃗ = compress((A1,δ⃗ �A2,δ⃗)⊠ (1 + δ′))
σ′′ = min{σ′, 53}, µ′′ = max{fl−(µ′), 2−1074}
K′ = K2[e1 ⊛ e2 7→ (A′

δ⃗, false, σ
′′, µ′′)]

R14

(K, e1)▷ (K1,A1,δ⃗)
(K1, e2)▷ (K2,A2,δ⃗)

K1(e1) = (, , σ1, µ1)
K2(e2) = (, , σ2, µ2)

σ′ = bound-σ(∗,A1,δ⃗,A2,δ⃗, σ1, σ2)
µ′ = bound-µ(∗,A1,δ⃗,A2,δ⃗, µ1, µ2)

∗ ∈ {×, /}
µ′ ≥ 2−1022

(K, e1 ⊛ e2)▷ (K′,A′
δ⃗), where


δ′ = fresh(ε)
A′

δ⃗ = compress((A1,δ⃗ �A2,δ⃗)⊠ (1 + δ′))
σ′′ = min{σ′, 53}, µ′′ = max{fl−(µ′), 2−1074}
K′ = K2[e1 ⊛ e2 7→ (A′

δ⃗, false, σ
′′, µ′′)]

R15

Figure 4.8: Rules for applying the refined (1 + ε)-property

expressions, which denotes how close a non-zero evaluation result of e can be to 0:

µ(e) ≜ min{|E(e)(x)| ≠ 0 : x ∈ X ∩ F}

where min ∅ =∞. An important property related to µ(e) is the following lemma:

Lemma 4.15. Let µ1, µ2 > 0. Consider any d1, d2 ∈ F such that |di| ≥ µi (i = 1, 2). Then

d1 + d2 ̸= 0 =⇒ |d1 + d2| ≥
1

2
ulp(max{µ1, µ2}).

The lemma states that if the sum of two doubles is non-zero, then its magnitude cannot be smaller
than some (small) number. The lemma holds because there is a finite gap between any two consecutive
doubles. To illustrate an application of the lemma, consider X = [0, 2] and e = x⊖ 1. Clearly e can
evaluate to 0 (for an input x = 1). However, from the lemma we can conclude µ(e) ≥ 1

2ulp(1) = 2−53,
i.e., e can never evaluate to any value in (0, 2−53).

The rules based on Theorem 4.14 are given in Figure 4.8. To keep track of µ(e), the cache K
is extended to store a lower bound of µ(e) for each e. Both the rules R14 and R15 first compute
a lower bound µ′ on µ(e1 ∗ e2) using Algorithm 2. The rule R15 then checks whether µ′ ≥ 2−1022;
if the check passes, the rule constructs an abstraction of e1 ⊛ e2 without adding an absolute error
term δ′′, based on Theorem 4.14. On the other hand, the rule R14 does not add the absolute error
term δ′′ regardless of whether µ′ ≥ 2−1022, also based on Theorem 4.14. Note that both rules set
a lower bound of µ(e1 ⊛ e2) to max{fl−(µ′), 2−1074} because the smallest positive double is 2−1074,

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 54

Algorithm 2 bound-µ(∗, f1, f2, µ1, µ2)

1: Let D = dom(f1)
2: if 0 /∈ {f1(x⃗) ∗ f2(x⃗) : x⃗ ∈ D} then
3: return µ′ ∈ R such that 0 < µ′ ≤ min{|f1(x⃗) ∗ f2(x⃗)| : x⃗ ∈ D}
4: else
5: if ∗ = {+,−} then
6: return min{ 12ulp(max{µ1, µ2}), µ1, µ2}
7: else if ∗ = × then
8: return µ1µ2

9: else if ∗ = / then
10: Compute M2 ∈ R such that M2 ≥ max{|f2(x⃗)| : x⃗ ∈ D}
11: return µ1/M2

12: end if
13: end if

where fl−(r) ≜ max{d ∈ F : d ≤ r}.
Consider Algorithm 2. For brevity, the algorithm uses the notation of Algorithm 1 (e.g., fi to

represent an abstraction Ai,δ⃗). Given lower bounds on µ(f1) and µ(f2), the algorithm finds a lower
bound on µ(f1 ∗ f2) using Lemma 4.15:

Lemma 4.16. Consider ∗ ∈ {+,−,×, /}, fi : D → R, and µi ∈ R>0 for i ∈ {1, 2} and D ⊆ Rm. Let
µ′ = bound-µ(∗, f1, f2, µ1, µ2). Then for any x⃗ ∈ D such that ∀i ∈ {1, 2}. fi(x⃗) = 0 ∨ |fi(x⃗)| ≥ µi,

f1(x⃗) ∗ f2(x⃗) ̸= 0 =⇒ |f1(x⃗) ∗ f2(x⃗)| ≥ µ′.

Like Algorithm 1, Algorithm 2 requires solving optimization problems to obtain the final answer. For
instance, the if condition on line 2 can be conservatively checked by deciding whether 0 /∈ [fm, fM],
where fm = min{f1(x⃗) ∗ f2(x⃗) : x⃗ ∈ D} and fM = max{f1(x⃗) ∗ f2(x⃗) : x⃗ ∈ D}.

Since the cache has been extended to store a lower bound of µ(e), we need to extend all the
previous rules and check Theorem 4.6 again. For example, the rules R1 and R2 are extended to

(K, c)▷ (K[c 7→ (c, false, σ(c), µ(c))], c)
R1′

(K, x)▷ (K[x 7→ (x, false, 53, µ(x))], x)
R2′

We can prove that Theorem 4.6 is still true, by extending the definition of a sound cache: a cache K
is sound if for any e ∈ dom(K) with K(e) = (Aδ⃗, b, σ, µ), Aδ⃗, b, and σ satisfy the previous condition
and µ(e) ≥ µ. The complete rules appear in Appendix A.1.2.

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 55

4.4.6 Ulp Error Bound

The main goal of this chapter is to find an ulp error bound Θulp of an expression e with respect to
a mathematical specification f(x), i.e., to find Θulp such that

ErrUlp(f(x), E(e)(x)) ≤ Θulp for all x ∈ X ∩ F. (4.11)

To achieve the goal, we first construct a sound abstraction Aδ⃗(x) = a(x)+
∑
i bi(x)δi of e by applying

the rules discussed so far, and then compute a relative error bound Θrel of e with respect to f(x)
by solving the following optimization problems over x ∈ X:

Θrel = max
x∈X

∣∣∣∣f(x)− a(x)f(x)

∣∣∣∣+∑
i

max
x∈X

∣∣∣∣bi(x)f(x)

∣∣∣∣ ·∆i.

We can prove that Θrel is an upper bound on the relative error of e with respect to f(x), i.e.,
ErrRel(f(x), E(e)(x)) ≤ Θrel for all x ∈ X ∩ F, using the triangle inequality and the soundness of
Aδ⃗(x). Finally, Theorem 2.7 enables us to obtain Θulp = Θrel/ε that satisfies Eq. (4.11).

However, the above approach often cannot prove an ulp error bound less than 1 ulp. To illustrate,
consider X = [1, 2], e = x⊕ 1, and f(x) = x+ 1. Applying the rules R1′, R2′, and R14 to e gives
an abstraction Aδ⃗(x) = (x+ 1) + (x+ 1)δ of e with |δ| ≤ ε, and we obtain Θrel = 0 + 1 · ε = ε and
Θulp = ε/ε = 1. But the tightest ulp error bound of e is in fact 0.5 ulps, as a single floating-point
operation always has a rounding error of ≤ 0.5 ulps.

To obtain an ulp error bound less than 1 ulp, we use the following property about ulp errors
which has been used to prove very precise ulp error bounds in [62]:

Theorem 4.17 ([62]). Let r ∈ [−maxF,maxF], d1, d2 ∈ F, and ∗ ∈ {+,−,×, /}. Assume
|d1 ∗ d2| ≤ maxF. Then ErrUlp(r, d1 ∗ d2) ≤ 1 implies

ErrUlp(r, d1 ⊛ d2) ≤ ErrUlp(r, d1 ∗ d2) +
1

2
. (4.12)

The theorem states that the ulp error of a floating-point operation is upper bounded by the ulp
error of the corresponding exact operation plus 1/2. Note that the condition ErrUlp(r, d1 ∗ d2) ≤ 1

in the theorem is necessary; Eq. (4.12) may not hold if ErrUlp(r, d1 ∗ d2) > 1. For the case when
ErrUlp(r, d1 ∗ d2) > 1, we can use the following similar statement: ErrUlp(r, d1 ∗ d2) ≤ 253 implies
ErrUlp(r, d1 ⊛ d2) ≤ ErrUlp(r, d1 ∗ d2) + 1.

Using Theorem 4.17, we compute an ulp error bound Θulp,new of e tighter than Θulp as follows.
We first construct an abstraction A′

δ⃗ of e by applying the previous rules as before, but with the
assumption that the last operation of e is exact. Then we compute an ulp error bound Θ′

ulp from A′
δ⃗

(not from Aδ⃗) by following the exactly same steps as above. Finally, we obtain a new, tighter ulp
error bound of e by Θulp,new = Θ′

ulp + 1/2 if Θ′
ulp ≤ 1, or by Θulp,new = Θ′

ulp + 1 if 1 < Θ′
ulp ≤ 253.

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 56

Using Theorem 4.17, we can show that Θulp,new satisfies Eq. (4.11).

4.5 Implementation

We implement the techniques described in §4.3 and §4.4 using Mathematica 11.0.1. To solve optimiza-
tion problems that appear in constructing abstractions and computing error bounds, we use Mathemat-
ica’s built-in functions MaxValue[· · ·] and MinValue[· · ·] that find the global maximum/minimum
of an objective function soundly using analytical optimization (not numerical optimization).

Most optimization problems occurring in our analysis involve abstractions, i.e., the minimization
or the maximization of an abstraction Aδ⃗ or its magnitude |Aδ⃗|. However, these optimization
problems are multi-variate and are difficult to solve in general. Hence, our implementation computes
sound lower/upper bounds of these optimization objectives via Eq. (4.13)–(4.16), and uses these
instead of the exact minimization/maximization results as in [90, 143].

max
x∈X,|δi|≤∆i

Aδ⃗(x) ≤ max
x∈X

a(x) +
∑
i

max
x∈X
|bi(x)| ·∆i, (4.13)

min
x∈X,|δi|≤∆i

Aδ⃗(x) ≥ min
x∈X

a(x)−
∑
i

max
x∈X
|bi(x)| ·∆i, (4.14)

max
x∈X,|δi|≤∆i

|Aδ⃗(x)| ≤ max
x∈X
|a(x)|+

∑
i

max
x∈X
|bi(x)| ·∆i, (4.15)

min
x∈X,|δi|≤∆i

|Aδ⃗(x)| ≥ min
x∈X
|a(x)| −

∑
i

max
x∈X
|bi(x)| ·∆i. (4.16)

In Eq. (4.13)–(4.16), the RHS represents a lower/upper bound of the LHS. As each RHS is a collection
of uni-variate optimization problems, it is much easier to solve.

Our implementation checks that the evaluation of an expression e does not introduce ±∞ or
NaNs, which arise from overflows or divide-by-zero errors. For proving the absence of overflows, the
inequality maxx,δ⃗ |A

′
δ⃗| ≤ maxF is checked for every subexpression e′ of e, where A′

δ⃗ is an abstraction
of e′. For proving the absence of divide-by-zero errors, the inequality 0 /∈ [minx,δ⃗ A

′
δ⃗,maxx,δ⃗ A

′
δ⃗]

is checked for every e′ such that e′′ ⊘ e′ is a subexpression of e, where A′
δ⃗ is an abstraction of e′.

Our implementation checks these conditions by solving additional optimization problems.
For some expressions e and input intervals X = [l, r], our technique might produce imprecise

results. In such scenarios, typically we can subdivide the interval into two (or more) subintervals
[l1, r1] ∪ [l2, r2] = [l, r] such that separate analysis of the subintervals does yield tight bounds. This
situation arises because the preconditions of different exactness properties are satisfied on different
subintervals, but few or no such properties hold for the entire interval.

To prove tighter error bounds in such scenarios, our implementation works as follows. Let e be
an expression, X be an input interval, and Θulp,goal be an ulp error bound that we aim to prove
(we use Θulp,goal = 0.53 in the evaluation). We first compute an ulp error bound Θulp by applying

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 57

our technique to e and X. If Θulp ≤ Θulp,goal or if we are out of computation budget, return Θulp.
Otherwise, we bisect X into two subintervals X1 and X2, recursively compute an ulp error bound
Θulp,i of e over Xi (i = 1, 2), and return the maximum of Θulp,1 and Θulp,2. Such approaches that
bisect input intervals are well-known and are a part of existing commercial tools [43].

4.6 Case Studies

We evaluate our technique on the benchmarks of [90, 137] which consist of implementations (exp, sin,
tan, and log) of four different transcendental functions (ex, sin x, tan x, and log x). The code in exp

is a custom implementation used in S3D [23], a combustion chemistry simulator; sin, tan, and log are
taken from Intel® Math Library libimf which is Intel’s implementation of the C library math.h and
contains “highly optimized and very accurate mathematical functions.”4 All these implementations
are loop-free programs, and have been written directly in x86 assembly for the best performance.
We remark that analyzing these x86 implementations involves substantial engineering effort beyond
what is described in this chapter or Chapter 3, as modeling the semantics of the more complex x86
instructions correctly and in detail is itself a significant undertaking and, at least so far, the overlap
in instructions used among the benchmarks we have studied has not been as much as might be hoped.

We find an ulp error bound of each x86 implementation P ∈ {exp, sin, tan, log} as follows. We
first apply the technique from Chapter 3 that eliminates bit-level and integer arithmetic computations
intermingled with floating-point operations using partial evaluation. The result is that for each P with
an input interval X, the method yields k different expressions e1, · · · , ek in our core language (Fig-
ure 4.2), corresponding input intervals X1, · · · , Xk, and a (small) set H of individual doubles (typically
|H| < 250) such that ∀i ∈ {1, · · · , k}.∀x ∈ Xi ∩F. P (x) = E(ei)(x) and X ∩F =

⋃
1≤i≤k(Xi ∩F)∪H.

Let us call X1, · · · , Xk the initial input intervals from X. We then find an ulp error bound Θulp,i

of ei over Xi with respect to the exact mathematical function f ∈ {ex, sin x, tan x, log x} for each
1 ≤ i ≤ k. Finally, we obtain an ulp error bound of P over X with respect to f by taking the
maximum of max{Θulp,i : 1 ≤ i ≤ k} and max{ErrUlp(f(x), P (x)) : x ∈ H}. Although the procedure
of Chapter 3 relies on procedures that may need manual intervention, these procedures have been
automated for our benchmarks.

The results of applying our technique to these implementations are summarized in Table 4.1.
Columns 1 and 2 represent P and X, and column 3 represents the proved ulp error bound of P over
X with respect to f . Column 4 shows k, the number of the initial input intervals X1, · · · , Xk, while
column 5 shows the number of disjoint intervals after bisecting these initial input intervals (§4.5).
Column 6 shows the total wall clock time taken to obtain the bounds in column 3, and column
7 shows the maximum time taken to verify an initial input interval. In particular, the maximum
time taken by our analysis (for a given expression ei and an initial input interval Xi) is less than

4https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/intel-
c-compiler-classic-math-library.html (titled “Intel C++ Compiler Classic Math Library”; accessed on July 2023)

https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/intel-c-compiler-classic-math-library.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/intel-c-compiler-classic-math-library.html

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 58

Input
interval

Ulp error
bound

of intervals
before bisections

of intervals
after bisections

Verification
time (m)

Max time
per interval (s)

exp [−4, 4] 7.552 13 13 0.52 2.5

sin
[−π, π]\

(−2−252, 2−252)
0.530 66 142 68 446

tan
[13
128 ,

17π
64) 0.595 9 22 40 495

[17π64 ,
π
2) 13.33 8 8 10 81

log [2−1022,maxF] 0.583 4.2× 106 4.2× 106 461 hrs† 24

Table 4.1: Summary of results. For each implementation (column 1) and for each input interval
(column 2), column 3 shows the ulp error bound of the implementation over the input interval.
Column 4 is the number of the initial input intervals from column 2, and column 5 is the number
of disjoint intervals obtained by repeatedly bisecting the initial input intervals (until the ulp error
bound of column 3 is obtained). Column 6 shows the total wall clock time taken to obtain the
ulp error bound of column 3 (in minutes), and column 7 shows the maximum time taken to verify
an initial input interval (in seconds). Here † denotes that we used 16 instances of Mathematica
in parallel; by default we run only one instance of Mathematica.

10 minutes. This table is discussed in detail in §4.6.1–§4.6.4.
Figure 4.9 shows our results graphically. For each graph, the x-axis represents the input values

and the y-axis represents the bounds on ulp error (in log scale) between an implementation and the
exact mathematical function. The ulp error bounds we prove are shown as solid blue lines, while
the ulp error bounds from Chapter 3 are shown by dotted green lines. Dashed yellow lines in (b)-(e)
denote the one ulp bound that we must prove to verify the correctness of sin, tan, and log. The
actual ulp errors on concrete inputs (from the set H and random samples) are shown by the red
dots. These ulp errors are calculated by comparing the output of an implementation with the exact
result computed by Mathematica.

In these graphs, lower bounds are tighter and the bounds proven by our analysis are much better
than that of Chapter 3 across the board. There are some inputs that we analyze but Chapter 3 does
not, e.g., sin near ±π and log(x) for x ≥ 4. For such inputs, the green dotted lines are missing.
In (b), (c), and (e), our bounds are below one ulp and we successfully establish the correctness of
these implementations. Except for (d), the bounds we infer are tight and the observed ulp errors
on concrete inputs are close to the statically inferred bounds. In (d), although our bounds are not
tight enough to establish correctness, they are still sound. However, the bounds from Chapter 3
in this graph are obtained by numerical optimization (as opposed to analytical optimization) and
are not guaranteed to be sound. Finally, although we only compare our approach with Chapter 3
in Figure 4.9, other generic tools for floating-point verification such as [35, 43, 143] would meet a
similar fate due to the absence of the relevant exactness results in their analyses.

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 59

0.06

0.25

1.00

4.00

16.00

-4.00 -2.00 0.00 2.00 4.00

(a) exp on [−4, 4]

0.06

0.25

1.00

4.00

16.00

-3.14 -1.57 0.00 1.57 3.14

(b) sin on [−π, π] \ (−2−252, 2−252)

0.06

0.25

1.00

4.00

16.00

0.10 0.28 0.47 0.65 0.83

(c) tan on [13
128

, 17π
64

)

6.3E-02

4.0E+03

2.6E+08

1.6E+13

1.0E+18

0.83 1.02 1.20 1.39 1.57

(d) tan on [17π
64

, π
2
)

6.3E-02

1.0E+00

1.6E+01

2.6E+02

-1022 -511 1 513 1024

1.0E+14

≈ ≈

2.2E-308 2.1E-154 2.0E+000 1.9E+154 1.8E+308

(e) log on [2−1022,maxF]

Figure 4.9: Each graph shows the ulp error (y-axis in log scale) of each implementation over an
input interval (x-axis). Solid blue lines represent our ulp error bounds (Table 4.1), dotted green
lines represent the ulp error bounds from Chapter 3, and dashed yellow lines represent 1 ulp. Red
dots represent actual ulp errors on concrete inputs. The x-axis in (a)-(d) is linear. Because of the
large input interval, x-axis in (e) is log-scale.

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 60

4.6.1 The exp Implementation

For the exp implementation, our technique finds an error bound of 7.552 ulps over the interval [−4, 4]
in 31 seconds. An important step for proving this error bound is the application of rule R8/R9. The
error bound of 7.552 ulps is larger than Intel’s implementations as the developer sacrificed precision
for performance in this custom implementation; even assuming every floating-point operation in exp

is exact, the ulp error bound is 4.06 ulps over [−4, 4], and indeed we typically observe error of 3-4
ulps on concrete inputs. The documentation of exp specifies that the implementation is supposed to
compute ex with “small errors” for inputs between −2.6 and 0.12, and we have successfully quantified
the maximum precision loss formally.

4.6.2 The sin Implementation

In sharp contrast to custom implementations such as exp, standard math libraries such as libimf
claim that the maximum precision loss is below one ulp. For sin, our technique finds an error bound
of 0.530 ulps over the interval X = [−π, π] \ (−2−252, 2−252) in 68 minutes. We exclude the interval
(−2−252, 2−252) because the sin implementation we analyze is executed only for |x| ∈ [2−252, 90112).
For inputs outside this range, different implementations are used. To prove the error bound, rules
R8 and R9 (related to Sterbenz’s theorem, §4.4.2), rules R10, R11, and R12 (related to Dekker’s
theorem, §4.4.3), and rules R14 and R15 (related to the refined (1 + ε)-property, §4.4.5) are crucial.

Proving the error bound of sin shown in Table 4.1 requires us to analyze sin over 142 disjoint
intervals, the result of repeatedly bisecting the 66 initial input intervals. In particular, to verify sin

over X66 = [63π/64, π], we need to repeatedly bisect X66 to have 13 disjoint subintervals [63π/64, y1),
[y1, y2), · · · , [y12, π], where y0 = 63π/64, y13 = π, and yi = (yi−1+y13)/2 (i = 1, · · · , 12). We require
many subintervals because the antecedents of the rules R11 and R12 are valid only over small intervals.

4.6.3 The tan Implementation

For the tan implementation, our technique finds an error bound of 0.595 and 13.33 ulps over the
intervals [13/128, 17π/64) and [17π/64, π/2), respectively, in 50 minutes. We exclude the interval
[0, 13/128) because our benchmark implementation is supposed to compute tan x precisely only for
|x| ∈ [13/128, 12800). To obtain the error bounds, it is crucial to apply all the rules used in verifying
sin multiple times (R8, R9, R10, R11, R12, R14, and R15). Additionally, the rules R4′ and R13

(related to σ(·), §4.4.4) are used to precisely abstract bit-mask operations (which are absent in sin).
For tan over the input interval X = [17π/64, π/2), we obtain the error bound of 13.33 ulps. The

main culprit is the requirement that, though our abstractions can be non-linear in x, they must be
linear in each δ variable. For example, consider the following expressions that appear in tan:

e1 = bit-mask(e0, 18), e2 = bit-mask(1⊘ e1, 35), e = 1⊖ e1 ⊗ e2.

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 61

For simplicity, assume that the expression e0 has no rounding error, i.e., a(x) is a sound abstraction
of e0, and we suppress any δ variable with |δ| ≤ ε. First, by a precise manual analysis, we show that e
computes the rounding error of the bit-mask operation in e2: from Lemma 4.3, g1(x, δ⃗) = a(x)(1+ δ1)

and g2(x, δ⃗) = 1
a(x)(1+δ1)

(1 + δ2) are over-approximations of e1 and e2, where |δ1| ≤ 2−34 and
|δ2| ≤ 2−17; thus the function

g(x, δ⃗) = 1− g1(x, δ⃗)× g2(x, δ⃗) = 1− a(x)(1 + δ1)×
1

a(x)(1 + δ1)
(1 + δ2) = −δ2

is an over-approximation of e (the operations ⊖ and ⊗ of e are exact by Theorem 4.7 and 4.10). Note
that the term (1 + δ1) in g1 and g2 is exactly canceled out in computing g. On the other hand, the
analysis of e using our abstractions proceeds as follows. First, A1,δ⃗(x) = g1(x, δ⃗) is a sound abstraction
of e1. However, g2 is non-linear in δ1; by the rules R3 and R4, A2,δ⃗(x) =

1
a(x) (1+δ

′
1)(1+δ2) is a sound

abstraction of e2, where |δ′1| ≤ 2−34. Given A1,δ⃗ and A2,δ⃗, the following is a sound abstraction of e:

Aδ⃗(x) = 1−A1,δ⃗(x)×A2,δ⃗(x) = 1−a(x)(1+δ1)×
1

a(x)
(1+δ′1)(1+δ2) ≈ −δ2− (δ1+δ

′
1+δ1,2+δ

′
1,2)

where |δ1,2| ≤ 2−51 and |δ′1,2| ≤ 2−51. These additional δ terms (compared to g) contribute signif-
icantly to the error bound of 13.33 ulps for tan over X (since ∆1,2 and ∆′

1,2 are 2−51 = 4ε).

4.6.4 The log Implementation

For the log implementation, we apply our technique to its complete input interval X = [2−1022,maxF]
and obtain an error bound of 0.583 ulps. The error bound implies that log mostly returns the nearest
double to the mathematically exact results. This verification requires all the rules presented in §4.4.
For log, we used 16 instances of Mathematica in parallel and required 461 hours of wall clock time
to verify all four million cases. We note that this verification is highly parallelizable as analyses
over distinct input intervals can be run independently. From Table 4.1, we observe that the average
time and the maximum time taken to verify log over each initial input interval are 6 seconds and
24 seconds, respectively.

4.7 Related Work

An obvious approach to obtain a provably correct mathematical library involves using verified
routines for arbitrary precision arithmetic during computations and then rounding the results (e.g.,
the libmcr library by Sun). However, the resulting implementations have vastly inferior performance
compared to the math libraries that exclusively use 64-bit arithmetic. Libraries such as CRLibm
aim to keep the maximum error below 0.5 ulps while maintaining performance. The correctness is
ensured by a mixture of “pen-and-paper” proofs [34] and machine-checkable proofs in Gappa [39, 41]

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 62

and Coq [102, 128]. The tightness of error bounds and the peculiar structure of rounding errors
coupled with optimization tricks make such high performance libraries difficult to verify. Furthermore,
industry standard libraries such as Intel’s math library lose precision to have better performance.
Harrison proved a tight error bound of an algorithm for computing sin x for |x| ≤ 263 (which is slightly
different from Intel’s sin implementation) in HOL Light [62]. In general, the libimf documentation
claims, without any formal proofs, that the maximum error in the routines is always below one ulp5.
In this chapter, we have validated this claim fully automatically for log (for all valid inputs), sin
(for inputs between −π and π), and tan (for inputs between 13/128 and 17π/64). We are unaware
of any prior technique that can prove such tight bounds for math libraries automatically.

The existing work closest to this chapter is Chapter 3 (which was published as [90]), based on
which this chapter is developed. In Chapter 3, error bounds were proven by first decomposing the
math.h implementations into simple expressions and then proving error bounds of those expressions
using Mathematica. The primary research contribution of Chapter 3 is the first step which performs
the decomposition, and the chapter used a standard error analysis in the second step. The current
chapter reuses the decomposition step and adds a novel automatic error analysis that leverages
results about exact floating-point arithmetic systematically. No prior analysis, including the one in
Chapter 3 and those mentioned below, uses all the exactness results we discussed in §4.4 and all of
these would fail to prove that the error bounds are below one ulp for the benchmarks we consider.

Automatic tools that can provide formal guarantees on error bounds include Astree [15,
106], Fluctuat [43, 54], Gappa [39], MathSAT [60], Rosa [35, 36], FPTaylor [143, 144],
Real2Float [99], and Satire [37]. In contrast to [90], none of these provide support to bound the er-
ror between expressions in our core language and exact transcendentals. For example, these techniques
do not handle bit-masking. Although some of these can handle some exactness results about floating-
point, they do not provide a general framework like ours. For example, Gappa automatically applies
some of the exactness results described in §4.4, but not all of them (e.g., Dekker’s theorem (§4.4.3)
and the refined (1 + ε)-property (§4.4.5) for ∗ ∈ {×, /}). Moreover, Gappa uses interval arithmetic
to soundly bound the max/min of some expressions, when checking preconditions of exactness results.
Interval arithmetic can often cause imprecision (because it does not preserve dependencies between
variables) and fail to discharge the preconditions; our optimization-based technique is more precise.

There are techniques that check whether two floating-point programs produce exactly equiva-
lent results [30, 112]. These do not produce any bound on the maximum deviation between the
implementations. Debugging tools such as [6, 11, 25, 87] are complementary to this chapter and
can help detect incorrect implementations. In particular, [50] use optimization to find inputs that
achieve high branch coverage. Other techniques that provide statistical (and not formal) guarantees
include [107, 111, 137].

5See max-error=1.0 at https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-
reference/2021-8/fimf-precision-qimf-precision.html (titled “fimf-precision, Qimf-precision”; accessed on July
2023)

https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/fimf-precision-qimf-precision.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/fimf-precision-qimf-precision.html

CHAPTER 4. CORRECTNESS OF HIGHLY ACCURATE MATH LIBRARIES 63

4.8 Conclusion

A major source of imprecision in generic verification techniques for floating-point stems from modeling
every floating-point operation as having a rounding error about which worst-case assumptions must
be made. However, floating-point operations do not always introduce rounding errors. In this chapter,
we identify floating-point computations that are exact and thus avoid introducing unneeded potential
rounding errors into the modeling of those computations. Our main technical contribution is a
reduction from the problem of checking whether an operation is exact to a set of mathematical
optimization problems that are solved soundly and automatically by off-the-shelf computer algebra
systems. We introduce transformations, also involving optimization problems, to control the size
of our abstractions while maintaining precision. Our analysis successfully proves the correctness of
x86 implementations from an industry standard math library.

Chapter 5

Correctness of

Automatic Differentiation

5.1 Introduction

Forward- and reverse-mode automatic differentiation (AD) are popular algorithms for computing
the derivative of a function represented by a program [56]. Diverse practical systems for AD have
been developed for general-purpose programs [9, 65, 98, 120, 129, 141, 154], and particularly for
machine-learning programs [12, 31, 76, 140, 149, 152], including TensorFlow [3], PyTorch [117], and
JAX [49]. The development of such AD systems has been a driving force of the rapid advances in
deep learning (and machine learning in general) in the past 10 years [10, 89, 138].

Recently, the correctness of AD has been actively studied for various types of programs. For
programs that only use differentiable functions, AD is correct everywhere, i.e., it computes the
derivative of a given program at all inputs [1, 7, 20, 47, 70, 83, 126, 142, 151]. On the other hand, for
programs that use non-differentiable functions (e.g., ReLU1), AD can be incorrect at some inputs [77].

There are two cases where AD is incorrect. The first case is when the function f represented by
a given program is differentiable at some x, but AD returns a value different from the derivative of f
at x. For instance, consider a program2 that represents the identity function, defined as ReLU(x)−
ReLU(−x). If AD uses zero as a “derivative” of ReLU at x = 0, as is standard (e.g., in TensorFlow and
PyTorch), it returns zero for this program at x = 0 while the true derivative is one. The second case
is when f is non-differentiable at some x, but AD does not return a generalized notion of derivative
(e.g., Clarke subdifferential) of f at x. For example, ReLU(x)− 1

2ReLU(−x) represents a function
that is non-differentiable at x = 0 with the Clarke subdifferential [12 , 1], but AD outputs 0 at x = 0.

1ReLU(x) ≜ max{x, 0}.
2It appeared in [77].

64

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 65

Although AD can be incorrect, recent works show that for a large class of programs using non-
differentiable functions, AD is correct almost everywhere, i.e., it is incorrect at most on a Lebesgue
measure-zero subset of the input domain of a program [17, 18, 71, 92, 101].

These prior works, however, have a limitation: they consider AD over the real numbers, but in
practice, inputs to a program are always machine-representable numbers such as 32-bit floating-point
numbers. Since the set of machine-representable numbers is countable (and usually finite), it is
always a Lebesgue measure-zero subset of the real numbers. Hence, AD could be incorrect on all
machine-representable inputs according to prior works, and this is indeed possible. Consider a
program3 for a function from R to R, defined as

∑
c∈M

[
λx+

(1

|M|
− λ

)(
ReLU(x− c)− ReLU(−x+ c)

)]
,

where M ⊆ R is a finite set of machine-representable numbers and λ ∈ R\{1} is an arbitrary constant.
Then, the program represents the affine function x 7→ x + a for a = (λ − 1

|M|) ×
∑
c∈M c, but AD

incorrectly computes its derivative at any x ∈ M as λ (the arbitrarily chosen value) if zero is used
as a “derivative” of ReLU at 0 as before.4

Given these observations, we raise the following questions: for a program that represents a neural
network, at which machine-representable inputs to the program (i.e., parameters to the network) can
AD be incorrect, and how many such inputs can there be? In this chapter, we tackle these questions
and present the first theoretical results. In particular, we study the two sets of machine-representable
parameters of a neural network on which AD can be incorrect: the incorrect set, on which the network
is differentiable but AD does not compute its derivative, and the non-differentiable set, on which
the network is non-differentiable.

Summary of results. We focus on neural networks consisting of alternating analytic pre-
activation functions (e.g., fully-connected and convolution layers) and pointwise continuous activation
functions (e.g., ReLU and Sigmoid). The first set of our results (§5.3) is for such networks with bias
parameters at every layer, and is summarized as follows.

• We prove that the incorrect set is always empty, not only over machine-representable parameters
but also over real-valued ones. To our knowledge, this is the first result showing that the
incorrect set can be empty for a class of neural networks using possibly non-differentiable
functions; prior works only bounded the measure of this set.

• On the other hand, the non-differentiable set can be non-empty. We give a tight bound on its
density over all machine-representable parameters, which has the form n/|M| where n is the
total number of non-differentiable points in activation functions. This result implies that in

3Inspired by [18, 101].
4We can even make AD return different values at different x ∈ M, by using a different λi for each ci ∈ M. Similarly,

we can also construct a program such that at all machine-representable numbers M, the program is non-differentiable
and AD returns arbitrary values.

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 66

practice, the non-differentiable set often has a low density, especially if we use high-precision
parameters (e.g., use 32-bit floating-point numbers for M, where |M| ≈ 232).

• To better describe the non-differentiable set, we provide a simple, easily verifiable necessary
and sufficient condition for a parameter to be in the non-differentiable set. Given that deciding
the non-differentiability of a neural network is NP-hard in general [19], our result is surprising:
having bias parameters is sufficient to efficiently decide the non-differentiability.

• Given that the non-differentiable set can be non-empty, a natural question arises: what does
AD compute on this set? We prove that AD always computes a Clarke subderivative (a gen-
eralized derivative) even on the non-differentiable set. That is, AD is an efficient algorithm
for computing a Clarke subderivative in this case.

The second set of our results (§5.4) extends the above results to neural networks possibly without
bias parameters at some layers, and is summarized as follows.

• As we observed in the ReLU(x)−ReLU(−x) example, the incorrect set can be non-empty in this
case. Thus, we prove tight bounds on the density of both the incorrect and non-differentiable
sets, which have the form n′/|M| where n′ is linear in the total number of non-differentiable
points in activation functions as well as the total number of boundary points in activation
functions’ zero sets.

• We provide simple, easily verifiable sufficient conditions on parameters under which AD com-
putes the standard derivative or a Clarke subderivative.

Our theoretical results carry two main practical implications: AD for neural networks is correct
on most machine-representable parameters, and it is correct more often with bias parameters. For
networks with bias parameters at all layers, our results further provide an exact characterization
of when AD is correct and what it computes.

We remark that many of our results, especially all the results not about the density of certain
sets, hold not only for machine-representable parameters but also for real-valued ones. On the other
hand, our results may not be directly applicable to neural networks with non-analytic pre-activation
functions or non-pointwise activation functions; we discuss such limitations in §5.6.

Organization. We first introduce notation and the problem setup (§5.2). We then present our
main results for neural networks with bias parameters (§5.3) and extend them to neural networks
possibly without bias parameters (§5.4). We conclude this chapter with related work and discussion
(§5.5–5.7).

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 67

5.2 Preliminaries

5.2.1 Notation and Definitions

We use the following notation and definitions. Let N and R be the sets of positive integers and
real numbers, respectively. For n ∈ N, we use [n] ≜ {1, 2, . . . , n} and 0⃗n ≜ (0, . . . , 0) ∈ Rn, and
often drop n from 0⃗n when the subscript is clear from context. For x = (x1, . . . , xn) ∈ Rn, we use
x−i ≜ (x1, . . . , xi−1, xi+1, . . . , xn). We call A ⊆ R an interval if it is [a, b], [a, b), (a, b], or (a, b) for
some a, b ∈ R ∪ {±∞}. For A ⊆ Rn, 1A : Rn → {0, 1} denotes the indicator function of A. We
say that f : Rn → Rm is analytic if it is infinitely differentiable and its Taylor series at any x ∈ Rn

converges to f on some neighborhood of x. For any f : Rn → Rm,

Df : Rn → Rm×n ∪ {⊥}

denotes the standard derivative of f , where f(x) = ⊥ denotes that f is non-differentiable at x. Lastly,
for f : R→ R,

ndf(f) ≜ {x ∈ R | f is non-differentiable at x} and bdz(f) ≜ bd({x ∈ R | f(x) = 0})

denote the set of non-differentiable points of f and the boundary of the zero set of f , respectively.

5.2.2 Neural Networks

We define a neural network as follows. Given the number of layers L ∈ N, let N0 ∈ N be the dimension
of input data, Nl ∈ N and Wl ∈ N ∪ {0} be the number of neurons and the number of parameters
at layer l ∈ [L], and N ≜ N1 + · · · + NL and W ≜ W1 + · · · +WL. Further, for each l ∈ [L], let
τl : RNl−1 × RWl → RNl be an analytic pre-activation function and σl : RNl → RNl be a pointwise,
continuous activation function, i.e.,

σl(x1, . . . , xNl
) ≜

(
σl,1(x1), . . . , σl,Nl

(xNl
)
)

for some continuous σl,i : R → R. Under this setup, we define a neural network as a function of
model parameters: given input data c ∈ RN0 , a neural network zL(· ; c) : RW → RNL is defined as

zL(w; c) ≜ (σL ◦ τ ⟨wL⟩
L ◦ · · · ◦ σ1 ◦ τ ⟨w1⟩

1)(c), (5.1)

where w ≜ (w1, . . . , wL), wl ≜ (wl,1, . . . , wl,Wl
) ∈ RWl , and τ ⟨wl⟩

l (x) ≜ τl(x,wl). We say such zL has
L layers, N neurons, and W parameters.

We next define the activation neurons zl(· ; c) : RW → RNl and the pre-activation values

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 68

yl(· ; c) : RW → RNl at layer l ∈ [L], as we defined zL above:

zl(w; c) ≜ (σl ◦ τ ⟨wl⟩
l ◦ · · · ◦ σ1 ◦ τ ⟨w1⟩

1)(c), yl(w; c) ≜ τ
⟨wl⟩
l (zl−1(w; c)),

where z0(w; c) ≜ c. Since the input data c is fixed while we compute the derivative of zL with respect
to w (e.g., in order to train zL), we often omit c and simply write zl(w) and yl(w) to denote zl(w; c)
and yl(w; c), respectively.

For the set of all indices of neurons

Idx ≜ {(l, i) | l ∈ [L], i ∈ [Nl]}

and for each (l, i) ∈ Idx, we use yl,i, zl,i : RW → R and τl,i : RNl−1 ×RWl → R to denote the functions
that take only the i-th output component of yl, zl, and τl, respectively. Note that we defined σl,i

above in a slightly different way: its domain is not RNl (i.e., the domain of σl) but R.
Finally, we introduce the notion of piecewise-analytic5 to consider possibly non-differentiable

activation functions.

Definition 5.1. A function f : R→ R is piecewise-analytic if there exist n ∈ N, a partition {Ai}i∈[n]

of R consisting of non-empty intervals, and analytic functions {fi : R → R}i∈[n] such that f = fi

on Ai for all i ∈ [n].

Assumption. σl,i is piecewise-analytic for all (l, i) ∈ Idx.

The class of piecewise-analytic functions includes not only all analytic functions but also many
non-differentiable functions widely used in neural networks such as ReLU, LeakyReLU, and Hard-
Sigmoid. Hence, our definition of neural networks includes a rich class of practical networks: τl can
be any analytic function (e.g., a fully-connected, convolution, or normalization layer), and σl can be
any pointwise continuous and piecewise-analytic function (e.g., ReLU, LeakyReLU, or HardSigmoid).

In practice, we often apply AD to the composition of a neural network zL and a loss function ℓ
(e.g., Softmax followed by CrossEntropy), to compute the derivative of the loss value of zL with respect
to its parameters. We emphasize that all of our results except for lower bounds (i.e., Theorems 5.8,
5.13 and 5.15) continue to hold even if we replace zL in their conclusions by ℓ ◦ zL for any analytic
ℓ : RNL → Rm. For simplicity, however, we state our results only for zL and not for ℓ ◦ zL.

5.2.3 Automatic Differentiation

Given a program that represents a neural network zL as in Eq. (5.1), AD essentially computes the
function

DADzL : RW → RNL×W

5It is inspired by the notion of PAP in [92].

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 69

by applying the chain rule of differentiation to Eq. (5.1). That is, DADzL is defined as the product of
DADτl,i and DADσl,i for (l, i) ∈ Idx, where DADτl,i : RNl−1 ×RWl → R1×(Nl−1+Wl) and DADσl,i : RNl →
R1×Nl denote the “derivatives” of τl,i and σl,i that AD uses in its computation (see Appendix B.1.3
for more details). Here DADzL, DADτl,i, and DADσl,i can be different from the standard derivatives
DzL, Dτl,i, and Dσl,i, partly because the former never return ⊥ even at non-differentiable points
while the latter always return ⊥ at those points. We note that DADzL expresses what practical AD
systems (e.g., TensorFlow, PyTorch) essentially compute in both forward-mode and reverse-mode.

By definition, the output DADzL of AD depends on the choice of DADτl,i and DADσl,i. To focus
on the standard choices made by practical AD systems, we introduce the notion of an extended
derivative.

Definition 5.2. A function g : Rn → Rm×n is an extended derivative of f : Rn → Rm if for all
x ∈ Rn with Df(x) ̸= ⊥, it holds that g(x) = Df(x).

Assumption. DADf is an extended derivative of f for all f ∈ {τl,i, σl,i | (l, i) ∈ Idx}.

We note that a differentiable function f has a unique extended derivative which is the standard
derivative Df of f . In contrast, a non-differentiable function f has (uncountably) many extended
derivatives: e.g., 1(0,∞) + c · 1{0} is an extended derivative of ReLU for all c ∈ R, where 1A denotes
the indicator function of a set A.

Among many extended derivatives, some of them are used more frequently in practice, which
we characterize as consistency.

Definition 5.3. For f : Rn → Rm, an extended derivative g of f is consistent if for all x ∈ Rn with
Df(x) = ⊥, it holds that g(x) = limk→∞Df(xk) for some xk → x.6

For instance, 1(0,∞) and 1[0,∞) are consistent extended derivatives of ReLU but 1(0,∞) + c · 1{0}

is not for all c ∈ R \ {0, 1}; among them, DADReLU = 1(0,∞) is typically used by popular AD systems
(e.g., TensorFlow and PyTorch). Although DADf is usually consistent in practice, we do not assume it
by default (and explicitly assume it only when necessary) to make our results as general as possible,
and to study whether the values of extended derivatives at non-differentiable points matter to AD.

5.2.4 Incorrect and Non-Differentiable Sets

In practice, the parameters of a neural network cannot be arbitrary real numbers (as machines cannot
represent them), but can only be machine-representable numbers M ⊆ R, where M is often chosen
as the set of all 32-bit floating-point numbers. To this end, we consider

Ω ≜ MW ⊆ RW ,
6Any consistent extended derivative of f is an element of the so-called Bouligand subdifferential of f [33]. But

the converse does not hold in general.

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 70

the set of parameters that a neural network zL : RW → RNL can take in practice. We assume that M
is an arbitrary finite subset of R throughout this chapter; e.g., it can be the set of n-bit floating-point
(or fixed-point) numbers for any n ∈ N.

To better understand the correctness of AD, we study the following two disjoint subsets of Ω
on which AD can return an incorrect output.

Definition 5.4. For a neural network zL, define the incorrect set and the non-differentiable set of zL as

incΩ(zL) ≜ {w ∈ Ω | DzL(w) ̸=⊥, DADzL(w) ̸=DzL(w)},

ndfΩ(zL) ≜ {w ∈ Ω | DzL(w)=⊥}.

These two sets correspond to the two cases when AD can be incorrect: on the incorrect set incΩ(zL),
zL is differentiable but AD does not compute its standard derivative; on the non-differentiable set
ndfΩ(zL), zL is non-differentiable and AD may not compute a generalized notion of derivative (e.g.,
Clarke subdifferential). Here ndfΩ(zL) ⊆ Ω is different from ndf(f) ⊆ R, which was defined in §5.2.1
for f : R→ R.

5.3 Neural Networks with Bias Parameters

Our main objective is to understand the incorrect and non-differentiable sets. In particular, we
focus on neural networks with bias parameters (defined below) in this section and consider more
general neural networks in §5.4. For the former class of neural networks, we characterize the incorrect
and non-differentiable sets in §5.3.1 and §5.3.2, and establish a connection between AD and Clarke
subderivatives (a generalized notion of derivative) in §5.3.3.

We start by defining neural networks with bias parameters.

Definition 5.5. A pre-activation function τl : RNl−1 × RWl → RNl of a neural network has bias
parameters if Wl ≥ Nl and there exist f1, . . . , fNl

: RNl−1 × RWl−Nl → R such that

τl,i(x, (u, v)) = fi(x, u) + vi

for all i ∈ [Nl] and (x, u, v) ∈ RNl−1 × RWl−Nl × RNl . Here vi is called the bias parameter of τl,i. A
neural network zL has bias parameters if τl has bias parameters for all l ∈ [L].

Many popular pre-activation functions are typically implemented with bias parameters. For
example, fully-connected layers, attention layers (e.g., MultiheadAttention), and some normalization
layers (e.g., LayerNorm) do so. Yet not all pre-activation functions have bias parameters in practice.
For instance, convolutional layers and other normalization layers (e.g., BatchNorm) usually do not
satisfy Definition 5.5: they do contain some bias terms, but each of these terms is used to compute
multiple output values (instead of a single output value as in our definition).

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 71

5.3.1 Characterization of the Incorrect Set

We first show that the incorrect set of a neural network is always empty if the network has bias
parameters, i.e., AD computes the standard derivative wherever the network is differentiable.

Theorem 5.6. If a neural network zL has bias parameters, then for all w ∈ RW at which zL is
differentiable,

DADzL(w) = DzL(w). (5.2)

This implies that |incΩ(zL)| = 0.

It should be emphasized that Eq. (5.2) is not only for machine-representable parameters, but
also for any real-valued parameters. Compared to existing results, this result is surprising. For
instance, [18, 92] show that the incorrect set over Rn (not over Mn) has Lebesgue measure zero for
some classes of programs, but they do not give any results on whether the set can be empty. In
contrast, Theorem 5.6 states that the incorrect set over Rn is empty for a smaller, yet still large class
of programs, i.e., neural networks with bias parameters.

In Theorem 5.6, the condition that zL has bias parameters plays a crucial role. Namely, Theo-
rem 5.6 does not hold if this condition is dropped. For instance, consider a neural network zL : R→ R
that is essentially the same as f : R→ R with f(w) = ReLU(w)− ReLU(−w) (which we discussed
in §5.1). Then, zL does not have bias parameters, and incΩ(zL) is non-empty if DADReLU = 1(0,∞)

is used.
The proof of Theorem 5.6 consists of the following two arguments: for all w ∈ RW with

DzL(w) ̸= ⊥,

(i) if yl,i(w) ∈ ndf(σl,i), then ∂zL/∂zl,i = 0⃗ at w, and

(ii) if (i) holds, then DADzL(w) = DzL(w).

That is, (i) if a pre-activation value yl,i touches a non-differentiable point of its activation function
σl,i, then the derivative of zL with respect to zl,i should always be zero; and (ii) Theorem 5.6 follows
from (i). We point out that the proof of (i) relies heavily on the bias parameter condition. For more
details, see Appendix B.3.

5.3.2 Characterization of the Non-Differentiable Set

We next show that if a neural network has bias parameters, then the density of the non-differentiable
set in Ω is bounded by n/|M|, where n is the total number of non-differentiable points in activation
functions.

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 72

Theorem 5.7. If a neural network zL has bias parameters,

|ndfΩ(zL)|
|Ω|

≤ 1

|M|
∑

(l,i)∈Idx

|ndf(σl,i)|

where ndf(f) is the set of non-differentiable points of f .

In many practical settings, the bound in Theorem 5.7 is often small, especially under high-precision
parameters. For example, M is frequently chosen as the set of 32-bit floating-point numbers so
|M| ≈ 232, while |Idx| (the number of neurons) is often smaller than 232 and |ndf(σl,i)| is typically small
(e.g., 0 for differentiable σl,i, 1 for ReLU, and 2 for HardSigmoid). This implies that in practice, the
non-differentiable set often has a low density in Ω. We remark, however, that the bound in Theorem 5.7
can grow large in low-precision settings (e.g., when parameters are represented by ≤ 16-bit numbers).

Although the bound in Theorem 5.7 can be large in some cases (e.g., when |M| is small), we
prove that the bound is in general tight up to a constant multiplicative factor.

Theorem 5.8. For any M ⊆ R and n, α ∈ N with 1 ≤ |M| <∞, n ≥ 2, and α ≤ |M|/(n− 1), there
is a neural network zL : RW → R with bias parameters that satisfies

|ndfΩ(zL)|
|Ω|

≥ 1

2
· 1

|M|
∑

(l,i)∈Idx

|ndf(σl,i)|

and the following: zL has n+ 1 neurons and |ndf(σ1,i)| = α for all i ∈ [N1].

In Theorem 5.8, the condition α ≤ |M|/(n− 1) is for achieving the constant 1/2 in the bound. A
similar bound can be derived for a larger α (i.e., α > |M|/(n−1)) but with a constant smaller than 1/2.

Theorems 5.7 and 5.8 describe how large the non-differentiable set ndfΩ(zL) can be, but give no
clue about exactly which parameters constitute this set. To better understand this, we present an
easily verifiable necessary and sufficient condition for characterizing ndfΩ(zL).

Theorem 5.9. If a neural network zL has bias parameters, then the following are equivalent for
all w ∈ RW .

• zL is non-differentiable at w.

• yl,i(w) ∈ ndf(σl,i) and ∂ADzL/∂zl,i ̸= 0⃗ at w for some (l, i) ∈ Idx.

Here ∂ADzL/∂zl,i denotes the partial derivative of zL with respect to zl,i that reverse-mode AD
(e.g., backpropagation) computes as a byproduct of computing DADzL (see Appendix B.5.2 for more
details). Hence, Theorem 5.9 implies that we can efficiently7 decide whether a neural network with

7in O(NLT) time for a neural network zL :RW →RNL where T is the time to evaluate zL(w), because reverse-mode
AD takes O(NLT) time to compute DADzL(w).

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 73

bias parameters is non-differentiable at a (real-valued) parameter or not. This result is surprising
given a recent, relevant result that deciding such non-differentiability is NP-hard in general [19].

We now sketch the proof of Theorem 5.7, to explain how we obtain the bound in the theorem
and where we use the bias parameter condition. First, we prove that if yl,i(w) does not touch any
non-differentiable point of σl,i for all (l, i) ∈ Idx, then zL is differentiable at w. In other words,

ndfΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈ndf(σl,i)

{w ∈ Ω | yl,i(w) = c}. (5.3)

Second, we prove that for all (l, i) ∈ Idx and c ∈ R,

∣∣{w ∈ Ω | yl,i(w) = c}
∣∣ ≤ |M|W−1. (5.4)

This inequality is invalid in general, but is valid when τl has bias parameters. If the parameter w
has a value v = (v1, . . . , vW) and its j-th entry vj corresponds to the bias parameter of τl,i, then
yl,i(v) = f(v−j) + vj for some function f . Hence, for any v−j ∈MW−1, there is at most one vj ∈M
achieving yl,i(v) = c, and this implies the above inequality. Finally, we prove that Theorem 5.7 follows
from the above two results. The full proofs of Theorems 5.7–5.9 are presented in Appendices B.2,
B.4, and B.5, respectively.

5.3.3 Connection to Clarke Subderivatives

We have so far observed that with bias parameters, the incorrect set is always empty but the
non-differentiable set may not be. A natural question is then: what does AD compute on the non-
differentiable set? We answer this question by showing that AD computes a Clarke subderivative8

everywhere (including on the non-differentiable set), if it uses consistent extended derivatives for
activation functions.

Theorem 5.10. If a neural network zL has bias parameters and DADσl,i is consistent for all (l, i) ∈ Idx,
then for all w ∈ RW ,

DADzL(w) =

DzL(w) if DzL(w) ̸= ⊥

limn→∞DzL(w
′
n) for some w′

n → w if DzL(w) = ⊥.

This implies that DADzL is a Clarke subderivative of zL.

Theorem 5.10 is not only a new result about AD, but also gives a positive answer to a long-standing
open question about Clarke subgradients [19, 28, 77]: are there a sufficiently large class F of scalar
functions and a deterministic algorithm A that computes a Clarke subgradient (i.e., subderivative)

8The Clarke subdifferential of f : Rn → Rm at x ∈ Rn refers to the convex hull of {limn→∞Df(xn) | xn → x,
Df(xn) ̸= ⊥} ⊆ Rm×n, and an element of the Clarke subdifferential is called a Clarke subderivative [29, 77].

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 74

of f ∈ F at x ∈ Rn efficiently (i.e., in time O(T) that is independent of n, where T is time to
evaluate f(x))? In other words, is there a so-called “Cheap Subgradient Principle”? For instance, [77]
propose an efficient algorithm A′ (for some F ′) but A′ is not deterministic, whereas [8, 80] propose
deterministic algorithms A′′ (for some F ′′) but A′′ are not efficient. In contrast, Theorem 5.10
implies that for neural networks with bias parameters, a Clarke subgradient at any (real-valued)
parameter can be computed deterministically and efficiently, even by the vanilla reverse-mode AD.
In this sense, we provide a new understanding on the computational aspects of Clarke subgradients.

We note that Theorem 5.10 no longer holds without any of its conditions: having bias parameters
and using consistent extended derivatives. One can confirm this using the following examples:
zL(w) = ReLU(w)−ReLU(−w) with DADReLU = 1(0,∞) (in which zL does not have bias parameters
as observed in §5.3.1), and ẑL(w) = ReLU(w) with DADReLU = 1(0,∞) + c · 1{0} for any c ∈ R \ [0, 1]
(in which DADReLU is not consistent). For the proof of Theorem 5.10, see Appendix B.6.

5.4 Neural Networks without Bias Parameters

In this section, we investigate the correctness of AD for neural networks that may or may not have
bias parameters. For such general networks, however, considering only the properties of activation
functions such as ndf(σl,i) (as we did in §5.3) is insufficient to derive non-trivial bounds on the size
of the incorrect and non-differentiable sets, as long as general pre-activation functions are used.

To illustrate this, consider neural networks zL, ẑL : R → R that are essentially the same as
f, f̂ : R→ R with f(w) = ReLU(h(w))− ReLU(−h(w)) and f̂(w) = ReLU(h(w)), where h : R→ R
is some analytic pre-activation function satisfying h(x) = 0 and Dh(x) = 1 for all x ∈M. Suppose
that DADReLU = 1(0,∞). Then, we have incΩ(zL) = ndfΩ(ẑL) = Ω even though zL and ẑL have only
≤ 2 non-differentiable points in their activation functions. The main culprit of having such large
incΩ(zL) and ndfΩ(ẑL), even with a tiny number of non-differentiable points in activation functions,
is that zL and ẑL use the unrealistic pre-activation function h which does not have bias parameters.

To exclude such extreme cases and focus on realistic neural networks, we will often consider
well-structured biaffine pre-activation functions when they do not have bias parameters.

Definition 5.11. A pre-activation function τl : RNl−1 × RWl → RNl is well-structured biaffine if
there are Mi ∈ RNl−1×Wl and ci ∈ R for all i ∈ [Nl] such that

τl,i(x, u) = xTMiu+ ci

and each column of Mi has at most one non-zero entry.

Any fully-connected or convolution layers are well-structured biaffine when they do not have bias
parameters. Thus, a large class of neural networks is still under our consideration even after we

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 75

impose the above restriction. Yet some pre-activation functions (e.g., normalization and attention
layers) are not well-structured biaffine whether or not they have bias parameters.

We now present our results for neural networks possibly without bias parameters, extending
Theorems 5.6–5.10.

5.4.1 Bounds for Non-Differentiable and Incorrect Sets

We first bound the density of the non-differentiable and incorrect sets in Ω, extending Theorem 5.7.

Theorem 5.12. If a pre-activation function τl has bias parameters or is well-structured biaffine for
all l ∈ [L], then

|ndfΩ(zL) ∪ incΩ(zL)|
|Ω|

≤ 1

|M|
∑

(l,i)∈Idx

∣∣∣ndf(σl,i) ∪ (bdz(σl,i) ∩ Sl+1

)∣∣∣,
where bdz(f) is the boundary of f ’s zero set (see §5.2.1), and

Sl ≜

∅ if l > L or τl has bias parameters

R otherwise.

We note that if zL has bias parameters, Theorem 5.12 reduces to Theorem 5.7 since incΩ(zL) = ∅
(by Theorem 5.6) and Sl = ∅ for all l (by its definition) in such a case.

As in Theorem 5.7, the bound in Theorem 5.12 is often small for neural networks that use practical
activation functions, since |ndf(σl,i) ∪ bdz(σl,i)| is typically small for those activation functions (e.g.,
1 for ReLU and 2 for HardSigmoid).

We now show that the additional term bdz(σl,i) in Theorem 5.12 is indeed necessary by providing
a matching lower bound up to a constant factor.

Theorem 5.13. For any M ⊆ R and n, α ∈ N with 1 ≤ |M| < ∞, n ≥ 4, and α ≤ |M|/(n − 1),
there is a neural network zL : RW → R that satisfies

|ndfΩ(zL)|
|Ω|

≥ 1

9
· 1

|M|
∑

(l,i)∈Idx

∣∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣∣

and the following: (i) τl is well-structured biaffine without bias parameters for all l < L, and has
bias parameters for l = L; (ii) zL has n + 1 neurons; and (iii) |ndf(σ1,i)| = α and |bdz(σ1,i)| = 0

for all i. We obtain the same result for (i), (ii’), and (iii’): (ii’) zL has 2n+ 1 neurons; and (iii’)
|ndf(σ1,i)| = 0 and |bdz(σ1,i)| = α for all i.

We next give an intuition for why the zero set of σl,i (from which the additional term bdz(σl,i)

is defined) appears in Theorem 5.12, by examining its proof. The proof consists of two main parts

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 76

that extend Eqs. (5.3) and (5.4) from the proof sketch of Theorem 5.7: we first show

ndfΩ(zL) ∪ incΩ(zL) ⊆
⋃

(l,i)∈Idx, c∈ndf(σl,i)

{w ∈ Ω | yl,i(w) = c}

and then find a reasonable bound on |Λl,i,c| for Λl,i,c ≜ {w ∈ Ω | yl,i(w) = c}, the set of parameters
on which the pre-activation value yl,i touches the non-differentiable point c of σl,i. Among the two
parts, the zero set of σl,i arises from the second part (i.e., bounding |Λl,i,c|), especially when τl

does not have bias parameters and is well-structured biaffine. For simplicity, assume that τl is a
fully-connected layer with constant biases, i.e., yl,i(w) =

∑
j∈[Nl−1]

zl−1,j(w) · wj+a + b for some
constants a, b. Based on this, we decompose Λl,i,c into Λ′ ∪ Λ′′:

Λ′ ≜ {w ∈ Ω | yl,i(w) = c, zl−1,j(w) ̸= 0 for some j},

Λ′′ ≜ {w ∈ Ω | yl,i(w) = c, zl−1,j(w) = 0 for all j}.

Then, we can show |Λ′| ≤ |M|W−1 as in Eq. (5.4), since wj+a acts like a bias parameter of yl,i for
any j with zl−1,j(w) ̸= 0. To bound |Λ′′|, however, we cannot apply a similar approach due to the
lack of j with zl−1,j(w) ̸= 0. Instead, we directly count the number of parameters w ∈ Ω achieving
zl−1,j(w) = 0 for all j (i.e., σl−1,j(yl−1,j(w)) = 0 for all j), and this requires the zero set of σl−1,j .
For the full proofs of Theorems 5.12 and 5.13, see Appendices B.2 and B.4.

5.4.2 Bounds for the Incorrect Set

For the non-differentiable set, Theorems 5.12 and 5.13 provide tight bounds on its size. For the
incorrect set, it turns out that we can further improve the upper bound in Theorem 5.12 and get
a similar lower bound to Theorem 5.13.

Theorem 5.14. If a pre-activation function τl has bias parameters or is well-structured biaffine for
all l ∈ [L], then

|incΩ(zL)|
|Ω|

≤ 1

|M|
∑

(l,i)∈Idx

∣∣∣(ndf(σl,i) ∩ Sl) ∪ (bdz(σl,i) ∩ Sl+1

)∣∣∣,
where Sl is defined as in Theorem 5.12.

Theorem 5.15. For any M ⊆ R and n, α ∈ N with 1 ≤ |M| < ∞, n ≥ 4, and α ≤ |M|/(n − 1),
there is a neural network zL : RW → R that satisfies

|incΩ(zL)|
|Ω|

≥ 1

13
· 1

|M|
∑

(l,i)∈Idx

∣∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣∣

and the following: (i) τl is well-structured biaffine without bias parameters for all l < L, and has

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 77

bias parameters for l = L; (ii) zL has 2n+ 1 neurons; and (iii) |ndf(σ1,i)| = α and |bdz(σ1,i)| = 0

for all i. We obtain the same result for (i), (ii’), and (iii’): (ii’) zL has 3n+ 1 neurons; and (iii’)
|ndf(σ1,i)| = 0 and |bdz(σ1,i)| = α for all i.

We note that if zL has bias parameters, Theorem 5.14 reduces to |incΩ(zL)| = 0 as in Theorem 5.6
since Sl = ∅ for all l in the case. On the other hand, if zL does not have bias parameters, then the
incorrect set can be non-empty as discussed in §5.3.1, and more importantly, its size can be bounded
by Theorem 5.14. To see why the bounds on |incΩ(zL)| depend on both ndf(σl,i) and bdz(σl,i), refer
to the proofs of Theorems 5.14 and 5.15 in Appendices B.3 and B.4.

5.4.3 Conditions for Computing Standard Derivatives and Clarke Sub-
derivatives

We extend Theorems 5.9 and 5.10 to general neural networks without the well-structured biaffinity
restriction, by characterizing two sufficient conditions on parameters under which AD computes the
standard derivative or a Clarke subderivative.

Theorem 5.16. Let w ∈ RW . If yl,i(w) /∈ ndf(σl,i) for all (l, i) ∈ Idx such that τl does not have bias
parameters or ∂ADzL/∂zl,i ̸= 0⃗ at w, then

DADzL(w) = DzL(w) ̸= ⊥.

Theorem 5.17. Let w ∈ RW . Assume that DADσl,i is consistent for all (l, i) ∈ Idx. If yl,i(w) /∈
ncdf(σl,i) for all (l, i) ∈ Idx such that τl does not have bias parameters, then

DADzL(w) =

DzL(w) if DzL(w) ̸= ⊥

limn→∞DzL(w
′
n) for some w′

n → w if DzL(w) = ⊥

and so DADzL(w) is a Clarke subderivative of zL at w. Here ncdf(f) denotes the set of real numbers
at which f : R→ R is not continuously differentiable.

The two sufficient conditions on w given in Theorems 5.16 and 5.17 are simple enough to be
checked efficiently in practice; thus, we can use them to validate whether the output of AD is the
standard derivative or a Clarke subderivative. If w does not satisfy either of the sufficient conditions,
AD may not compute the standard derivative or a Clarke subderivative; the first example discussed
in §5.3.3 illustrates both cases. We remark that the sufficient condition in Theorem 5.17 involves
ncdf(σl,i) (not ndf(σl,i)), since we use continuous differentiability (not differentiability) in the proof
to properly handle the limit of derivatives DzL(w′

n). For the proofs of Theorems 5.16 and 5.17, see
Appendices B.5 and B.6.

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 78

5.5 Related Work

The correctness of AD has been extensively studied, especially in the past few years. When a program
uses only differentiable functions, AD is shown to compute its standard derivative at all real-valued
inputs [1, 7, 20, 47, 70, 83, 126, 142, 151]. In contrast, when a program uses non-differentiable
functions, the program itself can be non-differentiable, and AD can return a value different from
its standard derivative, at some real-valued inputs. Nevertheless, for a large class of programs,
such inputs are shown to be in a Lebesgue measure-zero subset of the real-valued input domain
[17, 18, 71, 92, 101]. All these works consider the case when inputs to AD are real-valued, while this
chapter focuses on the case when the inputs are machine-representable.

The Clarke subdifferential and its connection to AD have been studied for decades. Some classes
of functions (e.g., subdifferentially regular or strictly differentiable) are shown to admit exact chain
rules for the Clarke subdifferential (e.g., Theorems 2.3.9, 2.3.10, and 2.6.6 of [29] and Theorem 10.6
of [130]), and this implies that AD always computes a Clarke subderivative for a certain class of
programs. However, this class of programs is restrictive, excluding even simple neural networks
(e.g., (1−ReLU(x))2) [40]. In contrast, our Theorem 5.10 shows that AD always computes a Clarke
subderivative of neural networks with bias parameters. For piecewise differentiable functions, the
Clarke subdifferential can be expressed in terms of the standard derivatives of underlying differentiable
functions (e.g., Proposition 4.3.1 of [139]), but this result is not directly related to AD.

A variety of algorithms (other than AD) have been proposed to compute a Clarke subgradient
of a scalar program, correctly and efficiently. For a large class of programs f : Rn → R and an
input x ∈ Rn, the algorithm by [77] computes a Clarke subgradient of f at x in time O(T) almost
surely, while the algorithms by [8, 80] compute the quantity in time O(nT) deterministically, where
T denotes time to evaluate f(x). Our Theorem 5.10 provides a relevant result as described above, but
we point out that this chapter is about analyzing the correctness of vanilla (forward/reverse-mode)
AD, not about proposing a new algorithm.

Recently, [13] empirically studied how the choice of DADReLU(0) changes the output of AD and
the training of neural networks. In contrast, this chapter theoretically studies the correctness of AD.
Further connections between [13] and this chapter are discussed in §5.6.

5.6 Discussion

Connections to [13]. The paper [13] empirically studied the bifurcation zone of a neural network
with ReLU, given an input dataset: the set of the network parameters on which the output of AD
using DADReLU(0) = 0 is different from that using DADReLU(0) = 1 for some input data. The
bifurcation zone is closely related to the non-differentiable and incorrect sets as follows: the bifurcation
zone (over machine-representable parameters) is always a subset of the union of the non-differentiable
set and two incorrect sets (one for DADReLU(0) = 0 and the other for DADReLU(0) = 1) over all

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 79

input data in the given dataset.
For various neural networks (MLP, VGG, ResNet) and datasets (MNIST, CIFAR10, SVHN,

ImageNet), the paper [13] estimated the density of the bifurcation zone over 32-bit floating-point
parameters (i.e., the number of 32-bit parameters in the bifurcation zone over the total number
of 32-bit parameters) using Monte Carlo sampling. The paper reported two results among many
others: when AD uses 64-bit precision in its computation, the estimated density is exactly 0 in all
cases they considered; and when AD uses 32- or 16-bit precision, the estimated density is often large
and even goes up to 1. The first result is consistent with our results: if we use 32-bit parameters,
the non-differentiable and incorrect sets would often have small densities in practice. Meanwhile,
the second result does not contradict our results, since our results assume that AD computes its
output without any rounding errors. Given these observations, it would be an interesting direction
to rigorously study the correctness of AD under floating-point operations.

Extensions. As mentioned in §5.2.2, all our theorems except for those on lower bounds (i.e.,
Theorems 5.8, 5.13 and 5.15) continue to hold even if we replace zL in their conclusions by ℓ ◦ zL for
any analytic ℓ : RNL → Rm. Among them, Theorems 5.7 and 5.12 are easily extended to a more
general case with multiple input data: they remain valid even if we replace zL in their conclusions
by ℓ(zL(·;x1), . . . , zL(·;xk)) for any x1, . . . , xk ∈ RN0 and analytic ℓ : RNL → Rm, where we need to
multiply k to the upper bounds in the theorems. The remaining theorems (i.e., Theorems 5.6, 5.9,
5.10, 5.14, 5.16 and 5.17), on the other hand, are not easily extended to the case with multiple input
data, at least based on our current proofs. Studying such extensions could be another interesting
future direction.

Limitations. Our results have some limitations. For example, all of our results are for a
class of neural networks consisting of alternating analytic pre-activation functions and pointwise
continuous activation functions. Hence, if a network contains non-pointwise activation functions
(e.g., MaxPool) or a residual connection bypassing a non-analytic activation function (e.g., ReLU),
then our results may not be directly applicable. Our results for general neural networks (e.g.,
Theorems 5.12 and 5.14) additionally assume pre-activation functions to have bias parameters or to
be well-structured biaffine, which does not allow, e.g., BatchNorm layers and attention layers without
bias parameters. Nevertheless, we believe that our results still cover a large class of neural networks,
especially compared to prior works studying theoretical aspects of neural networks [75, 81, 88, 96, 116].
We believe that extending the work in this chapter to more general neural networks is an interesting
direction for future work.

5.7 Conclusion

In this chapter, we theoretically study for the first time the correctness of AD for neural networks
with machine-representable parameters. In particular, we provide various theoretical results on the

CHAPTER 5. CORRECTNESS OF AUTOMATIC DIFFERENTIATION 80

incorrect and non-differentiable sets of a neural network, as well as closely related questions such as
when AD is correct and what it computes. Our results have two major practical implications: AD is
correct at most machine-representable parameters when applied to neural networks, and it is correct
more often if more layers of the network have bias parameters. Furthermore, our theoretical analyses
suggest new applications of AD for identifying differentiability and computing Clarke subderivatives,
not only for machine-representable parameters but also for any real-valued ones.

Chapter 6

Acceleration of

Deep Neural Network Training

6.1 Introduction

In deep neural network training, floating-point formats are usually used to represent tensors and it is
worthwhile to use the smallest bitwidth format that gives acceptable results. For example, it is common
to replace tensors using 32-bit floats with tensors that use 16-bit floats [78, 104]. The benefits are easy
to understand: computations using lower-precision floats not only use less memory but are also faster
(due to improved vector parallelism, locality, and reduced data movement). The downside is that
there is generally some loss of training accuracy, and in the worst case training may not even converge.

For such low-precision floating-point training, the most common approaches use two floating-point
formats—one for lower-precision floats (e.g., 8-bit floats) and the other for higher-precision floats (e.g.,
16-bit floats)—and assign one of the two formats to each tensor (including weights, activations, and
their gradients). The precision assignments studied in previous work fall into one of two assignment
schemes (which both have several variants): the uniform assignment uses low precision for almost
all tensors (often excepting those in the first and/or last few layers) [104], while the operator-based
assignment limits low precision to the input tensors of certain operators (e.g., convolutions) [147]. Prior
work has shown that both precision assignment schemes (with well-chosen low-bitwidth floating-point
formats) can match the accuracy of 32-bit-float training [22, 26, 44, 48, 78, 104, 147, 155].

There is an important limitation in all prior approaches to low-precision floating-point training:
they use very few precision assignments (most often just one) for a given set of models, but there
are some other models and inputs where the chosen precision assignment (i) results in noticeably
worse accuracy than 32-bit-float training, (ii) causes training to even diverge, or (iii) admits a more
efficient assignment that achieves similar training accuracy (see Figures 6.1, 6.3, and 6.4).

81

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 82

(a) SqueezeNet (b) ShuffleNet-v2 (c) MobileNet-v2

Figure 6.1: Training trajectory of various models on CIFAR-100. Colors denote precision assignments:
all-32-bit πfp32 (red), uniform πunif (yellow), and operator-based πop (blue) (see §6.2.1); the latter
two use the 8-bit (and 16-bit) floats in [147] as low (and high) precision numbers. Markers denote
the “width multiplier” of a model, which controls the capacity of the model (see §6.4.3): 1.0 (•),
0.5 (■), 0.25 (▲), and 0.1 (). Some lines of πunif are missing as they converge to small values or
diverge. Observe that neither πunif nor πop works best for all models: in some models, πop has a
similar accuracy to πfp32; but in other (and all) models, the accuracy drop of πop (and πunif) from
πfp32 are noticeably large (i.e., >1%).

In this chapter, we present a new, automated method for choosing precision assignments that
removes the limitations described above. To do so, we formally introduce the memory-accuracy tradeoff
problem (§6.2.2): given a dataset, a model, and two floating-point precision levels (i.e., bitwidths; high
and low), find a mixed precision assignment (a mapping from all tensors arising in training to high/low
precision) for the model that maximizes training accuracy subject to a given upper bound on the model
aggregate (i.e., the total number of bits of all tensors appearing in training). The model aggregate is a
proxy for the memory and time required for training, as it is roughly proportional to memory footprint
and also well-correlated with training time (since training is often dominated by data movement) [104].

We prove that the memory-accuracy tradeoff problem is theoretically difficult (namely NP-hard)
partly due to the exponential number of possible mixed precision assignments (which we often refer
to simply as precision assignments for brevity) (§6.2.3). The large number of possible assignments
makes the problem difficult in practice as well: there is no known analytical method for predicting
the training accuracy of a given precision assignment, and for any practical model there are far too
many precision assignments to simply test them all.

We propose a simple (heuristic) approach to the tradeoff problem that prioritizes tensors for
low-precision formats based on the tensor’s size (with an additional step described below) (§6.3.1).
More specifically, our algorithm takes as input a single parameter giving a desired upper bound on
the model aggregate. Starting with the largest tensor in the model, tensors are assigned low precision
in size order (from largest to smallest) until the model aggregate falls below the given upper bound;
all remaining tensors are assigned high precision. Our main result is that this method discovers
mixed precision assignments that use less memory while achieving higher training accuracy than
previous approaches. While we cannot show that our method finds Pareto-optimal memory-accuracy
tradeoffs, we do show that our results are closer to Pareto-optimal than prior methods.

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 83

Some precision assignments initially generated by our algorithm cause training to diverge due to
an excessive number of overflows. To address this issue, we propose an overflow handling technique
that promotes tensors causing too many overflows from low precision to high precision during training
(§6.3.2). In our experiments, these promotions consume only a small amount of additional memory
(< 3% of the maximum model aggregate) and prevent training from diverging. The overflow handling
technique is not specific to our algorithm and can be applied to other precision assignment methods
as well.

We evaluate a PyTorch implementation of our method on standard image classification tasks by
training four convolutional networks (and their variants) on CIFAR-10, CIFAR-100, and ImageNet
(§6.4). We first demonstrate that the precision assignments computed by our method alleviate the
limitations of existing methods: they indeed explore the tradeoff between memory and accuracy and
exhibit a better tradeoff than the uniform and operator-based assignments. We then show the two
main components of our method (i.e., precision demotion of larger tensors and precision promotion
of overflowing tensors) are both important to produce competitive precision assignments. We also
provide some guidance on how users may apply our method to navigate the memory-accuracy tradeoff.

To summarize, this chapter makes four main contributions:

• We formally introduce the memory-accuracy tradeoff problem to explore better mixed precision
assignments for low-precision floating-point training and prove the NP-hardness of the problem.

• We present a novel precision assignment technique, as a heuristic solution to the tradeoff
problem, that proposes assignments based on a single parameter denoting a desired upper
bound on the model aggregate.

• We present a novel technique that handles an excessive number of overflows arising in training
while using a small amount of additional memory. The technique is applicable to any (not just
our) precision assignments.

• We demonstrate that the mixed precision assignments found by our method do explore the
tradeoff between memory and training accuracy, and outperform existing precision assignment
methods.

We remark that this chapter focuses on low-precision floating-point training, not fixed-point
training (which uses fixed-point formats), since we want to target upcoming (or very recent) hardware
with native support for low-precision floats (e.g., 8-bit floats) and their operations (e.g., [4]). Also,
this chapter focuses on low-precision training (which trains a model from scratch), not inference
(which assumes a pre-trained model). More discussion is in §6.5. We further remark that in our
experiments we simulate low-precision formats (e.g., 8-bit floats) with 32-bit floats as in prior works,
since a hardware and software ecosystem that natively supports these formats does not yet exist.
Similarly, we do not include other models (e.g., language models) in the experiments, since no current

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 84

software stacks support per-tensor precision assignments for certain operators that those models use.
More details are in §6.4.1 and §6.4.2.

For image classification tasks and convolutional networks, our precision assignment method
typically provides > 2× memory reduction over the operator-based assignment while maintaining
similar training accuracy and gives further reductions by trading off accuracy. Our method also
provides similar memory reduction to the uniform assignment, while avoiding the divergence of
training often caused by a uniform assignment.

This chapter is organized as follows. We first define the memory-accuracy tradeoff problem and
study its hardness (§6.2). We then describe our algorithm for the problem (§6.3) and our evaluation
(§6.4). After discussing related work (§6.5), we conclude this chapter (§6.6).

6.2 Problem

In this section, we first provide background on low-precision floating-point training (§6.2.1), based on
which the memory-accuracy tradeoff problem is introduced (§6.2.2). We then prove the NP-hardness
of the problem (§6.2.3). Our approach in §6.2–6.3 is more formal than most related works for two
reasons: (i) we show the problem is NP-hard, which has not been considered in prior work; and (ii)
to clearly describe the precision assignments to be considered.

6.2.1 Low-Precision Floating-Point Training

Let T be the set of real-valued tensors and let [n] denote the set {1, . . . , n}. For a supervised learning
task, we usually consider a model network M = (f1, . . . , fn) parameterized by θ = (θ1, . . . , θn) ∈ Tn,
and a loss network L = (fn+1, . . . , fm), where fi : T2 → T is a primitive operator on tensors (e.g.,
convolution, batch normalization, maxpool, and softmax). Given an input-output pair (x, y) ∈ T2,
the model M computes a predicted output y′ of x by iteratively applying fi(·, θi) to x (i ∈ [n]), and
L computes a loss from y′ by iteratively applying fi′(·, y) to y′ (i′ ∈ [m] \ [n]). A standard way to
trainM is to minimize the loss value using the gradient descent algorithm: iteratively update θ by
following the gradient of the loss with respect to θ.

Floating-point training. In practice, we perform a gradient computation usually with tensors
represented in floating-point formats. Let π : TS→ FP be a precision assignment giving the floating-
point format of each tensor, where TS =∆ {vi, dv i, θj , dθj | i ∈ [m+ 1], j ∈ [n]} is the set of tensors
arising in a gradient computation (explained below), and FP =∆ {fp(e,m, b) | e,m ∈ N, b ∈ Z} is the
set of floating-point formats. Here fp(e,m, b) denotes a floating-point format that consists of a 1-bit
sign, an e-bit exponent, and an m-bit mantissa, and has an (additional) exponent bias of b ∈ Z. A
common choice of π is πfp32(t) =∆ fp32 for all t ∈ TS, where fp32 =∆ fp(8, 23, 0) is the standard 32-bit
floating-point format.

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 85

𝑓!

𝑑𝑓!,!

𝑑𝑓!,#

𝑓$%!

𝑑𝑓$%!,!

⋯
𝑓$

𝑑𝑓$,#

𝑑𝑓$,!

𝑓&

𝑑𝑓&,!
⋯ ⋯

⋯

#𝑑𝑣&

%𝑣#

&𝜃!

#𝑑𝑣#

#𝑑𝜃!

%𝑣$%! %𝑣$%#

#𝑑𝑣$%! #𝑑𝑣$%#

&𝜃$

#𝑑𝜃$

%𝑣&%!

#𝑑𝑣&%!

𝑦

: forward computation
: backward computation

%𝑣! %𝑣$ %𝑣&

#𝑑𝑣! #𝑑𝑣$

Figure 6.2: A diagram showing the tensors and operators used in a gradient computation; see
Eq. (6.1) for details. For brevity, rounding functions rndπ(·) are omitted.

Given a precision assignment π, a gradient computation is typically performed by the backprop-
agation algorithm: with v̂1 = rndπ(v1)(x) and d̂vm+1 = rndπ(dvm+1)(1), compute

v̂i+1 = rndπ(vi+1)(fi(v̂i, ûi)), θ̂j = rndπ(θj)(θj),

d̂v i = rndπ(dvi)(df i,1(d̂v i+1, v̂i, ûi)), d̂θj = rndπ(dθj)(df j,2(d̂v j+1, v̂j , θ̂j)),
(6.1)

for i ∈ [m] and j ∈ [n]; see Figure 6.2 for a diagram. Here rnd : FP× T→ T is a function rounding
a given input to a given floating-point format, df i,1, df i,2 : T3 → T are the backward operators of
fi with respect to its first and second arguments, respectively, and ûi = θ̂i if i ∈ [n] and y otherwise.
We call vi and θj the forward tensors, and dv i and dθj the backward tensors. We put a hat over each
tensor to emphasize that its value is the output of a rounding function to a possibly low-precision
format; remark that such a rounding function is not used within fi, df i,1, and df i,2, since they
typically use large bitwidth floats (e.g., fp32) and no low-precision floats internally [22, 78]. After
the computation, d̂θj stores the gradient of the loss value with respect to θj .

The overall picture of floating-point training is now described as follows. In each iteration of
the gradient descent algorithm, we compute d̂θj via Eq. (6.1) using a given precision assignment π,
training data (x, y), and current weights θ. We then update each θj by θj ← rndfp32(θj−η · d̂θj) given
a learning rate η > 0, and proceed to the next iteration until the training ends. Here we use fp32 to
represent θj by following the convention in low-precision floating-point training: a “master copy” of
weights (i.e., θj) is stored separately from the weight values (i.e., θ̂j) used in a gradient computation,
and is usually represented by fp32 [22, 78, 104]. The memory overhead of this master copy is very
small compared to the memory required to store other tensors (e.g., activation tensors vi) [104].

Low-precision floating-point training. In low-precision training, we use a precision assignment
π where some tensors have a smaller bitwidth than fp32. Particularly well-studied are π that use
two predetermined floating-point bitwidths (which are different) and optionally vary the rest of the
format from tensor to tensor. We call C : TS × {lo, hi} → FP a precision-candidate assignment if
C(t, lo) has the same bitwidth for all t ∈ TS, the same holds for hi, and the bitwidth for lo is smaller
than that for hi. We define Π(C) =∆ {π : TS → FP | ∀t ∈ TS. π(t) ∈ {C(t, lo), C(t, hi)}} as the set of
precision assignments that conform to C.

Among various precision assignments in Π(C), two have received the most attention: the uniform

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 86

assignment πunif,C [104] and the operator-based assignment πop,C [147]. The former assigns low-
precision formats to all tensors uniformly1, and the latter to (most of) the input tensors of GEMM
operators (in both forward and backward passes):

πunif,C(t) =
∆ C(t, lo) for all t ∈ TS,

πop,C(t) =
∆


C(t, lo) if t ∈ {vi, θi, dv i+1} for some i

and fi is a GEMM operator (but not the first/last one)

C(t, hi) otherwise,

(6.2)

where a GEMM operator refers to a general matrix multiplication operator which arises in, e.g.,
fully-connected or convolutional layers. A particular variant πop′,C of πop,C has received much at-
tention as well [78], which assigns low-precision formats to (most of) the input and output tensors
of GEMM operators: it is defined as πop,C except that {vi, θi, dv i+1} in Eq. (6.2) is replaced by
{vi, θi, vi+1, dv i, dθi, dv i+1}. We note that the precision assignments used in apex.amp and torch.amp

[113, 121] correspond to πop,C and πop′,C, respectively. For several choices of C, these assignments
have been shown to produce training accuracy similar to that by πfp32 on many datasets and models
(see §6.1 and §6.5).

6.2.2 Memory-Accuracy Tradeoff Problem

We now introduce the following problem based on §6.2.1, to address the limitation of existing
approaches for low-precision floating-point training discussed in §6.1:

Problem 6.1 (Memory-accuracy tradeoff). Given training data {(xi, yi)}, a model and loss network
M and L, a precision-candidate assignment C, and a lower bound r ∈ [0, 1] on the low-precision
ratio, find a precision assignment π ∈ Π(C) that maximizes acc(π) subject to ratio lo(π) ≥ r.

Here acc(π) denotes the accuracy of the modelM when trained with π on {(xi, yi)}, and ratio lo(π)

denotes the low-precision ratio of π, i.e., the portion of the tensors represented in low-precision under
π, among all tensors appearing in a gradient computation:

ratio lo(π) =
∆ size({t ∈ TS | π(t) = C(t, lo)})

size(TS)
∈ [0, 1]

where size(T) =∆
∑
t∈T size(t) denotes the total size (i.e., number of elements) of all tensors in

T ⊆ TS.2 For instance, ratio lo(πhi) = 0 and ratio lo(πlo) = 1 for the all-high-precision assignment πhi
and the all-low-precision assignment πlo. The problem asks for a precision assignment that maximizes
training accuracy under a memory constraint, which is expressed as a fraction of the memory required
to train the model using πhi.

1For simplicity we define πunif,C without the common exceptions for tensors near v1 and/or vm+1.
2As explained in §6.1, the low-precision ratio is a proxy for the reduction in memory as well as training time

(because the low-precision ratio increases as the model aggregate decreases).

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 87

6.2.3 NP-Hardness of the Problem

We prove that the memory-accuracy tradeoff problem from §6.2.2 is NP-hard by showing that there
is a polynomial-time reduction from the knapsack problem to this problem:

Theorem 6.2. Problem 6.1 is NP-hard.

Proof sketch. Recall the knapsack problem: given n items with weights wi ∈ N and profits pi ∈ N
(i ∈ [n]), find a subset of the items that maximizes the total profit while its total weight does not
exceed a given threshold W ∈ N.

Given an instance (w, p,W) of the knapsack problem, we construct an instance of Problem 6.1
such that we get the following (informal) correspondence between the two: wi corresponds to the
size of the parameter tensor θi; pi to the i-th component of the input data; W to the lower bound r
on the low-precision ratio (in an inverse way); and selecting the i-th item corresponds to assigning a
high-precision format to the tensor θi (and related tensors), which roughly decreases the low-precision
ratio by wi while increasing the accuracy of the model (after training) by pi. Based on this informal
correspondence, we formally prove that an optimal solution to the above instance of Problem 6.1 can
be converted in linear time to an optimal solution to the given knapsack problem (w, p,W). That is,
we have a linear-time reduction from the knapsack problem (which is NP-hard [79]) to Problem 6.1
which is therefore NP-hard. For a detailed proof, see Appendix C.1.

Intuitively, the proof relies on two aspects of Problem 6.1: the size of the search space (i.e.,
|Π(C)|) is exponential in the size of the problem (especially |TS|), and some values representable in a
high-precision format underflow to 0 in a lower-precision format. Note that underflows are relevant in
low-precision training: they frequently arise in practice, degrading the results of training [104]. The NP-
hardness result indicates that it is unlikely any polynomial-time algorithm solves the problem exactly.

6.3 Algorithm

In this section, we propose a novel (heuristic) algorithm for the memory-accuracy tradeoff problem
(§6.3.1), and a new technique to handle overflows arising in training (§6.3.2). We point out that
the former algorithm finds an initial precision assignment before training starts, whereas the latter
technique updates the current precision assignment while training proceeds.

6.3.1 Precision Demotion for Saving Memory

Consider an input to the memory-accuracy trade-off problem (Problem 6.1): a model and loss network
M = (f1, . . . , fn) and L = (fn+1, . . . , fm), a precision-candidate assignment C, and a lower bound
r on the low-precision ratio. Given the input, our algorithm finds a precision assignment π in two
steps (Algorithm 1).

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 88

Tensor grouping. We first group tensors in TS such that each group consists of all the tensors
between two “adjacent” GEMM operators (see below for details). This grouping reduces the search
space over precision assignments, from all of Π(C) to a subset in which the same precision is assigned
to the tensors in the same group. This specific grouping strategy is based on two observations: a
majority of floating-point operations are carried out in GEMM operators, and it is standard (e.g., in
PyTorch) to use the same precision for a forward tensor and its corresponding backward tensor.

Formally, we group tensors as follows. Let fk and fk′ (k < k′) be GEMM operators that are
“adjacent”, i.e., there is no GEMM operator in {fk+1, . . . , fk′−1}. For each such (fk, fk′), we create a
group {vi, dv i, θj , dθj | i ∈ (k, k′] ∩ [m+ 1], j ∈ (k, k′] ∩ [n]}. After that, we create two more groups
for the remaining tensors: one for the tensors near v1 and the other for tensors near vm+1. As a
result, we obtain a set of disjoint groups of tensors {T1, T2, . . .} ⊆ 2TS.

Precision demotion. Given the groups of tensors, T1, T2, . . ., we construct a precision assignment
π as follows: initialize π to the all-high-precision assignment and update π by demoting the precision
of all tensors in a group to low precision, one group at a time, until the low-precision ratio of π
becomes greater than r. We demote the precision of groups in decreasing order of their sizes (i.e., the
total number of elements in tensors); that is, the precision of a larger size group is demoted earlier.
Formally, let {T ′

1, T
′
2, . . .} be the reordering of {T1, T2, . . .} such that size(T ′

1) ≥ size(T ′
2) ≥ · · · . After

initializing π by π(t) = C(t, hi) for all t, we iterate over i ∈ N and update π to π(t) = C(t, lo) for all
t ∈ T ′

i , until ratio lo(π) ≥ r is first satisfied. The resulting π is the output of our algorithm.
The intuition behind using group size as the priority order for precision demotion is based on

the fact that it is actually optimal in a very simplified setting. Suppose that an input x to the model
M stores a quantity of information I and the forward computation ofM is nothing but a process of
extracting the information in the input into a small number of values, i.e., the tensor vn+1. Assume
that passing through each group Oi = {fk+1, . . . , fk′} of operators (corresponding to the group Ti

of tensors) reduces the amount of information by a factor αi ∈ (0, 1), and using low precision on the
group Ti further reduces the amount of information by a constant factor β ∈ (0, 1) for all i. Then, the
amount of information left in vn+1 becomes I × (α1α2 · · ·)× βl, where l is the number of groups in
low precision. In this simplified setting, maximizing the amount of information in vn+1 is equivalent
to minimizing the number of groups in low precision, which is achieved precisely by demoting the
largest groups first (when there is a constraint on the low-precision ratio). We show empirically
(§6.4.4) that using the decreasing size order in precision demotion indeed produces better precision
assignments than using other orders.

6.3.2 Precision Promotion for Handling Overflows

While our algorithm in §6.3.1 exerts a constraint on memory usage, it places no explicit constraint
on training accuracy, and so not surprisingly for some models and datasets the resulting precision
assignment causes training to diverge—accuracy decreases significantly and remains low after some

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 89

Algorithm 1: Computing π with
precision demotion
Input: (f1, . . . , fn), (fn+1, . . . , fm), C, r
/* Tensor grouping */
k = 1; Tk = ∅
for i = 1 to m do

Tk = Tk ∪ {vi, dv i}
if k ≤ n then { Tk = Tk ∪ {θi, dθi} }
if fi is GEMM then { k += 1; Tk = ∅ }

end
/* Precision demotion */
(T ′

1, . . . , T
′
k) = sort(T1, . . . , Tk) by dec. size

π(t) = C(t, hi) for all t ∈ TS
for j = 1 to k do

if ratio lo(π) ≥ r then { break }
π(t) = C(t, lo) for all t ∈ T ′

j

end
return π

Algorithm 2: Training with precision
promotion
Input: π, Θ, C
/* Training loop */
Initialize weights θ
while training not finished do

Compute the current gradient dθ using π
Update θ using dθ

/* Precision promotion */
for forward t ∈ TS do

if overflow_ratio(t) > Θ then
π(t) = C(t, hi)

end
end

end
return θ

point. We observe that when training begins to diverge (and a bit before that), many overflows
occur in the rounding function of some tensors v̂i, i.e., an input tensor to the function rndπ(vi)(·)
in Eq. (6.1) contains many elements whose magnitude is larger than the maximum representable
number of the format π(vi) (Figure 6.6(a-b); §6.4.4). This rapid increase in overflows in individual
tensors is a signal that training may diverge.

Precision promotion. Based on this observation, after each gradient computation we update
the current precision assignment π by promoting to high precision (i.e., C(t, hi)) any forward tensor t
whose overflow ratio is greater than a given threshold Θ ∈ (0, 1); this updated precision assignment
is used in the next gradient computation (Algorithm 2). Here the overflow ratio of t ∈ TS denotes
the number of overflows arising in the rounding function of t̂ in Eq. (6.1), divided by the number of
elements in t̂. We show empirically (§6.4.4) that training always converges using this technique and
the additional memory cost of promotion is small (in our experiments, < 3% of the maximum model
aggregate3). For the experiments, we use Θ = 0.01; in fact we found that a wide range of values for
Θ (0.1, 0.01, and 0.001) all work well. Note that this technique is not specific to our algorithm and
can also be applied to other precision assignment methods.

We apply precision promotion only to forward tensors for two reasons. First, dynamic loss
scaling [104, 113, 121, 147] already handles overflows in backward tensors, but not in forward tensors:
loss scaling multiplies the backward loss tensor dvm+1 by a constant before performing backward
computation, to scale up all backward tensors; the dynamic version adjusts the constant during
training in a way that avoids overflows in backward tensors. Note that dynamic loss scaling does

3For each training where our methods (presented in §6.3) are used, we measure the model aggregate when the
training starts and when it ends. We observe that the difference between the two values (averaged over four different
runs) is at most 3% of the maximum model aggregate (i.e., the model aggregate when all tensors are in high precision).

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 90

not affect forward tensors at all. Second, we cannot use a similar idea to handle overflows in forward
tensors, because forward tensors are not linear in the input tensor v1 whereas backward tensors are
linear in the backward loss tensor dvm+1 (by the linearity of differentiation).

Precision promotion incurs little if any computational overhead: checking whether a single round-
ing operation overflows is cheap, and we only apply rounding functions to the output tensor of an
arithmetic-intensive operator (e.g., convolution and batch normalization), amortizing the cost of the
overflow checks over a large number of other operations.

6.4 Experiments

In this section, we evaluate our precision assignment technique (developed in §6.3) on standard
training tasks to answer three research questions:

• Does our technique explore the tradeoff between memory and accuracy and achieve a better
tradeoff than existing (fixed) precision assignments (§6.4.3)?

• Are the two main components of our technique, precision demotion/promotion of larger/over-
flowing tensors, important for good performance (§6.4.4)?

• How can we choose the parameter r in our technique (i.e., a lower bound on the low-precision
ratio) (§6.4.5)?

6.4.1 Implementation

We have implemented our precision assignment technique using PyTorch [118]. Given a model and
loss network, and a dataset, our implementation takes as parameters a precision-candidate assignment
C and a lower bound r on the low-precision ratio; it then automatically assigns precisions to tensors
(appearing in training) according to our technique and uses those assigned precisions in gradient
computations. To make these procedures automatic, our implementation works as follows:

• For each primitive operator in PyTorch (e.g., torch.nn.Conv2d), our implementation provides
its wrapped version (e.g., ext3.nn.Conv2d) which records auxiliary information for our technique
(e.g., floating-point format of input/output tensors) and applies proper rounding functions in
forward/backward computations based on the auxiliary information. Models should now use
the wrapped classes instead of the original ones.

• Our implementation first constructs a computation graph (of a given model and loss network)
dynamically by running a forward computation on a minibatch of input data. The computation
graph and other information (e.g., each tensor’s size) are recorded in the wrapped classes.

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 91

• Using the auxiliary information just recorded, our implementation then constructs an initial
precision assignment according to §6.3.1, and starts training with this assignment. During the
training, our implementation uses the current precision in gradient computations, and updates it
after each gradient computation according to §6.3.2. We record the precision assignment also in
the wrapped classes to automatically apply proper rounding functions in gradient computations.

We simulate low-precision formats used in the experiments (e.g., 8-bit floats) and their operations,
with 32-bit floats and 32-bit operations followed by rounding functions as described in Eq. (6.1);
simulating low-precision formats is the standard methodology set by prior works on low-precision
training [22, 48, 78, 105] and we simply follow this.4 We implement the rounding functions based on
the QPyTorch library [164], but a few extensions are required, e.g., to support exponent bias and
signal overflows for dynamic loss scaling. We automatically apply these rounding functions after each
primitive operator, by using PyTorch’s hook feature (e.g., nn.Module.register_*hook).

6.4.2 Experiment Setups

Datasets and models. As benchmarks for our experiments, we use the image classification task
and three datasets for the task: CIFAR-10 and CIFAR-100 [84], and ImageNet [133]; these task
and datasets have been widely used in recent works on low-precision training as a standard choice
[26, 127, 135, 155] and we simply follow this. For the task and datasets, we use four well-known
models: SqueezeNet [72], ShuffleNet-v2 [97], MobileNet-v2 [136], and ResNet-18 [67]; they are chosen
since models with relatively few weights, such as these, are generally known to be more difficult
to train with low precision than those with more weights [147]. We considered other tasks (e.g.,
language modeling) and related models (e.g., RNN/transformer-based models) but did not include
them in our experiments because substantial additional implementation effort orthogonal to our main
contributions would be required: these models use some PyTorch operators that do not support
per-tensor precision assignments,5 so applying our technique to these models requires significant
modifications to PyTorch internals.

Precision-candidate and precision assignments. For the experiments, we use the precision-
candidate assignment C studied in [147], which uses 16-bit (and 8-bit) floats for high (and low) precision;
in particular, C(t, hi) = fp(6, 9, 0) for all (forward/backward) tensors t, and C(t, lo) = fp(4, 3, 4) for
all forward tensors t and fp(5, 2, 0) otherwise. We choose this particular C since it uses sub-32-bit
floating-point formats for both low and high precision and the precision assignment πop,C was shown

4The 8-bit formats used in our experiments (see §6.4.2) began to be supported natively in hardware very recently
(by NVIDIA H100 GPU). But access to such hardware is still very limited (e.g., no major cloud services including
AWS, Azure, and Google Cloud provide it), and these formats are not yet supported natively in software (e.g.,
PyTorch, TensorFlow, and cuDNN). Due to such lack of a hardware and software ecosystem natively supporting
these formats, we chose to simulate them as in prior works.

5For instance, the PyTorch functions nn.RNN and nn.MultiheadAttention do not allow to change the precision
of intermediate tensors (e.g., input/output tensors of each GEMM operator used in the functions) to user-defined
formats (e.g., fp(4, 3, 4)).

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 92

to achieve accuracy comparable to 32-bit training [147]. The three floating-point formats used
in C have subnormals but no infinities and NaNs, which are rounded to the largest or smallest
representable numbers. Since our technique is parameterized by a precision-candidate assignment, it
is easily applied to other assignments as well.

We evaluate our technique by varying its parameter r (i.e., a lower bound on low-precision ratio)
over deciles r ∈ {0, 0.1, 0.2, . . . , 1}. We write πours,r to denote the precision assignment chosen by
our technique (described in §6.3) for a given r; e.g., πours,0 is the all-high-precision assignment, and
πours,1 is the all-low-precision assignment equipped with our precision promotion technique (§6.3.2).
Following [147], all precision assignments (including πours,r) in our experiments use high precision (i.e.,
16 bits) for all backward weight tensors (i.e., d̂θj). For each precision assignment π, its low-precision
ratio can change during training due to our precision promotion technique (when applied), so we
compute the average of the ratio over all epochs and report this value as the low-precision ratio of π.

Other setups and compute time. All experiments were performed on NVIDIA V100 GPUs;
total compute time for all experiments was 1,081 GPU days. We train all models in a standard way:
we apply dynamic loss scaling (a standard technique used in low-precision floating-point training;
see §6.3.2 for details) except for 32-bit training, and use standard settings (e.g., learning rate); see
Appendix C.2 for details. Due to random variations in training, we perform four runs of training for
each configuration and report the average and the range of measured quantities.

6.4.3 Comparison with Existing Precision Assignments

To compare our technique with existing precision assignments for floating-point training, we train each
model with the following precision assignments: all-32-bit πfp32, uniform πunif [104], operator-based
πop [113, 147], its variant πop′ [78, 121], and ours πours,r (see §6.2.1 and §6.4.2 for their definitions).
We choose πunif , πop, and πop′ as baselines because existing precision assignments for floating-point
training fall into one of the three assignments (or their variants) (see §6.1 and §6.5).

We train the four models mentioned in §6.4.2 on CIFAR-10 and CIFAR-100, and ShuffleNet-v2 on
ImageNet. We also train smaller variants of the four models (which are more difficult to train with
low precision) on CIFAR-100. We obtain these variant models by following [147], i.e., by applying
a well-known approach for model reduction that uses a parameter called the width multiplier [69]:
each variant model reduces the number of channels in most tensors by a width multiplier; we use
three values {0.5, 0.25, 0.1} for the width multiplier. We train just one model on ImageNet due to
the large amount of computation involved: for each model, 44 training runs (11 choices for r and 4
runs for each choice) are required for πours,r and each run on ImageNet takes nearly a half day with
16 GPUs. We use ShuffleNet-v2 for ImageNet since the model shows interesting memory-accuracy
tradeoffs when trained on the (smaller) CIFAR datasets.

ImageNet. Figure 6.3 presents training results of ShuffleNet-v2 on ImageNet: its left graph
plots the average training trajectory for each precision assignment, and its right graph shows how

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 93

each precision assignment trades off between memory and accuracy, where memory is represented
(inversely) by the low-precision ratio of the assignment (which is averaged over all epochs; see §6.4.2)
and accuracy is the best test accuracy of the model during training. Each point in the right graph
shows the average accuracy of four runs of training, while the shaded area shows the variation in
accuracy among those four training runs.

Figure 6.3 shows three points. First, as the parameter r increases, the average accuracy drop
of πours,r from πfp32 increases (up to 5%). In contrast, πunif and πop′ have a much larger average
accuracy drop (more than 30%), as some training runs diverge when πunif and πop′ are used. Sec-
ond, the tradeoff given by πours,r is better (i.e., closer to Pareto-optimal) than by πop: πours,r for
r ∈ {0.3, 0.4} has both higher accuracy and larger low-precision ratio (i.e., memory reduction) than
πop. In particular, πours,0.4 has 1.6× the memory reduction of πop. Third, πours,r provides options
that πop cannot (which has an accuracy drop of >1%). If we want accuracy closer to πfp32, say within
0.5%, we can use πours,0.2 with 2.6% more memory than πop. If we can tolerate a larger accuracy
loss, say ≈ 3%, then we can use πours,0.7 with 2.9× the memory reduction of πop.

CIFAR-10/100. Figure 6.4 presents the memory-accuracy tradeoffs of precision assignments
for the four models on CIFAR-10 and CIFAR-100, and their smaller variants (with width multiplier
0.25) on CIFAR-100. The results for other smaller variants are similar and included in Figure C.3
(see Appendix C.3.1).

The conclusions from Figure 6.3 hold for Figure 6.4: πours,r provides a range of options by varying r
and exhibits a better tradeoff than πunif , πop, and πop′ in almost all cases. We give a detailed compari-
son as follows. First, in half of all 12 plots, πunif shows a similar tradeoff to πours,1. But in the remaining
half, πunif has an accuracy drop much larger than all other precision assignments including πours,r, since
using πunif often makes training diverge while using, e.g., πours,1 does not do so. Second, in all but two
plots, πours,r shows a strictly better tradeoff than πop: πours,r has noticeably larger (> 2×) memory re-
duction than πop while maintaining similar accuracy. Even in the two plots, πours,r has a tradeoff very
close to πop. Note that in three plots, πop has an accuracy drop of >1% while πours,r provides several
options that have smaller accuracy drops and more memory savings at the same time. Third, πours,r
shows a strictly better (or similar) tradeoff than πop′ in all but two (or two) plots. Note that πop′ has
accuracy smaller than πop in all but one plots. Also it has an accuracy drop of >1% in half of all plots,
and sometimes makes training even diverge (in one plot here and three other plots in Figure C.3).

Additional results. To isolate the effect of our precision promotion technique on the above
results (Figures 6.3, 6.4 and C.3), we compare our precision assignments and the baseline assignments
while applying the precision promotion to all of them, and present the results in Appendix C.3.1
(Figures C.6–C.8). Two observations can be made in these results: for each precision assignment, (i)
if training diverged without the precision promotion, applying the precision promotion prevents such
divergence and produces much higher accuracy; (ii) otherwise, the accuracy and the low-precision
ratio remain similar regardless of using the precision promotion. These observations lead to the

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 94

Figure 6.3: Results of training ShuffleNet-v2 on ImageNet with πfp32, πunif [104], πop [147], πop′

[78], and πours,r. Left: Each line shows the average training trajectory for each precision assignment;
πours,r is colored from navy to yellow (darker for smaller r). A zoomed-in version of this plot can be
found in Appendix C.3.1. Right: Each point shows the memory-accuracy tradeoff of each precision
assignment; a red-dashed line shows the accuracy of πfp32; and shaded areas show the variation among
four training runs. In the right figure, top-right points are better than bottom-left ones. Observe that
there are •s above and to the right of and , respectively. ⋆ is missing as its y-value is too small.

same conclusion as in the above: our assignments provide similar or better tradeoff between memory
and accuracy than the baseline assignments, even when the latter are equipped with our precision
promotion technique. In addition, these observations also indicate that our precision promotion
technique can effectively handle divergence in training (see §6.4.4 for more results on this).

6.4.4 Ablation Study: Precision Demotion and Promotion

Precision demotion. To evaluate the decision to use precision demotion in decreasing-size order,
we train the four models on CIFAR-100 with πours,r, πours[inc],r (which demotes tensor groups in
increasing-size order) and πours[rand],r (which demotes tensor groups in random order). For πours[rand],
three different random orders are used in each case. The results, presented in Figure 6.5 (and
Appendix C.3.2), show that the order of precision demotion has a significant impact on the resulting
memory-accuracy tradeoff, and that decreasing order provides the best results in nearly all cases.
Increasing order consistently shows the worst results, suggesting our intuition (given in §6.3.1) for
choosing decreasing order has some basis in reality.

Precision promotion. To understand whether precision promotion of overflowing tensors is
important to our technique, we train ShuffleNet-v2 on ImageNet using πours[no-promo],r which does
not promote tensors. The results, presented in Figure 6.6(a), show that several training trajectories
diverge in early epochs and fail to recover afterwards. Figure 6.6(b) plots the top-5 tensor overflow
ratios for the highlighted trajectory in Figure 6.6(a). The overflow ratios first spike about when
divergence occurs around epoch 11. A closer look shows that the spike in overflow ratio occurs
shortly before divergence, and starts first in a few tensors and then propagates to others. These
observations indicate that an excessive number of overflows in a few tensors are the cause of the
training divergence.

Finally, Figure 6.6(c-d) shows that precision promotion is effective at preventing the divergence of

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 95

(a) CIFAR-10, SqueezeNet (b) CIFAR-100, SqueezeNet (c) CIFAR-100, SqueezeNet†

(d) CIFAR-10, ShuffleNet-v2 (e) CIFAR-100, ShuffleNet-v2 (f) CIFAR-100, ShuffleNet-v2†

(g) CIFAR-10, MobileNet-v2 (h) CIFAR-100, MobileNet-v2 (i) CIFAR-100, MobileNet-v2†

(j) CIFAR-10, ResNet-18 (k) CIFAR-100, ResNet-18 (l) CIFAR-100, ResNet-18†

Figure 6.4: Memory-accuracy tradeoffs of πunif [104], πop [147], πop′ [78], and πours,r for four models
and their smaller variants on CIFAR-10 and CIFAR-100. The variant models have width multiplier 0.25
and are marked by †. Top-right points are better than bottom-left ones. In all but three plots, there
are •s above and to the right of and , respectively; even in the three plots (g,h,k), •s have almost
the same tradeoffs to and . In half of all plots, ⋆ has much smaller y-values than other points. The
training trajectories for the above plots and the results of other smaller models are in Appendix C.3.1.

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 96

(a) SqueezeNet (b) ShuffleNet-v2 (c) MobileNet-v2

Figure 6.5: Memory-accuracy tradeoffs of πours,r, πours[inc],r, and πours[rand],r for three models on
CIFAR-100. Observe that •s are above and to the right of other points in nearly all cases. The
results of ResNet-18 are in Appendix C.3.2.

(a)
(b) (c) (d)

Figure 6.6: Training ShuffleNet-v2 on ImageNet with πours,r and πours[no-promo],r. (a) Training
trajectories of πours[no-promo],r for different r; colors denote r values (darker for smaller r). (b) Top-5
overflow ratios of tensors at each epoch, for the highlighted trajectory in (a); the largest ratio is
blue and the fifth largest red. (c) Memory-accuracy tradeoffs of πours,r and πours[no-promo],r. (d)
Low-precision ratio when training ends vs. when training starts, for πours,r and πours[no-promo],r. The
results on CIFAR-10 are in Appendix C.3.2.

training while sacrificing only a small amount of memory reduction. The figure shows ShuffleNet-v2
on ImageNet trained using our technique with and without precision promotion. Figure 6.6(c)
shows that without precision promotion large accuracy drops occur due to divergence, whereas with
precision promotion training converges. Figure 6.6(d) shows that the total size of tensors promoted
to high precision is small for all r values. See Appendix C.3.2 for similar results for CIFAR-10.

6.4.5 Choosing the Value of r

The time and space savings of our method are most significant when a model is regularly retrained,
which commonly occurs when new data is periodically incorporated into an existing model. Assuming
that new data has a similar distribution to existing data, we can choose a single r (a parameter in our
method) by conducting one set of experiments where we train with πfp32 and πours,r for different r
and then choose the r value that maximizes model aggregate savings while still having an acceptable
drop in accuracy.

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 97

Figure 6.7: Memory-accuracy tradeoffs of πours,r for ShuffleNet-v2 on ImageNet-200-i (i ∈ [5]).

To simulate this scenario, we create five datasets ImageNet-200-i (i ∈ [5]) as follows, so that each
of them contains different but similar data: randomly select 1/5 of the classes in ImageNet (which
has 1000 classes in total), and split the training data of each class evenly into five new datasets.

For each ImageNet-200-i, we train ShuffleNet-v2 with πfp32 and πours,r and present the results in
Figure 6.7. Based on the tradeoff results of πours,r, we can choose r = 0.4 if we desire an average of <
1% accuracy drop from πfp32, and we can choose r = 0.9 if an average ≈ 3% accuracy drop is tolerable.
We make two more observations: the tradeoff result of πours,r is similar across all five datasets even
though each dataset is different, and for each r the variance in the accuracy of πours,r from different
datasets and runs of training is similar to that of πfp32. Thus we expect that on a new but similar
dataset, πours,r would have an accuracy drop similar to Figure 6.7 with acceptable variance.

6.5 Related Work

Low-precision floating-point training has been extensively studied since the work of [104]. One
active research direction is to select appropriate floating-point formats (or their variants) for low-
and high-precision numbers in training. Various floating-point formats have been proposed, including
FP16 [104], BF16 [78], FP8 [105, 155], HFP8 [147], and FP6 [26], along with some variants such
as HBFP [44], S2FP8 [22], and BM [48]. Recently, the problem of automatically selecting such
floating-point formats has been considered [160]. Another research direction is to develop algorithmic
techniques that improve training accuracy under low precision: e.g., [14, 134, 161, 163]. This chapter
is orthogonal and complementary to all these prior works: they consider various floating-point
formats or training algorithms but use a fixed precision assignment, which is either the uniform or
operator-based assignment (or their variants); this chapter explores various precision assignments
once floating-point formats and training algorithms are fixed (e.g., based on the prior works). The
tradeoff between memory and accuracy in training is also considered in [160], but the work differs
from ours: they vary floating-point formats when a precision assignment is fixed, while we vary
precision assignments when floating-point formats are fixed.

Low-precision fixed-point training uses fixed-point formats as a low-precision representation
instead of a floating-point format. Some works use fixed-point formats for forward tensors and

CHAPTER 6. ACCELERATION OF DEEP NEURAL NETWORK TRAINING 98

floating-point formats for backward tensors: e.g., [27, 32, 74, 148, 162]. Other works use only
fixed-point formats for all tensors: e.g., [5, 38, 58, 127, 135, 159, 165, 166]. Among all these works,
some consider various mixed precision assignments with different bitwidth (fixed-point) formats:
[135, 165]; but they are not applicable to our context (i.e., floating-point training) since they rely on
some properties of fixed-point formats that do not hold for floating-point formats (e.g., all numbers in
a given format are equally distributed). The approach taken in [127] is orthogonal and complementary
to ours: they use only the uniform precision assignment, but change the underlying low-precision
formats during training; we consider various mixed precision assignments, but fix the underlying
low-precision formats during training.

Low-precision inference, often called neural network quantization (in a narrow sense), aims
at reducing the latency or memory of neural network inference (instead of training) by using low-
precision numbers [110]. Existing approaches typically assume a pre-trained model and try to find
low-precision formats for each part of the inference computation, either by retraining the model
(called quantization-aware training) or without any retraining (called post-training quantization); see,
e.g., [51, 125] for surveys. Some works on inference consider various mixed precision assignments,
but they are not applicable to our context: they focus on making inference more efficient and usually
assume a pre-trained model; we focus on making training more efficient and aim at learning a model
from scratch.

Floating-point tuning is another related topic, which considers the following problem: given
a program, assign appropriate formats (among given candidates) to the program’s floating-point
variables such that the program’s output has an error smaller than a given threshold for all given
inputs, while also maximizing performance [24, 57, 103, 131, 132]. This problem is different from the
problem we focus on: the former considers the floating-point error after a single run of a program,
while we consider the training accuracy after a large number of runs of a program (i.e., a gradient
computation) where each run affects the next run; further, the former considers general-purpose
programs, while we consider deep learning programs and exploit their unique features.

6.6 Conclusion

In this chapter, we formally introduce the memory-accuracy tradeoff problem to explore better mixed
precision assignments for low-precision floating-point training, and prove the NP-hardness of the
problem. We then present a novel precision assignment technique, as a heuristic solution to the
tradeoff problem, that proposes assignments based on a single parameter denoting a desired upper
bound on the model aggregate. We also present a novel technique that handles an excessive number
of overflows arising in training while using a small amount of additional memory. We demonstrate
that the mixed precision assignments found by our method do explore the tradeoff between memory
and training accuracy, and outperform existing precision assignment methods.

Chapter 7

Conclusion

In this dissertation we considered three classes of continuous computations used in the real world
and studied the discrepancy between the theory and practice of these computations, especially the
use of reals in theory and floats in practice. First, in Chapters 3 and 4, we focused on computations
that implement math libraries using floats and presented automatic techniques to formally verify
their correctness. Second, in Chapter 5, we focused on computations that calculate derivatives of
neural networks at floating-point inputs and showed theoretical results on their correctness. Third,
in Chapter 6, we focused on computations that train deep neural networks using floats and presented
a systematic way to accelerate them using lower-precision floats.

Our work opens up several directions for future research. First, in Chapters 3 and 4, we did not
prove the full correctness of the math libraries. For instance, Intel’s sin and tan are claimed to have the
1 ulp error bound over the entire input range [−minF,maxF]; however, we applied our automatic tech-
niques to some subsets of the input range (e.g., [−π, π]) and proved an error bound of 13.33 ulps for one
case (i.e., tan over [17π64 ,

π
2)). Developing new automatic techniques to prove the full correctness is left

as future work. Second, in Chapter 5, we proved our correctness results on AD under some assumptions.
For example, we considered neural networks consisting of alternating analytic pre-activation functions
and pointwise continuous activation functions; hence, our results might not be applicable if a network
contains non-pointwise activation functions (e.g., MaxPool) or a residual connection bypassing a non-
analytic activation function (e.g., ReLU). Relaxing such assumptions is interesting future work. Finally,
in Chapter 6, we simulated low-precision floats and operations in software (instead of handling them
natively in hardware) when performing low-precision training, as prior works have also done. Hence,
the potential speedup of our method was not directly measured, though we do expect speedups to be
proportional to the reduction in the model aggregate. Performing such experiments on recent/future
hardware that natively supports more low-precision formats is yet another direction for future work.

99

Appendix A

Appendix for Chapter 4

A.1 Complete Definitions and Rules

A.1.1 Definition of Operations on Abstractions

In this subsection, assume that Aδ⃗(x) denotes a(x) +
∑
i bi(x)δi and δi ranges over [−∆i,∆i].

Aδ⃗(x) � A′
δ⃗(x) (∗ ∈ {+,−,×, /})

Aδ⃗(x)⊞A′
δ⃗(x) ≜ Aδ⃗(x) +A′

δ⃗(x),

Aδ⃗(x)⊟A′
δ⃗(x) ≜ Aδ⃗(x)−A′

δ⃗(x),

Aδ⃗(x)⊠A′
δ⃗(x) ≜ linearize(Aδ⃗(x)×A′

δ⃗(x)),

Aδ⃗(x) � A′
δ⃗(x) ≜ Aδ⃗(x)⊠ inv(A′

δ⃗(x)).

linearize(·) and inv(·) are defined as:

linearize

(
a(x) +

∑
i

bi(x)δi +
∑
i,j

bi,j(x)δiδj

)
≜ a(x) +

∑
i

bi(x)δi +
∑
i,j

bi,j(x)δ
′
i,j ,

inv(Aδ⃗(x)) ≜
1

a(x)
+

1

a(x)
δ′′ (assumes ∆′ < 1),

where δ′i,j = fresh(∆i∆j) and δ′′ = fresh(∆′

1−∆′), and ∆′ ∈ R≥0 is computed as

∆′ =
∑
i

max
x∈X

∣∣∣∣ bi(x)a(x)

∣∣∣∣ ·∆i.

Aδ⃗(x) � δ′ (∗ ∈ {+,×})

Aδ⃗(x)⊞ δ′ ≜ Aδ⃗(x)⊞A′
δ⃗(x) where A′

δ⃗(x) = 0 + 1 · δ′,

100

APPENDIX A. APPENDIX FOR CHAPTER 4 101

Aδ⃗(x)⊠ δ′ ≜ Aδ⃗(x)⊠A′
δ⃗(x) where A′

δ⃗(x) = 0 + 1 · δ′.

Aδ⃗(x)⊠ (1 + δ′)

Aδ⃗(x)⊠ (1 + δ′) ≜ a(x) + a(x)δ′ +
∑
i∈R

bi(x)δ
′
i +
∑
i/∈R

(bi(x)δi + bi(x)δ
′′
i)

where δ′ ranges over [−∆′,∆′], R = {i : preserve(δi) = false}, δ′i = fresh(∆i(1 + ∆′)) (i ∈ R), and
δ′′i = fresh(∆i∆

′) (i /∈ R).

compress(Aδ⃗(x))

compress(Aδ⃗(x)) ≜ a(x) + a(x)δ′ +
∑

i/∈R∩S

bi(x)δi where δ′ = fresh

(∑
i∈R∩S

γi

)
.

Here R = {i : preserve(δi) = false}, and γi ∈ R≥0 ∪ {∞} and the set S are computed as:

γi = max
x∈X

∣∣∣∣ bi(x)a(x)

∣∣∣∣ ·∆i and S =
{
i :

γi
ε

≤ τ
}

where τ ∈ R≥0 is a constant.

A.1.2 Rules for Constructing Abstractions

Basic rules:
e ∈ dom(K) K(e) = (Aδ⃗, , ,)

(K, e)▷ (K,Aδ⃗)
Load′

(K, c)▷ (K[c 7→ (c, false, σ(c), µ(c))], c)
R1′

(K, x)▷ (K[x 7→ (x, false, 53, µ(x))], x)
R2′

(K, e1)▷ (K1,A1,δ⃗)

(K1, e2)▷ (K2,A2,δ⃗)

K1(e1) = (, , σ1, µ1)

K2(e2) = (, , σ2, µ2)

σ = bound-σ(∗,A1,δ⃗,A2,δ⃗, σ1, σ2)

µ = bound-µ(∗,A1,δ⃗,A2,δ⃗, µ1, µ2) ∗ ∈ {+,−}

(K, e1 ⊛ e2)▷ (K′,A′
δ⃗), where


δ′ = fresh(ε)

A′
δ⃗ = compress((A1,δ⃗ � A2,δ⃗)⊠ (1 + δ′))

σ′ = min{σ, 53}, µ′ = max{fl−(µ), 2−1074}
K′ = K2[e1 ⊛ e2 7→ (A′

δ⃗, false, σ
′, µ′)]

R14

APPENDIX A. APPENDIX FOR CHAPTER 4 102

(K, e1)▷ (K1,A1,δ⃗)

(K1, e2)▷ (K2,A2,δ⃗)

K1(e1) = (, , σ1, µ1)

K2(e2) = (, , σ2, µ2)

σ = bound-σ(∗,A1,δ⃗,A2,δ⃗, σ1, σ2)

µ = bound-µ(∗,A1,δ⃗,A2,δ⃗, µ1, µ2)

∗ ∈ {×, /}
µ ≥ 2−1022

(K, e1 ⊛ e2)▷ (K′,A′
δ⃗), where


δ′ = fresh(ε)

A′
δ⃗ = compress((A1,δ⃗ � A2,δ⃗)⊠ (1 + δ′))

σ′ = min{σ, 53}, µ′ = max{fl−(µ), 2−1074}
K′ = K2[e1 ⊛ e2 7→ (A′

δ⃗, false, σ
′, µ′)]

R15

(K, e1)▷ (K1,A1,δ⃗)

(K1, e2)▷ (K2,A2,δ⃗)

K1(e1) = (, , σ1, µ1)

K2(e2) = (, , σ2, µ2)

σ = bound-σ(∗,A1,δ⃗,A2,δ⃗, σ1, σ2)

µ = bound-µ(∗,A1,δ⃗,A2,δ⃗, µ1, µ2)

∗ ∈ {×, /}
µ < 2−1022

(K, e1 ⊛ e2)▷ (K′,A′
δ⃗), where


δ′ = fresh(ε), δ′′ = fresh(ε′)

A′
δ⃗ = compress((A1,δ⃗ � A2,δ⃗)⊠ (1 + δ′)⊞ δ′′)

σ′ = min{σ, 53}, µ′ = max{fl−(µ), 2−1074}
K′ = K2[e1 ⊛ e2 7→ (A′

δ⃗, false, σ
′, µ′)]

R3′

(K, bit-mask(e1, B))▷ (K1,A1,δ⃗)

K1(e1) = (, , σ1, µ1)

µ = E(bit-mask(x,B))(fl−(µ1)) µ ≥ 2−1022

(K, bit-mask(e1, B))▷ (K′,A′
δ⃗), where


δ′ = fresh(2−52+B)

A′
δ⃗ = compress(A1,δ⃗ ⊠ (1 + δ′))

σ′ = min{σ1, 53−B}, µ′ = max{µ, 2−1074}
K′ = K1[bit-mask(e1, B) 7→ (A′

δ⃗, false, σ
′, µ′)]

R4′-1

(K, bit-mask(e1, B))▷ (K1,A1,δ⃗)

K1(e1) = (, , σ1, µ1)

µ = E(bit-mask(x,B))(fl−(µ1)) µ < 2−1022

(K, bit-mask(e1, B))▷ (K′,A′
δ⃗), where


δ′ = fresh(2−52+B), δ′′ = fresh(2−1074+B)

A′
δ⃗ = compress(A1,δ⃗ ⊠ (1 + δ′)⊞ δ′′)

σ′ = min{σ1, 53−B}, µ′ = max{µ, 2−1074}
K′ = K1[bit-mask(e1, B) 7→ (A′

δ⃗, false, σ
′, µ′)]

R4′-2

Rules for simple exact operations:

(K, e1)▷ (K1,A1,δ⃗)

(K1, e2)▷ (K2, 0) K1(e1) = (, , σ1, µ1) ∗ ∈ {+,−}

(K, e1 ⊛ e2)▷ (K′,A1,δ⃗), where K′ = K2[e1 ⊛ e2 7→ (A1,δ⃗, true, σ1, µ1)]
R5′

APPENDIX A. APPENDIX FOR CHAPTER 4 103

(K, e1)▷ (K1,A1,δ⃗)

(K1, e2)▷ (K2,A2,δ⃗)

K1(e1) = (, , σ1, µ1)

K2(e2) = (, , σ2, µ2)

σ = bound-σ(×,A1,δ⃗,A2,δ⃗, σ1, σ2)

µ = bound-µ(×,A1,δ⃗,A2,δ⃗, µ1, µ2)

∃n ∈ Z.∀x ∈ X. A2,δ⃗(x) = 2n

n ≥ −1075− expnt(µ1) + σ1

(K, e1 ⊗ e2)▷ (K′,A′
δ⃗), where


A′

δ⃗ = A1,δ⃗ × 2n

σ′ = min{σ, 53}, µ′ = max{µ, 2−1074}
K′ = K2[e1 ⊗ e2 7→ (A′

δ⃗, true, σ
′, µ′)]

R6′

(K, e1)▷ (K1, c1)

(K1, e2)▷ (K2, c2) c′ = c1 ⊛ c2 ∗ ∈ {+,−,×, /}

(K, e1 ⊛ e2)▷ (K′, c′), where K′ = K2[e1 ⊛ e2 7→ (c′, c′ == c1 ∗ c2, σ(c′), µ(c′))]
R7′

Rules for applying Sterbenz’s theorem:

(K, e1)▷ (K1,A1,δ⃗)

(K1, e2)▷ (K2,A2,δ⃗)

K1(e1) = (, , σ1, µ1)

K2(e2) = (, , σ2, µ2)

σ = bound-σ(−,A1,δ⃗,A2,δ⃗, σ1, σ2)

µ = bound-µ(−,A1,δ⃗,A2,δ⃗, µ1, µ2)

minx,δ⃗(A2,δ⃗ −
1
2
A1,δ⃗) ≥ 0

maxx,δ⃗(A2,δ⃗ − 2A1,δ⃗) ≤ 0

(K, e1 ⊖ e2)▷ (K′,A′
δ⃗), where


A′

δ⃗ = compress(A1,δ⃗ ⊟A2,δ⃗)

σ′ = min{σ, 53}, µ′ = max{µ, 2−1074}
K′ = K2[e1 ⊖ e2 7→ (A′

δ⃗, true, σ
′, µ′)]

R8′

(K, e1)▷ (K1,A1,δ⃗)

(K1, e2)▷ (K2,A2,δ⃗)

K1(e1) = (, , σ1, µ1)

K2(e2) = (, , σ2, µ2)

σ = bound-σ(−,A1,δ⃗,A2,δ⃗, σ1, σ2)

µ = bound-µ(−,A1,δ⃗,A2,δ⃗, µ1, µ2)

minx,δ⃗(A2,δ⃗ − 2A1,δ⃗) ≥ 0

maxx,δ⃗(A2,δ⃗ −
1
2
A1,δ⃗) ≤ 0

(K, e1 ⊖ e2)▷ (K′,A′
δ⃗), where


A′

δ⃗ = compress(A1,δ⃗ ⊟A2,δ⃗)

σ′ = min{σ, 53}, µ′ = max{µ, 2−1074}
K′ = K2[e1 ⊖ e2 7→ (A′

δ⃗, true, σ
′, µ′)]

R9′

APPENDIX A. APPENDIX FOR CHAPTER 4 104

Rules for applying Dekker’s theorem:

(K, e1)▷ (K1,A1,δ⃗)

(K1, e2)▷ (K2,A2,δ⃗)

K1(e1) = (, , σ1, µ1)

K2(e2) = (, , σ2, µ2)

σ = bound-σ(+,A1,δ⃗,A2,δ⃗, σ1, σ2)

µ = bound-µ(+,A1,δ⃗,A2,δ⃗, µ1, µ2) hasDekker(e1 ⊕ e2)

(K, e1 ⊕ e2)▷ (K′,A′
δ⃗), where


δ′ = fresh(ε, true)

A′
δ⃗ = compress((A1,δ⃗ ⊞A2,δ⃗)⊠ (1 + δ′))

σ′ = min{σ, 53}, µ′ = max{fl−(µ), 2−1074}
K′ = K2[e1 ⊕ e2 7→ (A′

δ⃗, false⟨δ
′⟩, σ′, µ′)]

R10′

(K, e1 ⊕ e2)▷ (K1,)

K1(e1) = (A1,δ⃗, , ,)

K1(e2) = (A2,δ⃗, , ,)

K1(e1 ⊕ e2) = (, false⟨δ′⟩, ,)

minx,δ⃗ |A1,δ⃗| ≥ maxx,δ⃗ |A2,δ⃗|

(K, e1 ⊕ e2 ⊖ e1 ⊖ e2)▷ (K′,A′
δ⃗), where

{
A′

δ⃗ = compress((A1,δ⃗ ⊞A2,δ⃗)⊠ δ′)

K′ = K1[e1 ⊕ e2 ⊖ e1 ⊖ e2 7→ (A′
δ⃗, false, 53, 2

−1074)]

R11′

(K, e1 ⊕ e2)▷ (K1,) K1(e1 ⊕ e2) = (, true, ,)

(K, e1 ⊕ e2 ⊖ e1 ⊖ e2)▷ (K′, 0), where K′ = K1[e1 ⊕ e2 ⊖ e1 ⊖ e2 7→ (0, true, 0,∞)]
R12′

Rule for using σ(·):

(K, e1)▷ (K1,A1,δ⃗)

(K1, e2)▷ (K2,A2,δ⃗)

K1(e1) = (, , σ1, µ1)

K2(e2) = (, , σ2, µ2)

σ = bound-σ(∗,A1,δ⃗,A2,δ⃗, σ1, σ2)

µ = bound-µ(∗,A1,δ⃗,A2,δ⃗, µ1, µ2)

∗ ∈ {+,−,×, /}
σ ≤ 53

(K, e1 ⊛ e2)▷ (K′,A′
δ⃗), where


A′

δ⃗ = compress(A1,δ⃗ � A2,δ⃗)

µ′ = max{µ, 2−1074}
K′ = K2[e1 ⊛ e2 7→ (A′

δ⃗, true, σ, µ
′)]

R13′

Appendix B

Appendix for Chapter 5

B.1 Formal Setup

In the appendix, we use the following notation. For A ⊆ Rn, int(A) and bd(A) denote the interior
and the boundary of A.

B.1.1 Piecewise-Analytic Functions

Definition B.1. For A ⊆ Rn, define pbd(A) as

pbd(A) ≜ A \ int(A).

We call pbd(A) the proper boundary of A. Note that pbd(A) = bd(A) ∩A holds for any A.

Definition B.2. A function f : R → R is piecewise-differentiable (or piecewise-C1) if there exist
n ∈ N, a partition {Ai}i∈[n] of R consisting of non-empty intervals, and differentiable (or C1)
functions {fi : R → R}i∈[n] such that f = fi on Ai for all i ∈ [n]. We call such {(Ai, fi)}i∈[n] a
piecewise-differentiable (or piecewise-C1) representation of f . Moreover, for an extended derivative
g : R→ R of f , we say that the representation {(Ai, fi)}i∈[n] defines g if g = Dfi on Ai for all i ∈ [n].
We define a piecewise-analytic representation of f in a similar way.

Lemma B.3. Let {Ai}i∈S be any partition of Rn. Then,

⋃
i∈S

bd(Ai) =
⋃
i∈S

pbd(Ai). (B.1)

Proof. The direction ⊇ is clear, since pbd(X) ⊆ bd(X) for any X ⊆ Rn. To prove the other direction
⊆, it suffices to show that for any i ∈ S and x ∈ bd(Ai), we have x ∈ pbd(Aj) for some j ∈ S. Here
we assume x /∈ Ai; if not, choosing j = i completes the proof. Let j ∈ S be the index with x ∈ Aj ,

105

APPENDIX B. APPENDIX FOR CHAPTER 5 106

where such j always exists since {Ai}i∈S is a partition of R. Then, it suffices to show x ∈ bd(Aj),
because this and x ∈ Aj implies x ∈ pbd(Aj). To prove x ∈ bd(Aj), consider any open neighborhood
U ⊆ Rn of x. Then, there is x′ ∈ U ∩Ai (by x ∈ bd(Ai) and x /∈ Ai). This implies that x′ /∈ U ∩Aj
(by Ai ∩Aj = ∅ from i ≠ j) and x ∈ U ∩Aj (by x ∈ Aj). Hence, we have x ∈ bd(Aj) as desired.

Theorem B.4. Let f : R→ R be a continuous, piecewise-analytic function, and g : R→ R be an
extended derivative of f . Then, the following hold.

(i) There is a piecewise-differentiable representation {(Ai, fi)}i∈[n] of f that defines g and satisfies
the following:

⋃
i∈[n]

bd(Ai) =
⋃
i∈[n]

pbd(Ai) = ndf(f).

(ii) If g is consistent, there is a piecewise-C1 representation {(Ai, fi)}i∈[n] of f that defines g and
satisfies the following:

⋃
i∈[n]

bd(Ai) =
⋃
i∈[n]

pbd(Ai) = ncdf(f), int(Ai) ̸= ∅ for all i ∈ [n],

where ncdf(f) ⊆ R denotes the set of real numbers at which f : R → R is not continuously
differentiable.

Proof. We prove the two claims as follows. Note that by Lemma B.3, we do not need to prove the
equality between the union of bd(Ai) and that of pbd(Ai) in the claims.

Claim (i). Let {(Ãi, f̃ i)}i∈[ñ] be a piecewise-analytic representation of f that defines g and
satisfies

(Ã1, . . . , Ãñ) =
(
(x0, x1), . . . , (xk, xk+1), {x1}, . . . , {xk}

)
for some −∞ = x0 < x1 < · · · < xk < xk+1 = ∞. Such a representation always exists, because f
is piecewise-analytic and g is an extended derivative of f . Note that ndf(f) ⊆ {x1, . . . , xk} because
f is differentiable on (xi−1, xi) for all i ∈ [k + 1] (since f̃ i is analytic and it coincides with f on
Ãi = (xi−1, xi)). We then construct {(Ai, fi)}i∈[n] from {(Ãi, fi)}i∈[ñ], by merging all adjacent
intervals Ãi (and associated functions f̃ i) into a single interval (and a single function) such that the
class of the singleton interval in {Ai} are the same as {{x} | x ∈ ndf(f)}. Then,

⋃
i∈[n]

pbd(Ai) =
⋃

x∈ndf(f)

{x} = ndf(f)

by construction; fi is differentiable for all i ∈ [n]; and {(Ai, fi)}i∈[n] defines g since g is an extended
derivative of f . Hence, {(Ai, fi)}i∈[n] is a piecewise-differentiable representation of f that defines

APPENDIX B. APPENDIX FOR CHAPTER 5 107

g and satisfies the equation in the statement.
Claim (ii). By a similar argument, there is a piecewise-C1 representation {(Ãi, f̃ i)}i∈[ñ] of f

that defines g and satisfies ⋃
i∈[ñ]

pbd(Ãi) = ncdf(f).

Note that here we need ncdf(f) (instead of ndf(f)) in the above equation, to obtain a piecewise-C1

(instead of piecewise-differentiable) representation of f . We then construct {(Ai, fi)}i∈[n] from
{(Ãi, f̃ i)}i∈[ñ], by merging each singleton interval Ãi (and the associated function f̃ i) with one of
the two adjacent intervals (and its associated function) such that {(Ai, fi)}i∈[n] defines g. Such a
construction always exists, because f is continuous, g is consistent, and f̃ i is C1 for all i ∈ [ñ]. Then,

⋃
i∈[n]

pbd(Ai) = ncdf(f), int(Ai) ̸= ∅ for all i ∈ [n]

by construction; and fi is C1 for all i ∈ [ñ] since f is continuous. Hence, {(Ai, fi)}i∈[n] is a
piecewise-C1 representation of f that defines g and satisfies the equation given in the statement.

B.1.2 Neural Networks

Definition B.5. For each (l, i) ∈ Idx, let

{(Ikl,i, σkl,i)}k∈[Kl,i]

be a piecewise-differentiable representation of σl,i : R→ R that defines DADσl,i (an extended deriva-
tive of σl,i defined in §5.2.3), where Kl,i ∈ N, Ikl,i ⊆ R, and σkl,i : R → R. We assume that the
representation satisfies the following:

⋃
k∈[Kl,i]

bd(Ikl,i) =
⋃

k∈[Kl,i]

pbd(Ikl,i) = ndf(σl,i).

Note that such a representation always exists by Theorem B.4.

Definition B.6. Define Γ, the set of indices denoting which piece of each activation function is used, as

Γ ≜ {γ : Idx→ N | γ(l, i) ∈ [Kl,i] for all (l, i) ∈ Idx}.

Definition B.7. Let γ ∈ Γ and l ∈ [L]. Define Rγ ⊆ RW , yγl , z
γ
l : RW → RNl , σγl : RNl → RNl as:

Rγ ≜ {w ∈ RW | yl,i(w) ∈ Iγ(l,i)l,i for all (l, i) ∈ Idx},

yγl (w) ≜ τl
(
zγl−1(w), πl(w)

)
, zγl (w) ≜ σγl

(
yγl (w)

)
,

σγl (x) ≜
(
σ
γ(l,1)
l,1 (x1), . . . , σ

γ(l,Nl)
l,Nl

(xNl
)
)
,

APPENDIX B. APPENDIX FOR CHAPTER 5 108

where πl : RW → RWl denotes the projection function that extracts wl ∈ RWl from (w1, . . . , wL) ∈
RW , and zγ0 : RW → RN0 is defined as zγ0 ≜ z0.

Lemma B.8. {Rγ}γ∈Γ is a partition of RW .

Proof. This follows immediately from that {Ikl,i}k∈[Kl,i] is a partition of R for all (l, i) ∈ Idx (since
{(Ikl,i, σkl,i)}k∈[Kl,i] is a representation of σl,i).

Lemma B.9. For all l ∈ [L] and γ ∈ Γ, yl and zl are continuous, and yγl and zγl are differentiable.

Proof. The continuity of yl and zl follows directly from that τl′ , πl′ , and σl′,i′ are continuous for all
(l′, i′) ∈ Idx. Similarly, the differentiability of yγl and zγl follows directly from that τl′ , πl′ , and σk

′

l′,i′

are differentiable for all (l′, i′) ∈ Idx and k′ ∈ [Kl′,i′].

Lemma B.10. Let γ ∈ Γ. Then,

Rγ = {w ∈ RW | yγl,i(w) ∈ I
γ(l,i)
l,i for all (l, i) ∈ Idx}.

Note that the RHS uses yγl,i instead of yl,i.

Proof. Let γ ∈ Γ. Define Rγ≤l,S
γ
≤l ⊆ RW for l ∈ [L] as

Rγ≤l ≜ {w ∈ RW | yl′,i(w) ∈ Iγ(l
′,i)

l′,i for all (l′, i) ∈ Idx with l′ ≤ l},

Sγ≤l ≜ {w ∈ RW | yγl′,i(w) ∈ I
γ(l′,i)
l′,i for all (l′, i) ∈ Idx with l′ ≤ l}.

It suffices to show the following claim which generalizes this lemma: all l ∈ [L],

yl(w) = yγl (w) for all w ∈ Rγ≤l−1, Rγ≤l = S
γ
≤l.

We prove this claim by induction on l.

Case l = 1. Since z0 = zγ0 , we have the first claimed equation:

y1(w) = τ1(z0(w), w1) = τ1(z
γ
0 (w), w1) = yγ1 (w)

for all w ∈ RW . From this, we have the second claimed equation:

Rγ≤1 =
⋂

i∈[N1]

{w ∈ RW | y1,i(w) ∈ Iγ(1,i)1,i } =
⋂

i∈[N1]

{w ∈ RW | yγ1,i(w) ∈ I
γ(1,i)
1,i } = Sγ≤1.

Case l > 1. We obtain the first claimed equation as follows: for all w ∈ Rγ≤l−1,

yγl (w) = τl
(
σγl−1(y

γ
l−1(w)), πl(w)

)

APPENDIX B. APPENDIX FOR CHAPTER 5 109

= τl
(
σγl−1(yl−1(w)), πl(w)

)
= τl

(
σl−1(yl−1(w)), πl(w)

)
= yl(w).

Here the second line uses yγl−1(w) = yl−1(w), which holds by induction hypothesis on l − 1 with
w ∈ Rγ≤l−1 ⊆ R

γ
≤l−2. And the third line uses σγ(l−1,i)

l−1,i (yl−1,i(w)) = σl−1,i(yl−1,i(w)) for all i ∈ [Nl−1],
which holds because yl−1,i(w) ∈ Iγ(l−1,i)

l−1,i (by w ∈ Rγ≤l−1) and {(Ikl−1,i, σ
k
l−1,i)}k∈[Kl−1,i] is a repre-

sentation of σl−1,i. Using this result, we obtain the second claimed equation as follows:

Rγ≤l = R
γ
≤l−1 ∩

⋂
i∈[Nl]

{w ∈ Rγ≤l−1 | yl,i(w) ∈ I
γ(l,i)
l,i }

= Rγ≤l−1 ∩
⋂

i∈[Nl]

{w ∈ Rγ≤l−1 | y
γ
l,i(w) ∈ I

γ(l,i)
l,i }

= Sγ≤l−1 ∩
⋂

i∈[Nl]

{w ∈ Sγ≤l−1 | y
γ
l,i(w) ∈ I

γ(l,i)
l,i } = Sγ≤l,

where the second line uses yγl,i(w) = yl,i(w) for all w ∈ Rγ≤l−1, which we already proved, and the
third line uses Rγ≤l−1 = Sγ≤l−1, which holds by induction hypothesis on l − 1.

Lemma B.11. Let γ ∈ Γ. Then, for all l ∈ [L] and w ∈ Rγ ,

yγl (w) = yl(w), zγl (w) = zl(w).

Proof. Let γ ∈ Γ. The claim shown in the proof of Lemma B.10 implies the first part of the conclusion
(since Rγ≤l−1 ⊇ Rγ): for all l ∈ [L] and w ∈ Rγ , yγl (w) = yl(w). From this, we obtain the second
part of the conclusion: for all l ∈ [L] and w ∈ Rγ ,

zγl (w) = σγl (y
γ
l (w)) = σγl (yl(w)) = σl(yl(w)) = zl(w),

where the second equality follows from the first part of the conclusion, and the third equal-
ity from σ

γ(l,i)
l,i (yl,i(w)) = σl,i(yl,i(w)) which holds because yl,i(w) ∈ Iγ(l,i)l,i (by w ∈ Rγ) and

{(Ikl,i, σkl,i)}k∈[Kl,i] is a representation of σl,i.

B.1.3 Automatic Differentiation

As discussed in §5.1, AD operates not on mathematical functions, but on programs that represent
those functions. To this end, we define a program P that represents a function from RW to R as follows:

P ::= r | wl,j | f(P1, . . . , Pn)

APPENDIX B. APPENDIX FOR CHAPTER 5 110

where r ∈ R, l ∈ [L], j ∈ [Wl], f ∈ {τl,i, σl,i | (l, i) ∈ Idx}, and n ∈ N. This definition says that a
program P can be either a real-valued constant r, a real-valued parameter wl,j , or the application of a
function f : Rn → R to subprograms P1, . . . , Pn. In Chapter 5, we focus on particular programs Pyl,i
and Pzl,i that represent the functions yl,i(· ; c), zl,i(· ; c) : RW → R and are defined in a canonical
way as follows:

Pyl,i ≜ τl,i(Pzl−1,1
, . . . , Pzl−1,Nl−1

, wl,1, . . . , wl,Wl
),

Pzl,i ≜ σl,i(Pyl,i),

where Pz0,i′ ≜ ci′ for i′ ∈ [N0] represents the constant function z0,i′(· ; c) : RW → R.
Given a program P, we define JPK : RW → R as the function represented by P, and JPKAD : RW →

R1×W as the function that AD essentially computes when applied to P. These functions are defined
inductively as follows [1, 10, 92]:

JrK(w) ≜ r,

Jwl,jK(w) ≜ wl,j ,

Jf(P1, . . . , Pn)K(w) ≜ f
(
JP1K(w), . . . , JPnK(w)

)
,

JrKAD(w) ≜ ,

Jwl,jKAD(w) ≜ 1l,j ,

Jf(P1, . . . , Pn)KAD(w) ≜ DADf
(
JP1K(w), . . . , JPnK(w)

)
·
[
JP1KAD(w)

/
· · ·
/

JPnKAD(w)
]
.

Here wl,j ∈ R is defined as (w1,1, w1,2 . . . , wL,WL
) ≜ w, ,1l,j ∈ R1×W denote the zero matrix and

the matrix whose entries are all zeros except for a single one at the (W1 + · · ·+Wl−1 + j)-th entry,
DADf : Rn → R1×n denotes a “derivative” of f used by AD, and [M1 / · · · /Mn] denotes the matrix
that stacks up matrices M1, . . . ,Mn vertically. Note that Jf(P1, . . . , Pn)KAD captures the essence of
AD: it computes derivatives based on the chain rule for differentiation.

Using the above definitions, we define DADzL : RW → RNL×W as what AD essentially computes
when applied to a program that canonically represents a neural network zL : RW → RNL :

DADzL(w) ≜
[
JPzL,1

KAD(w)
/
· · ·
/

JPzL,NL
KAD(w)

]
.

Note that DADzL depends on the “derivative” of (pre-)activation functions (i.e., DADσl,i and DADτl,i)
used by AD.

Lemma B.12. For any γ ∈ Γ and w ∈ Rγ ,

DADzL(w) = DzγL(w).

APPENDIX B. APPENDIX FOR CHAPTER 5 111

Proof. Let γ ∈ Γ. We prove the following claim: for all l ∈ [L] ∪ {0}, i ∈ [Nl], and w ∈ Rγ ,

Dzγl,i(w) = JPzl,iK
AD(w).

Note that this claim implies the conclusion since

DzγL(w) = [DzγL,1(w) / · · · /Dz
γ
L,NL

(w)] = [JPzL,1
KAD(w) / · · · / JPzL,NL

KAD(w)] = DADzL(w).

We prove the claim by induction on l.

Case l = 0. Let i ∈ [Nl] and w ∈ Rγ . Since Pz0,i is a constant program, Dzγ0,i(w) = = JPz0,iKAD(w)
as desired.

Case l > 0. Let i ∈ [Nl] and w ∈ Rγ . Observe that

JPyl,iK
AD(w) = Jτl,i(Pzl−1,1

, . . . , Pzl−1,Nl−1
, wl,1, . . . , wl,Wl

)KAD(w)

= Dτl,i
(
JPzl−1,1

K(w), . . . , JPzl−1,Nl−1
K(w), Jwl,1K(w), . . . , Jwl,Nl

K(w)
)

·
[
JPzl−1,1

KAD(w) / · · · / JPzl−1,Nl−1
KAD(w) / Jwl,1KAD(w) / · · · / Jwl,Wl

KAD(w)
]

= Dτl,i
(
zl−1(w), πl(w)

)
·
[
Dzγl−1,1(w) / · · · /Dz

γ
l−1,Nl−1

(w) /1l,1 / · · · /1l,Nl

]
= Dτl,i

(
zl−1(w), πl(w)

)
·
[
Dzγl−1(w) /Dπl(w)

]
= Dτl,i

(
(zl−1, πl)(w)

)
·D(zγl−1, πl)(w), (B.2)

where (f, g) : Rn → Rm1+m2 is defined as (f, g)(x) ≜ (f(x), g(x)) for f : Rn → Rm1 and
g : Rn → Rm2 . Here the third line uses JPzl−1,i′ K(w) = zl−1,i′(w) and JPzl−1,i′ K

AD(w) = Dzγl−1,i′(w)

for all i′ ∈ [Nl−1], where the latter holds by induction hypothesis on l − 1.
Using the observation above, we obtain the claim:

JPzl,iK
AD(w) = Jσl,i(Pyl,i)K

AD(w)

= DADσl,i
(
JPyl,iK(w)

)
· JPyl,iKAD(w)

= DADσl,i
(
yl,i(w)

)
·Dτl,i

(
(zl−1, πl)(w)

)
·D(zγl−1, πl)(w)

= Dσγl,i
(
yl,i(w)

)
·Dτl,i

(
(zl−1, πl)(w)

)
·D(zγl−1, πl)(w)

= Dσγl,i
(
(τl,i ◦ (zγl−1, πl))(w)

)
·Dτl,i

(
(zγl−1, πl)(w)

)
·D(zγl−1, πl)(w)

= D(σγl,i ◦ τl,i ◦ (z
γ
l−1, πl))(w)

= Dzγl,i(w).

Here the third line uses JPyl,iK(w) = yl,i(w) and Eq. (B.2), and the fourth line uses DADσl,i(yl,i(w)) =

Dσ
γ(l,i)
l,i (yl,i(w)), which holds because yl,i(w) ∈ Iγ(l,i)l,i (by w ∈ Rγ) and {(Ikl,i, σkl,i)}k∈[Kl,i] defines

APPENDIX B. APPENDIX FOR CHAPTER 5 112

DADσl,i. The fifth line uses yl,i(w) = yγl,i(w) and zl−1(w) = zγl−1(w) (by Lemma B.11 with w ∈ Rγ),
and the sixth line uses the chain rule, which is applicable to (σγl,i ◦ τl,i ◦ (z

γ
l−1, πl)) because σγl,i, τl,i,

zγl−1, and πl are differentiable (as zγl−1 is differentiable by Lemma B.9).

B.2 Upper Bounds on |ndfΩ(zL) ∪ incΩ(zL)|

B.2.1 Lemmas (Basic)

Lemma B.13. For any A,B ⊆ Rn,

pbd(A ∪B) ⊆ pbd(A) ∪ pbd(B), pbd(A ∩B) ⊆ pbd(A) ∪ pbd(B).

Proof. Let A,B ⊆ Rn. Then, int(A∪B) ⊇ int(A)∪ int(B) and int(A∩B) = int(A)∩ int(B). Using
these, we obtain:

pbd(A ∪B) = (A ∪B) \ int(A ∪B)

= (A \ int(A ∪B)) ∪ (B \ int(A ∪B))

⊆ (A \ int(A)) ∪ (B \ int(B))

= pbd(A) ∪ pbd(B),

pbd(A ∩B) = (A ∩B) \ int(A ∩B)

= (A ∩B) \ (int(A) ∩ int(B))

= ((A ∩B) \ int(A)) ∪ ((A ∩B) \ int(B))

⊆ (A \ int(A)) ∪ (B \ int(B))

= pbd(A) ∪ pbd(B).

Lemma B.14. Let f : Rn → R be a function defined as f(x) = g(x−n) + c · xn for any g : Rn → R
and c ∈ R \ {0}, where x−n denotes (x1, . . . , xn−1). Then,

∣∣{x ∈Mn | f(x) = 0}
∣∣ ≤ |M|n−1.

Proof. Using the definition of f and c ̸= 0, we obtain the conclusion:

∣∣{x ∈Mn | f(x) = 0}
∣∣ = ∣∣{(x−n, xn) ∈Mn−1 ×M | f(x−n, xn) = 0}

∣∣
=
∑
x−n∈Mn−1

∣∣{xn ∈M | xn = −g(x−n)/c}
∣∣

≤
∑
x−n∈Mn−1 1 = |M|n−1.

APPENDIX B. APPENDIX FOR CHAPTER 5 113

B.2.2 Lemmas (Technical: Part 1)

Definition B.15. For a neural network zL : RW → RNL , define the incorrect set and the non-
differentiable set of zL over RW (not over Ω) as:

incR(zL) ≜ {w ∈ RW | DzL(w) ̸= ⊥, DADzL(w) ̸= DzL(w)},

ndfR(zL) ≜ {w ∈ RW | DzL(w) = ⊥}.

Lemma B.16. We have

ndfR(zL) ∪ incR(zL) ⊆
⋃
γ∈Γ

pbd(Rγ).

Proof. First, observe that for all γ ∈ Γ,

DADzL(w) = DzγL(w) = DzL(w) for all w ∈ int(Rγ),

where the first equality is by Lemma B.12, and the second equality is obtained by applying the following
fact to (zγL, zL, int(Rγ)): for any f, g : Rn → Rm and open U ⊆ Rn, if f is differentiable on U and
f = g on U , then g is differentiable on U and Df = Dg on U . Note that the previous fact is applicable
since int(Rγ) is open, zγL is differentiable (by Lemma B.9), and zγL = zL on int(Rγ) by Lemma B.11.

From the above equation, we have

⋃
γ∈Γ

int(Rγ) ⊆ RW \
(
ndfR(zL) ∪ incR(zL)

)
.

From this, we obtain the conclusion:

ndfR(zL) ∪ incR(zL) ⊆ RW \
⋃
γ∈Γ

int(Rγ)

=
(⋃
γ∈Γ

Rγ
)
\
(⋃
γ∈Γ

int(Rγ)
)
=
⋃
γ∈Γ

(
Rγ \ int(Rγ)

)
=
⋃
γ∈Γ

pbd(Rγ),

where the first equality is by Lemma B.8, and the last equality is by the definition of pbd(−).

Lemma B.17. We have

⋃
γ∈Γ

pbd(Rγ) ⊆
⋃

(l,i)∈Idx

⋃
c∈ndf(σl,i)

pbd
(
{w ∈ RW | yl,i(w) = c}

)
.

APPENDIX B. APPENDIX FOR CHAPTER 5 114

Proof. First, we have

⋃
γ∈Γ

pbd(Rγ) =
⋃
γ∈Γ

pbd
(⋂

(l,i)∈Idx

{w ∈ RW | yl,i(w) ∈ Iγ(l,i)l,i }
)

⊆
⋃
γ∈Γ

⋃
(l,i)∈Idx

pbd
(
{w ∈ RW | yl,i(w) ∈ Iγ(l,i)l,i }

)
=

⋃
(l,i)∈Idx

⋃
γ∈Γ

pbd
(
{w ∈ RW | yl,i(w) ∈ Iγ(l,i)l,i }

)
=

⋃
(l,i)∈Idx

⋃
k∈[Kl,i]

pbd
(
{w ∈ RW | yl,i(w) ∈ Ikl,i}

)
, (B.3)

where the first line uses the definition of Rγ , the second line uses Lemma B.13, and the last line
uses that {γ(l, i) | γ ∈ Γ} = [Kl,i] for all (l, i). Note that in the last two lines, we change the way
we count the proper boundary of all subregions: from per subregion to per activation neuron.

Next, for any (l, i) ∈ Idx and k ∈ [Kl,i], we have

pbd
(
{w ∈ RW | yl,i(w) ∈ Ikl,i}

)
= pbd

(
{w ∈ RW | yl,i(w) ∈ pbd(Ikl,i)} ∪ {w ∈ RW | yl,i(w) ∈ int(Ikl,i)}

)
⊆ pbd

(
{w ∈ RW | yl,i(w) ∈ pbd(Ikl,i)}

)
∪ pbd

(
{w ∈ RW | yl,i(w) ∈ int(Ikl,i)}

)
= pbd

(
{w ∈ RW | yl,i(w) ∈ pbd(Ikl,i)}

)
, (B.4)

where the third line is by Lemma B.13 and the last line is by the following: pbd(A) = ∅ for any open
A ⊆ Rn; and {w ∈ RW | yl,i(w) ∈ int(Ikl,i)} is open, because yl,i is continuous (by Lemma B.9) and
the inverse image of an open set by a continuous function is open.

Finally, combining the above results, we obtain the conclusion:

⋃
γ∈Γ

pbd(Rγ) ⊆
⋃

(l,i)∈Idx

⋃
k∈[Kl,i]

pbd
(
{w ∈ RW | yl,i(w) ∈ pbd(Ikl,i)}

)
⊆

⋃
(l,i)∈Idx

⋃
c∈ndf(σl,i)

pbd
(
{w ∈ RW | yl,i(w) = c}

)
,

where the first line uses Eqs. (B.3) and (B.4), and the second line uses
⋃
k∈[Kl,i]

pbd(Ikl,i) = ndf(σl,i)

(by Definition B.5)

APPENDIX B. APPENDIX FOR CHAPTER 5 115

B.2.3 Theorem 5.7 (Main Lemmas)

Lemma B.18. We have

ndfΩ(zL) ∪ incΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈ndf(σl,i)

{w ∈ Ω | yl,i(w) = c}.

Proof. We obtain the conclusion by chaining Lemma B.16, Lemma B.17, and the following: pbd(A) ⊆
A for any A ⊆ RW , and ndfΩ(zL) ∪ incΩ(zL) =

(
ndfR(zL) ∪ incR(zL)

)
∩ Ω.

Lemma B.19. Let (l, i) ∈ Idx and c ∈ R. Suppose that τl has bias parameters. Then, for
S = {w ∈ Ω | yl,i(w) = c},

|S| ≤ |M|W−1.

Proof. Suppose that τl has bias parameters and S is given as above. Then, by the definition of
having bias parameters, Wl ≥ Nl and there is τ ′l,i : RNl−1 × RWl−Nl → R for all i ∈ [Nl] such that

τl,i(x, (u, v)) = τ ′l,i(x, u) + vi for all (u, v) ∈ RWl−Nl × RNl .

From this, we have

yl,i(w) = τl,i(zl−1(w), wl) = τ ′l,i
(
zl−1(w1,1, . . . , wl−1,Wl−1

, 0, . . . , 0), (wl,1, . . . , wl,Wl−Nl
)
)
+ wl,Wl−Nl+i,

where we also use that zl−1 depends only on w1, . . . , wl−1. Note that the function f : RW → R
defined by f(w) ≜ yl,i(w)− c satisfies the preconditions of Lemma B.14 (after reordering the input
variables of f) due to the term wl,Wl−Nl+i. Using this, we obtain the desired result:

|S| = |{w ∈ Ω | f(w) = 0}| ≤ |M|W−1,

where the inequality is by Lemma B.14 applied to f .

B.2.4 Theorem 5.7 (Main Proof)

Theorem B.20. If zL has bias parameters, then

|ndfΩ(zL) ∪ incΩ(zL)|
|Ω|

≤ 1

|M|
∑

(l,i)∈Idx

|ndf(σl,i)|.

APPENDIX B. APPENDIX FOR CHAPTER 5 116

Proof. Observe that

ndfΩ(zL) ∪ incΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈Al,i

Bl,i(c), |Bl,i(c)| ≤ |M|W−1, (B.5)

where Al,i ≜ ndf(σl,i) and Bl,i(c) ≜ {w ∈ Ω | yl,i(w) = c}. Here the first equation is by Lemma B.18,
and the second equation is by Lemma B.19 (which is applicable since τl has bias parameters by
assumption). Combining the above observations, we obtain the conclusion:

|ndfΩ(zL) ∪ incΩ(zL)|
|Ω|

≤
∑

(l,i)∈Idx

∑
c∈Al,i

|Bl,i(c)|
|Ω|

≤
∑

(l,i)∈Idx

|ndf(σl,i)| ·
|M|W−1

|M|W
,

where the two inequalities use Eq. (B.5).

Remark B.21. Theorem 5.7 is a direct corollary of Theorem B.20 and Theorem 5.6 (which we
prove in §B.3).

B.2.5 Lemmas (Technical: Part 2)

Lemma B.22. Let l ∈ [L]. Suppose that τl : RNl−1 × RWl → RNl is well-structured biaffine. Then,
for every i ∈ [Nl], there is a partial map ϕl,i : [Wl]⇀ [Nl−1] and associated matrix M ∈ RNl−1×Wl

and constant d ∈ R such that

yl,i(w) = d+
∑

j∈dom(ϕl,i)

zl−1,ϕl,i(j)(w) ·Mϕl,i(j),j · wl,j

and Mϕl,i(j),j ̸= 0 for all j ∈ dom(ϕl,i).

Proof. Let l ∈ [L], τl : RNl−1 ×RWl → RNl be a well-structured biaffine function, and i ∈ [Nl]. Then,
there is a matrix M ∈ RNl−1×Wl and a constant d ∈ R such that τl,i(x, u) = xTMu+ d for all (x, u)
and each column of M has at most one non-zero entry. Define a partial map ϕl,i : [Wl]⇀ [Nl−1] as:

ϕl,i(j) ≜

i′ if Mi′,j ̸= 0 for some i′ ∈ [Nl−1]

undefined otherwise.

Here ϕl,i is well-defined because M−,j contains at most one non-zero entry for all j ∈ [Wl]. We claim
that ϕl,i, M , and d satisfy the conditions in this lemma. First, by the definition of ϕl,i, Mϕl,i(j),j ̸= 0

for all j ∈ dom(ϕl,i). Also, we have the desired equation as follows:

yl,i(w) = τl,i(zl−1(w), wl)

= d+ (zl−1(w)
TM) · wl

APPENDIX B. APPENDIX FOR CHAPTER 5 117

= d+ (v1, . . . , vWl−1
)T · wl

= d+
∑
j∈[Wl−1]

vj · wl,j

= d+
∑
j∈dom(ϕl,i)

zl−1,ϕl,i(j)(w) ·Mϕl,i(j),j · wl,j ,

where vj ∈ R is defined as vj ≜ zl−1,ϕl,i(j)(w) ·Mϕl,i(j),j if j ∈ dom(ϕl,i), and vj ≜ 0 otherwise. Here
the second line uses the definition of M and d, and the third and last lines use the definition of vj .
This concludes the proof.

Lemma B.23. For every (l, i) ∈ Idx and c ∈ R, let Al,i ⊆ R be any set and Bl,i(c) ⊆ RW be the set
{w ∈ RW | yl,i(w) = c}. Suppose that for every l ∈ [L], one of the following holds:

(a) τl has bias parameters, or

(b) τl is well-structured biaffine.

In the case of (b), let ϕl,i be the partial map described in Lemma B.22 for all i ∈ [Nl]. Then,

⋃
(l,i)∈Idx

⋃
c∈Al,i

pbd(Bl,i(c)) ⊆
⋃

(l,i)∈Idx

⋃
c′∈A′

l,i

B′
l,i(c

′),

where A′
l,i ⊆ R and B′

l,i(c
′) ⊆ RW are defined as

A′
l,i ≜

Al,i if τl+1 satisfies the condition (a) or l = L

Al,i ∪ bdz(σl,i) if τl+1 satisfies the condition (b),

B′
l,i(c

′) ≜

Bl,i(c′) if τl satisfies the condition (a)

Bl,i(c
′) ∩

⋃
j∈dom(ϕl,i)

{w ∈ RW | zl−1,ϕl,i(j)(w) ̸= 0} if τl satisfies the condition (b).

Proof. We claim that the following holds: for all l ∈ [L], i ∈ [Nl], and c ∈ A′
l,i,

pbd(Bl,i(c)) ⊆
⋃

(l′,i′)∈Idx

⋃
c′∈A′

l′,i′

B′
l′,i′(c

′). (B.6)

This claim implies the conclusion because Al,i ⊆ A′
l,i for all (l, i) ∈ Idx (by the definition of A′

l,i). We
prove the claim by induction on l.

Case l = 1. Let i ∈ [Nl] and c ∈ A′
l,i. We prove Eq. (B.6) by case analysis on τl.

Subcase 1: τl satisfies the condition (a). In this subcase, Eq. (B.6) holds since

pbd(Bl,i(c)) ⊆ Bl,i(c) = B′
l,i(c), c ∈ A′

l,i,

where the equality uses the definition of B′
l,i.

APPENDIX B. APPENDIX FOR CHAPTER 5 118

Subcase 2: τl satisfies the condition (b). In this subcase, we have

pbd(Bl,i(c)) = pbd
((
Bl,i(c) ∩

⋃
j∈dom(ϕl,i)

{w ∈ RW | zl−1,ϕl,i(j)(w) ̸= 0}
)

∪
(
Bl,i(c) ∩

⋂
j∈dom(ϕl,i)

{w ∈ RW | zl−1,ϕl,i(j)(w) = 0}
))

⊆ pbd
(
Bl,i(c) ∩

⋃
j∈dom(ϕl,i)

{w ∈ RW | zl−1,ϕl,i(j)(w) ̸= 0}
)

∪ pbd
(
Bl,i(c) ∩

⋂
j∈dom(ϕl,i)

{w ∈ RW | zl−1,ϕl,i(j)(w) = 0}
)
,

where the inclusion uses Lemma B.13. To prove Eq. (B.6), it suffices to show that the two terms
in the last two lines are contained in the RHS of Eq. (B.6). The first term does so because

pbd
(
Bl,i(c) ∩

⋃
j∈dom(ϕl,i)

{w ∈ RW | zl−1,ϕl,i(j)(w) ̸= 0}
)
= pbd(B′

l,i(c)) ⊆ B′
l,i(c), c ∈ A′

l,i,

where the equality is by the definition of B′
l,i and that τl does not have bias parameters. The

second term is also contained in the RHS of Eq. (B.6) as follows. Let S ≜
⋂
j∈dom(ϕl,i)

{w ∈ RW |
zl−1,ϕl,i(j)(w) = 0}, and M ∈ RNl−1×Wl and d ∈ R be a matrix and a constant associated with ϕl,i
that are described in Lemma B.22. Then,

Bl,i(c) ∩ S =

S if c = d

∅ if c ̸= d,

because w ∈ S implies yl,i(w) = d+
∑
j∈dom(ϕl,i)

zl−1,ϕl,i(j)(w) ·Mϕl,i(j),j · wl,j = d by Lemma B.22
(which is applicable since τl is well-structured biaffine by assumption). From this, we have

pbd
(
Bl,i(c) ∩

⋂
j∈dom(ϕl,i)

{w ∈ RW | zl−1,ϕl,i(j)(w) = 0}
)
= pbd(Bl,i(c) ∩ S) ⊆ pbd(S) ∪ pbd(∅).

Hence, it suffices to show that pbd(S) is contained in the RHS of Eq. (B.6) (since pbd(∅) = ∅). Using
l = 1, we obtain this:

pbd(S) ⊆ pbd(RW) ∪ pbd(∅) = ∅,

where the inclusion follows from S ∈ {RW , ∅} which holds because zl−1,ϕl,i(j) is a constant function
for all j ∈ [Nl−1] (by l = 1 and the assumption on z0).

Case l > 1. Let i ∈ [Nl] and c ∈ A′
l,i. We prove Eq. (B.6) in the exact same way as we did for the

case l = 1. Note that the above proof for the previous case (l = 1) applies directly to the current

APPENDIX B. APPENDIX FOR CHAPTER 5 119

case (l > 1), except for the following subclaim: if τl does not have bias parameters, then pbd(S) is
contained in the RHS of Eq. (B.6). This subclaim holds also for l > 1, as follows:

pbd(S) = pbd
(⋂
j∈dom(ϕl,i)

{w ∈ RW | zl−1,ϕl,i(j)(w) = 0}
)

⊆
⋃

j∈dom(ϕl,i)

pbd
(
{w ∈ RW | zl−1,ϕl,i(j)(w) = 0}

)
=

⋃
j∈dom(ϕl,i)

pbd
({
w ∈ RW

∣∣ yl−1,ϕl,i(j)(w) ∈ pbd
(
σ−1
l−1,ϕl,i(j)

(0)
)}

∪
{
w ∈ RW

∣∣ yl−1,ϕl,i(j)(w) ∈ int
(
σ−1
l−1,ϕl,i(j)

(0)
)})

⊆
⋃

j∈dom(ϕl,i)

pbd
({
w ∈ RW

∣∣ yl−1,ϕl,i(j)(w) ∈ pbd
(
σ−1
l−1,ϕl,i(j)

(0)
)})

∪ pbd
({
w ∈ RW

∣∣ yl−1,ϕl,i(j)(w) ∈ int
(
σ−1
l−1,ϕl,i(j)

(0)
)})

=
⋃

j∈dom(ϕl,i)

pbd
({
w ∈ RW

∣∣ yl−1,ϕl,i(j)(w) ∈ pbd
(
σ−1
l−1,ϕl,i(j)

(0)
)})

=
⋃

j∈dom(ϕl,i)

⋃
b∈bdz(σl−1,ϕl,i(j)

)

pbd(Bl−1,ϕl,i(j)(b)),

pbd(Bl−1,ϕl,i(j)(b)) ⊆
⋃

(l′,i′)∈Idx

⋃
c′∈A′

l′,i′

B′
l′,i′(c

′) for all j ∈ dom(ϕl,i) and b ∈ bdz(σl−1,ϕl,i(j)).

Here the first and second inclusions use Lemma B.13, and the second last equality uses that yl−1,ϕl,i(j)

is continuous (by Lemma B.9). The last equality uses pbd(σ−1
l−1,ϕl,i(j)

(0)) = bdz(σl−1,ϕl,i(j)) (which
holds since σl−1,ϕl,i(j) is continuous and the preimage of a closed set by a continuous map is
closed), and the definition of Bl−1,ϕl,i(j). The last inclusion is by the induction hypothesis applied
to (l − 1, j, b) for j ∈ dom(ϕl,i) and b ∈ bdz(σl−1,ϕl,i(j)), together with dom(ϕl,i) ⊆ [Nl−1] and
bdz(σl−1,ϕl,i(j)) ⊆ A′

l−1,ϕl,i(j)
(which holds by the definition of A′

l−1,ϕl,i(j)
with l− 1 ̸= L and that τl

does not have bias parameters). Hence, Eq. (B.6) holds for l > 1, and this concludes the proof.

B.2.6 Theorem 5.12 (Main Lemmas)

Lemma B.24. For every l ∈ [L], suppose that τl satisfies either the condition (a) or (b) in
Lemma B.23. Then,

ndfΩ(zL) ∪ incΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈Al,i

Bl,i(c),

APPENDIX B. APPENDIX FOR CHAPTER 5 120

where Al,i ⊆ R and Bl,i(c) ⊆ Ω are defined as

Al,i ≜

ndf(σl,i) if τl+1 satisfies the condition (a) or l = L

ndf(σl,i) ∪ bdz(σl,i) if τl+1 satisfies the condition (b),

Bl,i(c) ≜

{w ∈ Ω | yl,i(w) = c} if τl satisfies the condition (a)

{w ∈ Ω | yl,i(w) = c ∧
∨
j∈dom(ϕl,i)

zl−1,ϕl,i(j)(w) ̸= 0} if τl satisfies the condition (b).

Proof. We obtain the conclusion by chaining Lemma B.16, Lemma B.17, Lemma B.23 (which is
applicable by assumption), and ndfΩ(zL) ∪ incΩ(zL) =

(
ndfR(zL) ∪ incR(zL)

)
∩ Ω.

Lemma B.25. Let (l, i) ∈ Idx and c ∈ R. Suppose that τl is well-structured biaffine. Consider
S = {w ∈ Ω | yl,i(w) = c ∧

∨
j∈dom(ϕl,i)

zl−1,ϕl,i(j)(w) ̸= 0}, where ϕl,i denotes the partial map
described in Lemma B.22. Then,

|S| ≤ |M|W−1.

Proof. Suppose that τl is well-structured biaffine, and S is given as above. We make three observations.
First,

S =
{
(u, v) ∈MW ′

×MW−W ′ ∣∣ (∃j ∈ dom(ϕl,i). zl−1,ϕl,i(j)(u, 0, . . . , 0) ̸= 0
)
∧ yl,i(u, v) = c}

=
⋃
u∈U

⋃
v∈MW−W ′

{(u, v) | yl,i(u, v) = c}, (B.7)

where the first line uses W ′ ≜ W1 + · · · +Wl−1 and that zl−1 depends only on w1, . . . , wl−1, and
the second line uses U ≜ {u ∈ MW ′ | ∃j ∈ dom(ϕl,i). zl−1,ϕl,i(j)(u, 0, . . . , 0) ̸= 0}. Second, by
Lemma B.22 (which is applicable since τl is well-structured biaffine by assumption), there are
M ∈ RNl−1×Wl and d ∈ R such that Mϕl,i(j),j ̸= 0 for all j ∈ ϕl,i, and

yl,i(u, v) = d+
∑

j∈dom(ϕl,i)

zl−1,ϕl,i(j)(u, v) ·Mϕl,i(j),j · vj

= d+
∑

j∈dom(ϕl,i)

zl−1,ϕl,i(j)(u, 0, . . . , 0) ·Mϕl,i(j),j · vj (B.8)

for all (u, v) ∈ RW ′ × RW−W ′
, where the second equality uses that zl−1 depends only on u. Third,

for any u ∈ U , the function fu : RW−W ′ → R defined by fu(v) ≜ yl,i(u, v) − c satisfies the
preconditions of Lemma B.14 (after reordering the input variables of fu) due to the following:
zl−1,ϕl,i(j)(u, 0, . . . , 0) ̸= 0 for some j ∈ dom(ϕl,i) since u ∈ U ; and the coefficient of vj in fu(v) is
zl−1,ϕl,i(j)(u, 0, . . . , 0) ·Mϕl,i(j),j ̸= 0 by Eq. (B.8) and Mϕl,i(j),j ̸= 0.

APPENDIX B. APPENDIX FOR CHAPTER 5 121

By combining the above observations, we obtain the conclusion:

|S| =
∣∣∣ ⋃
u∈U

⋃
v∈MW−W ′

{(u, v) | yl,i(u, v) = c}
∣∣∣

=
∑
u∈U

∣∣∣ ⋃
v∈MW−W ′

{(u, v) | yl,i(u, v) = c}
∣∣∣

=
∑
u∈U

∣∣{v ∈MW−W ′
| fu(v) = 0}

∣∣
≤ |M|W

′
· |M|W−W ′−1 = |M|W−1,

where the first line uses Eq. (B.7), the third line uses the definition of fu, and the last line uses
Lemma B.14 applied to fu.

B.2.7 Theorem 5.12 (Main Proof)

Theorem 5.12. If τl either has bias parameters or is well-structured biaffine for all l ∈ [L], then

|ndfΩ(zL) ∪ incΩ(zL)|
|Ω|

≤ 1

|M|
∑

(l,i)∈Idx

∣∣∣ndf(σl,i) ∪ (bdz(σl,i) ∩ Sl+1

)∣∣∣,
where Sl ⊆ R is defined by

Sl ≜

∅ if l > L or τl has bias parameters

R otherwise.

Proof. Observe that

ndfΩ(zL) ∪ incΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈Al,i

Bl,i(c), |Bl,i(c)| ≤ |M|W−1, (B.9)

where Al,i ⊆ R and Bl,i(c) ⊆ Ω are defined as in Lemma B.24. Here the first equation is by
Lemma B.24 and the second equation is by Lemmas B.19 and B.25, where these lemmas are applica-
ble by the definition of Bl,i(c) and because τl either has bias parameters or is well-structured biaffine
(both by assumption). Observe further that

Al,i = ndf(σl,i) ∪ (bdz(σl,i) ∩ Sl+1) (B.10)

by the definition of Al,i and Sl, where Sl is defined in the statement of this theorem. Combining

APPENDIX B. APPENDIX FOR CHAPTER 5 122

the above observations, we obtain the conclusion:

|ndfΩ(zL) ∪ incΩ(zL)|
|Ω|

≤
∑

(l,i)∈Idx

∑
c∈Al,i

|Bl,i(c)|
|Ω|

≤
∑

(l,i)∈Idx

∣∣ndf(σl,i) ∩ (bdz(σl,i) ∩ Sl+1)
∣∣ · |M|W−1

|M|W
,

where the first inequality is by Eq. (B.9) and the second inequality is by Eqs. (B.9) and (B.10).

B.3 Upper Bounds on |incΩ(zL)|

In the rest of the appendix, we use the following notation. For a vector v ∈ Rn, va:b denotes the
vector (va, . . . , vb). For a matrix M ∈ Rn×m, Ma:b, c:d denotes the matrix (Mi,j)a≤i≤b, c≤j≤d; Ma:b, c

denotes the vector (Ma,c, . . . ,Mb,c); and M∗, c:d denotes M1:n, c:d (and similarly for Ma:b, ∗ and M∗, c).

B.3.1 Lemmas (Basic)

Lemma B.26. Let n ∈ N. For each j ∈ [n], let fj : R → R and Aj be a finite cover of R
(i.e.,

⋃
A∈Aj

A = R and |Aj | < ∞). Consider x ∈ R. Then, there is {xi}i∈N ⊆ (x,∞) such that
limi→∞xi = x and for all j ∈ [n],

{fj(xi) | i ∈ N} ⊆ A for some A ∈ Aj .

Further, there is {x′i}i∈N ⊆ (−∞, x) that satisfies the same conditions stated above.

Proof. Consider fj , Aj , and x stated above (j ∈ [n]). Let xi ≜ x+ 1/i for i ∈ N. Then,

{xi}i∈N ⊆ (x,∞), lim
i→∞

xi = x. (B.11)

For each (i, j) ∈ N× [n], let Ai,j ∈ Aj be the set satisfying fj(xi) ∈ Ai,j , and Ai ≜ (Ai,1, . . . , Ai,n) ∈
A1×· · ·×An, where Ai,j always exists since Aj is a cover of R. Observe that since |A1×· · ·×An| <∞
(by |Aj | <∞ and n <∞) and |N| =∞, there must exist {ki}i∈N ⊆ N such that

k1 < k2 < · · · , Ak1 = Ak2 = · · · . (B.12)

We claim that {xki}i∈N satisfies the desired conditions. First, by Eq. (B.11) and limi→∞ki =∞ (due to
Eq. (B.12)), {xki}i∈N ⊆ (x,∞) and limi→∞xki = x. Second, by Eq. (B.12), {fj(xki) | i ∈ N} ⊆ Ak1,j
for all j ∈ [n]. Hence, the claim holds and this concludes the proof.

Lemma B.27. Let f, g : R→ R and x ∈ R. Suppose that f and g are differentiable at x, and there
is {xi}i∈N ⊆ R \ {x} such that limi→∞xi = x and f(xi) = g(xi) for all i ∈ N. Then,

Df(x) = Dg(x).

APPENDIX B. APPENDIX FOR CHAPTER 5 123

Proof. Consider f, g : R→ R, x ∈ R, and {xi}i∈N ⊆ R \ {x} stated above. Then,

f(x) = lim
i→∞

f(xi) = lim
i→∞

g(xi) = g(x),

where the first and third equalities are by that f and g are continuous at x (as they are differentiable
at x) and xi → x, and the second equality by that f(xi) = g(xi) for all i ∈ N. Using this, we obtain

Df(x) = lim
i→∞

f(xi)− f(x)
xi − x

= lim
i→∞

g(xi)− g(x)
xi − x

= Dg(x),

where the first and third equalities are by that f and g are differentiable at x, xi → x, and xi ≠ x for
all i ∈ N, and the second equality by that f(xi) = g(xi) for all i ∈ N. This completes the proof.

B.3.2 Lemmas (Technical: Part 1)

Definition B.28. Let γ ∈ Γ. Define Rγcl ⊆ RW as

Rγcl ≜
⋂

(l,i)∈Idx

{w ∈ RW | yl,i(w) ∈ cl(Iγ(l,i)l,i)}.

Note that when defining Rγ in Definition B.7, we used Iγ(l,i)l,i instead of cl(Iγ(l,i)l,i).

Definition B.29. For γ ∈ Γ and l ∈ [L], define

τ̃ l : RNl−1 × RWl+Wl+1+···+WL → RNl × RWl+1+···+WL ,

σ̃l, σ̃
γ
l : RNl × RWl+1+···+WL → RNl × RWl+1+···+WL ,

z̃l, z̃
γ
l : RNl−1 × RWl+Wl+1+···+WL → RNL

as follows:

τ̃ l(x, u) ≜
(
τl(x, u1, . . . , uWl

), uWl+1, . . . , uWl+Wl+1+···+WL

)
,

σ̃l(x, u) ≜ (σl(x), u), σ̃γl (x, u) ≜ (σγl (x), u),

z̃l(x, u) ≜ (z̃l+1 ◦ σ̃l ◦ τ̃ l)(x, u) z̃γl (x, u) ≜ (z̃γl+1 ◦ σ̃
γ
l ◦ τ̃ l)(x, u)

where z̃L+1, z̃
γ
L+1 : RNL → RNL are defined as the identity function.

Lemma B.30. For all l ∈ [L] and γ ∈ Γ, z̃l is continuous and z̃γl is differentiable.

Proof. Since the proof is similar to that of Lemma B.9, we omit it.

Lemma B.31. Let γ ∈ Γ, w = (w1, . . . , wL) ∈ Rγcl, l ∈ [L], and x = (zl−1(w), wl, . . . , wL). Then,

τ̃ l(x) =
(
yl(w), wl+1, . . . , wL

)
, (σ̃γl ◦ τ̃ l)(x) =

(
zl(w), wl+1, . . . , wL

)
.

APPENDIX B. APPENDIX FOR CHAPTER 5 124

Proof. By the definition of τ̃ l and σ̃γl , we get the conclusion:

τ̃ l(x) =
(
τl(zl−1(w), wl), wl+1, . . . , wL

)
=
(
yl(w), wl+1, . . . , wL

)
,

(σ̃γl ◦ τ̃ l)(x) =
(
σγl (yl(w)), wl+1, . . . , wL

)
=
(
zl(w), wl+1, . . . , wL

)
,

where the last equality is by the observation that σγ(l,i)l,i (yl,i(w)) = σl,i(yl,i(w)) for all i ∈ [Nl]. Here
the observation holds because σγ(l,i)l,i and σl,i coincide on cl(Iγ(l,i)l,i) (as they coincide on Iγ(l,i)l,i and
are both continuous) and yl,i(w) ∈ cl(Iγ(l,i)l,i) (by w ∈ Rγcl).

Lemma B.32. Let γ ∈ Γ and l ∈ [L]. Then, for all w = (w1, . . . , wL) ∈ RW ,

z̃l
(
zl−1(w), wl, . . . , wL

)
= zL(w), z̃γl

(
zγl−1(w), wl, . . . , wL

)
= zγL(w).

Proof. Let γ ∈ Γ. The proof is by induction on l ∈ [L] (starting from l = L+ 1).

Case l = L+ 1. Since z̃L+1 and z̃γL+1 are identity functions, the desired equations clearly hold.

Case l < L+ 1. We obtain the first desired equation as follows:

z̃l
(
zl−1(w), wl, . . . , wL

)
= (z̃l+1 ◦ σ̃l ◦ τ̃ l)

(
zl−1(w), wl, . . . , wL

)
= (z̃l+1 ◦ σ̃l)

(
τl(zl−1(w), wl), wl+1, . . . , wL

)
= (z̃l+1 ◦ σ̃l)

(
yl(w), wl+1, . . . , wL

)
= z̃l+1

(
σl(yl(w)), wl+1, . . . , wL

)
= z̃l+1

(
zl(w), wl+1, . . . , wL

)
= zL(w),

where all but last lines use the definition of z̃l, τ̃ l, σ̃l, yl, and zl, and the last line uses induction
hypothesis on l+1. We can obtain the second desired equation similarly, by using induction hypothesis
on l + 1 and the definition of z̃γl , τ̃ l, σ̃

γ
l , y

γ
l , and zγl .

Lemma B.33. Let γ ∈ Γ and l ∈ [L]. Then, for all w = (w1, . . . , wL) ∈ Rγ ,

z̃l
(
zl−1(w), wl, . . . , wL

)
= z̃γl

(
zl−1(w), wl, . . . , wL

)
.

Proof. By Lemma B.32, we have the conclusion as follows:

z̃l(zl−1(w), wl, . . . , wL) = zL(w) = zγL(w) = z̃γl (zl−1(w), wl, . . . , wL),

where the second equality is by Lemma B.11 with w ∈ Rγ .

APPENDIX B. APPENDIX FOR CHAPTER 5 125

B.3.3 Lemmas (Technical: Part 2)

Definition B.34. Let f : Rn → Rm and i ∈ [n]. Define

Dif : Rn → Rm ∪ {⊥}

be the partial derivative of f with respect to its i-th argument, where ⊥ denotes non-differentiability.
Hence, for any x ∈ Rn and i ∈ [n], Df(x) ̸= ⊥ implies Dif(x) = (Df(x))1:m, i.

Lemma B.35. Let l ∈ [L], w = (w1, . . . , wL) ∈ RW , and j ∈ [W] with j > W<l, where
W<l ≜W1 + · · ·+Wl−1. Suppose that z̃l is differentiable with respect to its (Nl−1 + (j −W<l))-th
argument at (zl−1(w), wl, . . . , wL), i.e., DNl−1+(j−W<l)z̃l(zl−1(w), wl, . . . , wL) ̸= ⊥. Then, there are
γ ∈ Γ and {tn}n∈N ⊆ (vj ,∞) satisfying the following conditions:

• w ∈ Rγcl,

• DNl−1+(j−W<l)z̃l
(
zl−1(w), wl, . . . , wL

)
= DNl−1+(j−W<l)z̃

γ
l

(
zl−1(w), wl, . . . , wL

)
,

• limn→∞ tn = vj, and

• (v1, . . . , vj−1, tn, vj+1, . . . , vW) ∈ Rγ for all n ∈ N,

where (v1, . . . , vW) ≜ w denotes the scalar values of w (recall that wl ∈ RWl is not scalar by definition).
Further, there are γ′ ∈ Γ and {t′n}i∈N ⊆ (−∞, vj) that satisfy the same conditions stated above.

Proof. Consider l ∈ [L], w ∈ RW , and j ∈ [W] stated above. We show the existence of γ and {tn}n∈N,
and will omit the proof of the existence of γ′ and {t′n}n∈N since the proof is almost identical.

First, we show that there is {tn}n∈N ⊆ (vj ,∞) such that limn→∞ tn = vj and

{
(v1, . . . , vj−1, tn, vj+1, . . . , vW)

∣∣ n ∈ N
}
⊆ Rγ for some γ ∈ Γ. (B.13)

By the definition of Rγ , Eq. (B.13) is equivalent to the following: for all (l, i) ∈ Idx,

{
fl,i(tn)

∣∣ n ∈ N
}
⊆ Ikl,i for some k ∈ [Kl,i],

where fl,i : R→ R is defined as fl,i(t) ≜ yl,i(v1, . . . , vj−1, t, vj+1, . . . , vW). Note that Lemma B.26 is
applicable to (fl,i, {Ikl,i}k∈[Kl,i], vj), since {Ikl,i}k∈[Kl,i] is a finite cover of R for all (l, i). Hence, by the
lemma, there is {tn}n∈N ⊆ (vj ,∞) such that limn∈∞ tn = vj and Eq. (B.13) holds with some γ ∈ Γ.

Next, we show that w ∈ Rγcl. By the definition of Rγcl, this is equivalent to yl,i(w) ∈ cl(Iγ(l,i)l,i)

for all (l, i) ∈ Idx. To show this, let (l, i) ∈ Idx. By Eq. (B.13) and the definition of Rγ , we have

{
yl,i(v1, . . . , vj−1, tn, vj+1, . . . , vW)

∣∣ n ∈ N
}
⊆ Iγ(l,i)l,i . (B.14)

APPENDIX B. APPENDIX FOR CHAPTER 5 126

Using this, we obtain

yl,i(w) = lim
n→∞

yl,i(v1, . . . , vj−1, tn, vj+1, . . . , vW) ∈ cl(Iγ(l,i)l,i),

where the equality is from the continuity of yl,i (by Lemma B.9) and limn→∞ tn = vj (by the above),
and the inclusion is by Eq. (B.14). Hence, we have w ∈ Rγcl as desired.

Lastly, we show thatDNl−1+(j−W<l)z̃l(zl−1(w), wl, . . . , wL) = DNl−1+(j−W<l)z̃
γ
l (zl−1(w), wl, . . . , wL).

To do so, define g, gγ : R→ RNL as:

g(t) ≜ z̃l
(
zl−1(w), vW<l+1, . . . , vj−1, t, vj+1, . . . , vW

)
,

gγ(t) ≜ z̃γl
(
zl−1(w), vW<l+1, . . . , vj−1, t, vj+1, . . . , vW

)
.

Using them, we obtain the desired equation as follows:

DNl−1+(j−W<l)z̃l
(
zl−1(w), wl, . . . , wL

)
= Dg(vj) = Dgγ(vj) = DNl−1+(j−W<l)z̃

γ
l

(
zl−1(w), wl, . . . , wL

)
,

where the first and third equalities are by the definition of partial derivatives, and the second equality
comes from Lemma B.27 applied to (g, gγ , vj , {tn}n∈N). Here Lemma B.27 is applicable due to
the following: g is differentiable at vj (as Dg(vj) = DNl−1+(j−W<l)z̃l(zl−1(w), wl, . . . , wL) ̸= ⊥ by
assumption); gγ is differentiable (as z̃γl is differentiable by Lemma B.30); limn→∞ tn = vj with
tn ̸= vj (by the above); and g(tn) = gγ(tn) for all n ∈ N because

g(tn) = z̃l
(
zl−1(w), vW<l+1, . . . , vj−1, tn, vj+1, . . . , vW

)
= z̃l

(
zl−1(v1, . . . , vj−1, tn, vj+1, . . . , vW), vW<l+1, . . . , vj−1, tn, vj+1, . . . , vW

)
= z̃γl

(
zl−1(v1, . . . , vj−1, tn, vj+1, . . . , vW), vW<l+1, . . . , vj−1, tn, vj+1, . . . , vW

)
= z̃γl

(
zl−1(w), vW<l+1, . . . , vj−1, tn, vj+1, . . . , vW

)
= gγ(tn),

where the second and fourth lines use that zl−1 depends only on its first W<l arguments and j > W<l,
and the third line is by Lemma B.33 and Eq. (B.13). This completes the proof.

Lemma B.36. Let w = (w1, . . . , wL) ∈ RW and (l, i) ∈ Idx. Suppose the following hold: zL is
differentiable at w; τl has bias parameters; σl,i is not differentiable at yl,i(w); and for all γ1, γ2 ∈ Γ

with w ∈ Rγ1cl ∩R
γ2
cl , Diz̃

γ1
l+1(zl(w), wl+1, . . . , wL) = Diz̃

γ2
l+1(zl(w), wl+1, . . . , wL). Then, for all γ ∈ Γ

with w ∈ Rγcl,

Diz̃
γ
l+1

(
zl(w), wl+1, . . . , wL

)
= (0, . . . , 0).

APPENDIX B. APPENDIX FOR CHAPTER 5 127

Proof. Consider w ∈ RW and (l, i) ∈ Idx satisfying the conditions in the lemma. First, we show that

DNl−1+(Wl−Nl+i)z̃
γ
l (zl−1(w), wl, . . . , wL) = Diz̃

γ
l+1(zl(w), wl+1, . . . , wL) ·Dσγ(l,i)l,i (yl,i(w)),

for any γ ∈ Γ with w ∈ Rγcl. To this end, we derive two derivatives:

(
Dτ̃ l(x)

)
∗, Nl−1+(Wl−Nl+i)

and
(
Dσ̃γl (x

′)
)
∗, i.

Since τl has bias parameters (by assumption), and by the definitions of τ̃ l and σ̃γl , we have the
following: for all γ ∈ Γ and i′ ∈ [Nl +Wl+1 + · · ·+WL], there is τ ′l,i′ : RNl−1+(Wl−Nl) → R such that

τ̃ l,i′(x) =

τ ′l,i′(x1, . . . , xNl−1+(Wl−Nl)) + xNl−1+(Wl−Nl+i′)

xNl−1+(Wl−Nl+i′)

if i′ ≤ Nl
if i′ > Nl,

σ̃γl,i′(x
′) =

σ
γ(l,i′)
l,i′ (x′i′)

x′i′

if i′ ≤ Nl
if i′ > Nl,

for all x ∈ RNl−1+Wl+···+WL and x′ ∈ RNl+Wl+1+···+WL . From this and i ∈ [Nl], we obtain two
derivatives:

(
Dτ̃ l(x)

)
∗, Nl−1+(Wl−Nl+i)

= ei,
(
Dσ̃γl (x

′)
)
∗, i = ei ·Dσγ(l,i)l,i (x′i), (B.15)

where ei ∈ RNl+Wl+1+···+WL denotes the standard unit vector with 1 at the i-th coordinate,
Dσ

γ(l,i)
l,i (x′i) is considered as a scalar value, and both equalities are by i ∈ [Nl]. Using this, we

obtain the following equation for x ≜ (zl−1(w), wl, . . . , wL) and for any γ ∈ Γ with w ∈ Rγcl:

DNl−1+(Wl−Nl+i)z̃
γ
l (x) =

(
Dz̃γl (x)

)
∗, Nl−1+(Wl−Nl+i)

=
(
Dz̃γl+1((σ̃

γ
l ◦ τ̃ l)(x)) ·Dσ̃

γ
l (τ̃ l(x)) ·Dτ̃ l(x)

)
∗, Nl−1+(Wl−Nl+i)

= Dz̃γl+1((σ̃
γ
l ◦ τ̃ l)(x)) ·Dσ̃

γ
l (τ̃ l(x)) ·

(
Dτ̃ l(x)

)
∗, Nl−1+(Wl−Nl+i)

= Dz̃γl+1((σ̃
γ
l ◦ τ̃ l)(x)) ·

(
Dσ̃γl (τ̃ l(x))

)
∗, i

=
(
Dz̃γl+1((σ̃

γ
l ◦ τ̃ l)(x))

)
∗, i
·Dσγ(l,i)l,i (τ̃ l,i(x))

= Diz̃
γ
l+1(zl(w), wl+1, . . . , wL) ·Dσγ(l,i)l,i (yl,i(w)), (B.16)

where the first two lines use z̃γl = z̃γl+1 ◦ σ̃
γ
l ◦ τ̃ l and that z̃γl , z̃

γ
l+1, σ̃

γ
l , and τ̃ l are differentiable (by

Lemma B.30), the fourth and fifth lines use Eq. (B.15), and the last line uses Lemma B.31 with w ∈ Rγcl.
Next, we derive a sufficient condition for the conclusion by using Eq. (B.16) and applying

APPENDIX B. APPENDIX FOR CHAPTER 5 128

Lemma B.35 to (l, w, j) with j ≜ W<l + (Wl −Nl + i), where W<l ≜ W1 + · · ·+Wl−1. Note that
the lemma is applicable here due to the following: W<l < j ≤W , because Wl ≥ Nl (as τl has bias
parameters by assumption) and 1 ≤ i ≤ Nl (as (l, i) ∈ Idx); and z̃l is differentiable with respect to
its (Nl−1 + (Wl −Nl + i))-th argument at (zl−1(w), wl . . . , wL), because

DNl−1+(Wl−Nl+i)z̃l(zl−1(w), wl, . . . , wL) = DW<l+(Wl−Nl+i)zL(w) ̸= ⊥

where the equality follows from that zL(w′) = z̃l(zl−1(w
′
1, . . . , w

′
l−1, 0, . . . , 0), w

′
l, . . . , w

′
L) for all

w′ ∈ RW by Lemma B.32, and the inequality from that zL is differentiable at w (by assumption).
Let (v1, . . . , vW) ≜ w be the scalar values of w. By applying Lemma B.35 to (l, w, j), it holds that
there are γ+, γ− ∈ Γ, {t+n }n∈N ⊆ (vj ,∞), and {t−n }n∈N ⊆ (−∞, vj) such that w ∈ Rγ+cl ∩R

γ−
cl and

DNl−1+(Wl−Nl+i)z̃
γ+
l (x) = DNl−1+(Wl−Nl+i)z̃

γ−
l (x),

{(v1, . . . , vj−1, t
+
n , vj+1, . . . , vW)}n∈N ⊆ Rγ+ , lim

n→∞
t+n = vj , (B.17)

{(v1, . . . , vj−1, t
−
n , vj+1, . . . , vW)}n∈N ⊆ Rγ− , lim

n→∞
t−n = vj , (B.18)

where x ≜ (zl−1(w), wl, . . . , wL). By the first line and Eq. (B.16) with w ∈ Rγ+cl ∩R
γ−
cl , we have

Diz̃
γ+
l+1(x

′) ·Dσγ+(l,i)
l,i (yl,i(w)) = Diz̃

γ−
l+1(x

′) ·Dσγ−(l,i)
l,i (yl,i(w)),

where x′ ≜ (zl(w), wl+1, . . . , wL). From this, and since Diz̃
γ
l+1(x

′) is the same for all γ ∈ Γ with
w ∈ Rγcl (by assumption), we immediately obtain the conclusion (i.e., Diz̃

γ
l+1(x

′) = (0, . . . , 0) for all
γ ∈ Γ with w ∈ Rγcl) if the following holds:

Dσ
γ+(l,i)
l,i (yl,i(w)) ̸= Dσ

γ−(l,i)
l,i (yl,i(w)). (B.19)

Hence, to prove the conclusion, it suffices to show Eq. (B.19).
Finally, we prove Eq. (B.19) in two steps. We first show that there are δ+, δ− > 0 such that

(
yl,i(w), yl,i(w) + δ+

)
⊆ Iγ+(l,i)

l,i ,
(
yl,i(w)− δ−, yl,i(w)

)
⊆ Iγ+(l,i)

l,i . (B.20)

Fix j ≜W<l + (Wl −Nl + i) and (v1, . . . , vW) ≜ w as above. Observe that we have

yl,i(v1, . . . , vj−1, t
+
n , vj+1, . . . , vW) ∈ Iγ+(l,i)

l,i for all n ∈ N,

yl,i(v1, . . . , vj−1, t
+
n , vj+1, . . . , vW) > yl,i(v1, . . . , vW) = yl,i(w) for all n ∈ N,

lim
n→∞

yl,i(v1, . . . , vj−1, t
+
n , vj+1, . . . , vW) = yl,i(v1, . . . , vW) = yl,i(w),

where the first line uses Eq. (B.17), the third line uses Eq. (B.17) and that yl,i is continuous (by

APPENDIX B. APPENDIX FOR CHAPTER 5 129

Lemma B.9), and the second line uses the following and that t+n > vj for all n ∈ N: for all t ∈ R,

yl,i(v1, . . . , vj−1, t, vj+1, . . . , vW) = τ ′l,i(zl−1(w), vW<l+1, . . . , vW<l+(Wl−Nl)) + t,

which holds since zl−1 depends only on its first W<l arguments, τl has bias parameters, and j =

W<l+(Wl−Nl+i) > W<l. By these results, and since Iγ+(l,i)
l,i is an interval, there is δ+ > 0 satisfying

Eq. (B.20); similarly, there is δ− > 0 satisfying Eq. (B.20), due to Eq. (B.18) and t−n < vj for all n.
We next show that Eq. (B.19) indeed holds. By Eq. (B.20) and σl,i = σkl,i on Ikl,i for all k, we have

σl,i = σ
γ+(l,i)
l,i on

[
yl,i(w), yl,i(w) + δ+

)
, σl,i = σ

γ−(l,i)
l,i on

(
yl,i(w)− δ−, yl,i(w)

]
,

where the inclusion of yl,i(w) is by that σl,i and σkl,i are continuous for all k. From this, we have

Dσ
γ+(l,i)
l,i

(
yl,i(w)

)
= lim
h→0+

1

h

(
σl,i(yl,i(w) + h)− σl,i(yl,i(w))

)
,

Dσ
γ−(l,i)
l,i

(
yl,i(w)

)
= lim
h→0−

1

h

(
σl,i(yl,i(w) + h)− σl,i(yl,i(w))

)
.

Suppose here that Eq. (B.19) does not hold, i.e., Dσγ+(l,i)
l,i (yl,i(w)) = Dσ

γ−(l,i)
l,i (yl,i(w)). Then,

lim
h→0

1

h

(
σl,i(yl,i(w) + h)− σl,i(yl,i(w))

)
= Dσ

γ+(l,i)
l,i

(
yl,i(w)

)
̸= ⊥,

where the inequality is by that σγ+(l,i)
l,i is differentiable. This implies Dσl,i

(
yl,i(w)

)
≠ ⊥, which contra-

dicts to that σl,i is non-differentiable at yl,i(w) (by assumption). Hence, Eq. (B.19) should hold.

B.3.4 Theorem 5.6 (Main Lemmas)

Lemma B.37. Let w ∈ RW and j ∈ [W]. Suppose that zL is differentiable with respect to its j-th
argument at w (i.e., DjzL(w) ̸= ⊥). Then, there is γ ∈ Γ such that w ∈ Rγcl and

DjzL(w) = Djz
γ
L(w).

Proof. Consider w ∈ RW and j ∈ [W] stated above. First, by Lemma B.32, and since z0 = zγ0 is
a constant function, we have zL(w′) = z̃1(z0(0, . . . , 0), w

′) and zγL(w
′) = z̃γ1(z0(0, . . . , 0), w

′) for all
w′ ∈ RW and γ ∈ Γ. From this, we have

DjzL(w) = DN0+j z̃1
(
z0(0, . . . , 0), w

)
= DN0+j z̃1

(
z0(w), w

)
,

Djz
γ
L(w) = DN0+j z̃

γ
1

(
z0(0, . . . , 0), w

)
= DN0+j z̃

γ
1

(
z0(w), w

)
for all γ ∈ Γ,

where the second and fourth equalities follow from that z0 is a constant function. Second, by

APPENDIX B. APPENDIX FOR CHAPTER 5 130

Lemma B.35 applied to (l = 1, w, j), there is γ ∈ Γ such that

w ∈ Rγcl, DN0+j z̃1
(
z0(w), w

)
= DN0+j z̃

γ
1

(
z0(w), w

)
.

Here Lemma B.35 is applicable, because DN0+j z̃1(z0(w), w) = DjzL(w) ̸= ⊥ (by the above and by
assumption). From these results, there is γ ∈ Γ such that w ∈ Rγcl and DjzL(w) = Djz

γ
L(w).

Lemma B.38. Let w ∈ RW . Suppose that the following hold:

• zL is differentiable at w.

• For all l ∈ [L], if τl does not have bias parameters, then σl,i is differentiable at yl,i(w) for all
i ∈ [Nl].

Then, for all γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R
γ2
cl ,

Dzγ1L (w) = Dzγ2L (w).

Proof. Let w ∈ RW . Consider the following claim: for all l ∈ [L+1] and γ1, γ2 ∈ Γ, if w ∈ Rγ1cl ∩R
γ2
cl ,

then

Dz̃γ1l
(
zl−1(w), wl, . . . , wL

)
= Dz̃γ2l

(
zl−1(w), wl, . . . , wL

)
.

Note that the claim implies the conclusion: for any γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R
γ2
cl ,

Dzγ1L (w) =
(
Dz̃γ11 (z0(0, . . . , 0), w)

)
∗, N0+1:N0+W

=
(
Dz̃γ21 (z0(0, . . . , 0), w)

)
∗, N0+1:N0+W

= Dzγ2L (w),

where the first and third equalities follow from that zγL(w
′) = z̃γ1(z0(0, . . . , 0), w

′) for all γ ∈ Γ and
w′ ∈ RW (by Lemma B.32 and since zγ0 = z0 is a constant function), and z̃γ1 is differentiable for all
γ ∈ Γ (by Lemma B.30); and the second equality is by the claim for l = 1 and that z0 is a constant
function. We prove the claim by induction on l (starting from L+ 1).

Case l = L+ 1. The claim clearly holds, since z̃γL+1 is the identity function for all γ ∈ Γ.

Case l < L+ 1. To show the claim, we first analyze the derivatives mentioned in the claim. Let
γ ∈ Γ with w ∈ Rγcl, and consider any x ∈ RNl−1+Wl+···+WL and x′ ∈ RNl+Wl+1+···+WL . Recall the
definition of z̃γl and σ̃γl : for all i ∈ [Nl +Wl+1 + · · ·+WL],

z̃γl (x) = (z̃γl+1 ◦ σ̃
γ
l ◦ τ̃ l)(x), σ̃γl,i(x

′) =

σ
γ(l,i)
l,i (x′i) if i ≤ Nl

x′i if i > Nl.

APPENDIX B. APPENDIX FOR CHAPTER 5 131

Since every function in the RHS of the above equation is differentiable (by Lemma B.30), the following
hold for all i ∈ [Nl +Wl+1 + · · ·+WL]:

Dz̃γl (x) = Dz̃γl+1

(
(σ̃γl ◦ τ̃ l)(x)

)
·Dσ̃γl

(
τ̃ l(x)

)
·Dτ̃ l(x), (B.21)

(
Dσ̃γl (x

′)
)
∗, i =

ei ·Dσ
γ(l,i)
l,i (x′i) if i ≤ Nl

ei if i > Nl,

where the first line uses the chain rule, ei ∈ RNl+Wl+1+···+WL denotes the standard unit vector with
1 at the i-th coordinate, and Dσ

γ(l,i)
l,i (x′i) is considered as a scalar value. By the second line, the

following holds for all i ∈ [Nl +Wl+1 + · · ·+WL]:

(
Dz̃γl+1((σ̃

γ
l ◦ τ̃ l)(x)) ·Dσ̃

γ
l (τ̃ l(x))

)
∗, i

= Diz̃
γ
l+1

(
(σ̃γl ◦ τ̃ l)(x)

)
·

Dσ
γ(l,i)
l,i

(
τ̃ l,i(x)

)
if i ≤ Nl

1 if i > Nl.
(B.22)

We can further simplify the two term in the RHS when x = (zl−1(w), wl, . . . , wL), as follows:

Dz̃γl+1

(
(σ̃γl ◦ τ̃ l)(x)

)
= Dz̃γl+1(x

′), Dσ
γ(l,i)
l,i

(
τ̃ l,i(x)

)
= Dσ

γ(l,i)
l,i

(
yl,i(w)

)
for all i ∈ [Nl], (B.23)

where x′ ≜ (zl(w), wl+1, . . . , wL) and both equalities are by Lemma B.31 with w ∈ Rγcl.
We now prove the claim. Let γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R

γ2
cl , and fix x ≜ (zl−1(w), wl, . . . , wL)

and x′ ≜ (zl(w), wl+1, . . . , wL). By induction hypothesis on l + 1, we obtain

Dz̃γ1l+1(x
′) = Dz̃γ2l+1(x

′). (B.24)

Since we want to show Dz̃γ1l (x) = Dz̃γ2l (x), it suffices to show the following due to Eqs. (B.21)–(B.24):
for all i ∈ [Nl],

Diz̃
γ1
l+1(x

′) ·Dσγ1(l,i)l,i

(
yl,i(w)

)
= Diz̃

γ1
l+1(x

′) ·Dσγ2(l,i)l,i

(
yl,i(w)

)
. (B.25)

Let i ∈ [Nl]. We prove Eq. (B.25) by case analysis on i.
Subcase 1: σl,i is non-differentiable at yl,i(w). To show Eq. (B.25), it suffices to show that

Diz̃
γ1
l+1(x

′) = (0, . . . , 0).

We obtain this equation by applying Lemma B.36 to (w, (l, i), γ1). Note that the lemma is applicable
here because: zL is differentiable at w (by assumption); σl,i is non-differentiable at yl,i(w) and so
τl has bias parameters (by assumption); Diz̃

γ
l+1(x

′) is independent of γ for all γ ∈ Γ with w ∈ Rγcl
(by induction hypothesis on l + 1); and w ∈ Rγ1cl .

APPENDIX B. APPENDIX FOR CHAPTER 5 132

Subcase 2: σl,i is differentiable at yl,i(w). To show Eq. (B.25), it suffices to show that for all j ∈ [2],

Dσ
γj(l,i)
l,i

(
yl,i(w)

)
= Dσl,i

(
yl,i(w)

)
. (B.26)

Let j ∈ [2]. If yl,i(w) ∈ I
γj(l,i)
l,i , then we obtain Eq. (B.26) as follows:

Dσ
γj(l,i)
l,i

(
yl,i(w)

)
= DADσl,i

(
yl,i(w)

)
= Dσl,i

(
yl,i(w)

)
,

where the first equality holds because yl,i(w) ∈ I
γj(l,i)
l,i and {(σkl,i, Ikl,i)}k∈[Kl,i] defines DADσl,i; and

the second equality holds because σl,i is differentiable at yl,i(w) and DADσl,i is an extended deriva-
tive of σl,i. If yl,i(w) /∈ I

γj(l,i)
l,i , then we obtain Eq. (B.26) directly from Lemma B.27 applied to

(σ
γj(l,i)
l,i , σl,i, yl,i(w)). Note that the lemma is applicable here because: σγj(l,i)l,i and σl,i are differen-

tiable at yl,i(w); they coincide on Iγj(l,i)l,i ; yl,i(w) ∈ cl(Iγ(l,i)l,i) (by w ∈ Rγcl); and int(Iγ(l,i)l,i) ̸= ∅ (by
yl,i(w) /∈ Iγ(l,i)l,i). Therefore, Eq. (B.25) holds and this completes the proof.

B.3.5 Theorem 5.6 (Main Proof)

Theorem 5.6. If zL has bias parameters, then for all w ∈ RW at which zL is differentiable,

DADzL(w) = DzL(w).

This implies that |incΩ(zL)| = 0.

Proof. Let w ∈ RW such that zL is differentiable at w (i.e., DzL(w) ̸= ⊥). By Lemma B.8, there
is (unique) γ ∈ Γ such that w ∈ Rγ . Using the γ, we obtain the conclusion:

DzL(w) =
[
D1zL(w)

∣∣ · · · ∣∣ DW zL(w)
]

=
[
D1z

γ1
L (w)

∣∣ · · · ∣∣ DW z
γW
L (w)

]
for some γj ∈ Γ with w ∈ Rγjcl (j ∈ [W])

=
[
D1z

γ
L(w)

∣∣ · · · ∣∣ DW z
γ
L(w)

]
= DzγL(w) = DADzL(w).

Here the second line uses Lemma B.37 with that zL is differentiable at w. The third line uses
Lemma B.38 with the following: zL is differentiable at w; τl has bias parameters for all l ∈ [L] (by
assumption); and w ∈ Rγ ⊆ Rγcl and w ∈ Rγjcl for all j ∈ [W] (by the second line). The last line uses
Lemma B.12 with w ∈ Rγ .

B.3.6 Lemmas (Technical: Part 3)

Lemma B.39. Let zL be a neural network, w ∈ RW , and A ⊆ Idx. Suppose that w /∈ pbd({u ∈
RW | yl,i(u) = c}) for all (l, i) ∈ A and c ∈ ndf(σl,i). Then, there is a neural network z′L (which

APPENDIX B. APPENDIX FOR CHAPTER 5 133

consists of τ ′l , σ
′
l,i, y

′
l, z

′
l, and DADσ′

l,i) satisfying the following conditions:

1○ Dz′L(w) = DzL(w), DADz′L(w) = DADzL(w), and τ ′l = τl for all l ∈ [L].

2○ y′l,i(w) /∈ ndf(σ′
l,i) for all (l, i) ∈ A.

Proof. Consider the setup given above. Define a function f from neural networks to N as:

f(z′L) ≜
∣∣∣{ (l, i, c)

∣∣∣ (l, i) ∈ A, c ∈ ndf(σ′
l,i), w ∈ int

(
{u ∈ RW | y′l,i(u) = c}

)}∣∣∣.
Note that f(zL) ∈ N (i.e., f(zL) < ∞), because σl,i is continuous, piecewise-analytic and so
|ndf(σl,i)| <∞ for all (l, i) ∈ Idx (by Theorem B.4). The proof proceeds by induction on f(zL).

Case f(zL) = 0. We claim that zL satisfies 1○- 2○. Clearly, it satisfies 1○. Further, it also satisfies
2○: by the assumption and f(zL) = 0, we have that for all (l, i) ∈ A and c ∈ ndf(σl,i),

w /∈ pbd
(
{u ∈ RW | yl,i(u) = c}

)
∪ int

(
{u ∈ RW | yl,i(u) = c}

)
= {u ∈ RW | yl,i(u) = c},

which implies that yl,i(w) ̸= c. Hence, yl,i(w) /∈ ndf(σl,i) for all (l, i) ∈ A, as desired.

Case f(zL) > 0. Since f(zL) > 0, there are (l, i) ∈ A and c ∈ ndf(σl,i) such that w ∈ int({u ∈
RW | yl,i(u) = c}). This implies that there is an open U ⊆ RW such that w ∈ U and yl,i(u) = c for all
u ∈ U . Let z′L be the exactly same neural network as zL except that it uses different σ′

l,i and DADσ′
l,i:

σ′
l,i(x) ≜ DADσl,i(c) · (x− c) + σl,i(c), DADσ′

l,i(x) ≜ DADσl,i(c).

Note that σ′
l,i and DADσ′

l,i satisfy the assumptions in §5.2.2–§5.2.3: the former is continuous and
piecewise-analytic (since it is differentiable), and the latter is an extended derivative of the former
(since the former is differentiable and DADσ′

l,i = Dσ′
l,i). Moreover, z′L satisfies 1○ because yl,i(u) = c

for all u ∈ U , and because σ′
l,i(c) = σl,i(c) and DADσ′

l,i(c) = DADσl,i(c). Further, we have that
w /∈ pbd({u ∈ RW | y′l′,i′(u) = c′}) for all (l′, i′) ∈ A and all c′ ∈ ndf(σ′

l′,i′), and that

f(z′L) = f(zL)− 1,

where both results follow from ndf(σ′
l,i) = ∅, ndf(σ′

l′,i′) = ndf(σl′,i′) for all (l′, i′) ̸= (l, i), and
y′l′,i′ = yl′,i′ on U for all (l′, i′) ∈ Idx. Hence, we can apply induction to z′L, and by induction
hypothesis, there is a neural network z′′L such that (z′′L, z

′
L) (instead of (z′L, zL)) satisfies 1○- 2○. From

this, and since (z′L, zL) satisfies 1○ (by the above), we conclude (z′′L, zL) satisfies 1○- 2○, as desired.

APPENDIX B. APPENDIX FOR CHAPTER 5 134

Lemma B.40. We have

incR(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈ndf(σl,i)∩Sl

pbd
(
{w ∈ RW | yl,i(w) = c}

)
,

where Sl ⊆ R is defined by Sl ≜ ∅ if τl has bias parameters, and Sl ≜ R otherwise.

Proof. Let U ⊆ RW be the RHS of the above equation:

U ≜
⋃

l∈[L]:Sl=R

⋃
i∈[Nl]

⋃
c∈ndf(σl,i)

pbd
(
{w ∈ RW | yl,i(w) = c}

)
.

Then, it suffices to show that for any w ∈ RW , w /∈ U implies w /∈ incR(zL). Consider any w ∈ RW

with w /∈ U . We want to show w /∈ incR(zL). If zL is not differentiable at w, then w /∈ incR(zL)

clearly holds by the definition of incR(−). Hence, assume that zL is differentiable at w. By the
definition of incR(−), it suffices to show the following:

DADzL(w) = DzL(w). (B.27)

We prove this in two steps.

Step 1. Since zL at w does not satisfy the assumption of Lemma B.38 (which we will apply to show
Eq. (B.27)), we construct another neural network z′L that is identical to zL nearby w while satisfying
the assumption. To do so, we apply Lemma B.39 to (zL, w,A) with A ≜ {(l, i) ∈ Idx | Sl = R}. The
lemma is applicable here, since w /∈ pbd({v ∈ RW | yl,i(v) = c}) for all (l, i) ∈ A and c ∈ ndf(σl,i)

(by w /∈ U). Hence, by Lemma B.39, we get a neural network z′L (which consists of τ ′l , σ
′
l,i, y

′
l, z

′
l,

and DADσ′
l,i) satisfying the following conditions:

1○ Dz′L(w) = DzL(w), DADz′L(w) = DADzL(w), and τ ′l = τl for all l ∈ [L].

2○ y′l,i(w) /∈ ndf(σ′
l,i) for all (l, i) ∈ A.

Step 2. We now prove Eq. (B.27) based on z′L. Let Γ′, R′, and R′
cl be the counterparts of Γ, R,

and Rcl for z′L. Then, by Lemma B.8, there is γ′ ∈ Γ′ such that w ∈ R′γ′
. Using z′L and γ′, we

obtain Eq. (B.27):

DzL(w) = Dz′L(w)

=
[
D1z

′
L(w)

∣∣ · · · ∣∣ DW z
′
L(w)

]
=
[
D1z

′
L
γ′
1(w)

∣∣ · · · ∣∣ DW z
′
L
γ′
W (w)

]
for some γ′j ∈ Γ′ with w ∈ R′

cl
γ′
j (j ∈ [W])

=
[
D1z

′
L
γ′

(w)
∣∣ · · · ∣∣ DW z

′
L
γ′

(w)
]

APPENDIX B. APPENDIX FOR CHAPTER 5 135

= Dz′L
γ′

(w) = DADz′L(w) = DADzL(w).

Here the first and last lines use 1○ and Lemma B.12 with w ∈ R′γ′
. The third line uses Lemma B.37

with that z′L is differentiable at w (by 1○). The fourth line uses Lemma B.38 with the following:
z′L is differentiable at w (by 1○); for all (l, i) ∈ Idx, if τ ′l does not have bias parameters, then
y′l,i(w) /∈ ndf(σ′

l,i), i.e., σ′
l,i is differentiable at y′l,i(w) (by 1○ and 2○); and w ∈ R′γ′

⊆ R′
cl
γ′

and
w ∈ R′

cl
γ′
j for all j ∈ [W] (by the third line).

B.3.7 Theorem 5.14 (Main Lemma)

Lemma B.41. Suppose that for every l ∈ [L], one of the following holds:

(a) τl has bias parameters, or

(b) τl is well-structured biaffine.

In the case of (b), let ϕl,i be the partial map described in Lemma B.22 for all i ∈ [Nl]. Then,

incΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈Al,i

Bl,i(c),

where Al,i ⊆ R and Bl,i(c) ⊆ Ω are defined as

Al,i ≜

(ndf(σl,i) ∩ Sl) if τl+1 satisfies the condition (a) or l = L

(ndf(σl,i) ∩ Sl) ∪ bdz(σl,i) if τl+1 satisfies the condition (b),

Bl,i(c) ≜

{w ∈ Ω | yl,i(w) = c} if τl satisfies the condition (a)

{w ∈ Ω | yl,i(w) = c ∧
∨
j∈dom(ϕl,i)

zl−1,ϕl,i(j)(w) ̸= 0} if τl satisfies the condition (b),

and Sl ⊆ R is defined as Sl ≜ ∅ if τl has bias parameters, and Sl ≜ R otherwise.

Proof. We obtain the conclusion by chaining Lemma B.40, Lemma B.23 (which is applicable by the
assumption on τl), and ndfΩ(zL) ∪ incΩ(zL) =

(
ndfR(zL) ∪ incR(zL)

)
∩ Ω.

B.3.8 Theorem 5.14 (Main Proof)

Theorem 5.14. If τl either has bias parameters or is well-structured biaffine for all l ∈ [L], then

|incΩ(zL)|
|Ω|

≤ 1

|M|
∑

(l,i)∈Idx

∣∣∣(ndf(σl,i) ∩ Sl) ∪ (bdz(σl,i) ∩ Sl+1

)∣∣∣,

APPENDIX B. APPENDIX FOR CHAPTER 5 136

where Sl ⊆ R is defined by

Sl ≜

∅ if l > L or τl has bias parameters

R otherwise.

Proof. Observe that

incΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈Al,i

Bl,i(c), |Bl,i(c)| ≤ |M|W−1, (B.28)

where Sl ⊆ R, Al,i ⊆ R and Bl,i(c) ⊆ Ω for l ∈ [L] are defined as in Lemma B.41. Here the first
equation is by Lemma B.41 and the second equation is by Lemmas B.19 and B.25, where these
lemmas are applicable by the definition of Bl,i(c) and because τl either has bias parameters or is
well-structured biaffine (by assumption). Observe further that

Al,i = (ndf(σl,i) ∩ Sl) ∪ (bdz(σl,i) ∩ Sl+1), (B.29)

by the definition of Al,i and Sl, where we use SL+1 ≜ ∅. Combining the above observations, we
obtain the conclusion:

|incΩ(zL)|
|Ω|

≤
∑

(l,i)∈Idx

∑
c∈Al,i

|Bl,i(c)|
|Ω|

≤
∑

(l,i)∈Idx

∣∣(ndf(σl,i) ∩ Sl) ∪ (bdz(σl,i) ∩ Sl+1)
∣∣ · |M|W−1

|M|W
,

where the first inequality uses Eq. (B.28) and the second inequality uses Eqs. (B.28) and (B.29).

B.4 Lower Bounds on |ndfΩ(zL)| and |incΩ(zL)|

B.4.1 Theorem 5.8 (Main Proof)

Theorem 5.8. For any M ⊆ R and n, α ∈ N with 1 ≤ |M| <∞, n ≥ 2, and α ≤ |M|/(n− 1), there
is a neural network zL : RW → R that satisfies

|ndfΩ(zL)|
|Ω|

≥ 1

2
· 1

|M|
∑

(l,i)∈Idx

|ndf(σl,i)|

and the following: zL has bias parameters, it has n+ 1 neurons, and |ndf(σ1,i)| = α for all i ∈ [N1].

Proof. Consider any M ⊆ R and n, α ∈ N that satisfy the assumption. We claim that there is a
neural network zL that has L = 2 layers, N = n+1 neurons, and W = n+1 parameters, and satisfies
the given inequality.

We first define a few components to be used in the network. Let {x1, . . . , xα} ⊆ M be distinct

APPENDIX B. APPENDIX FOR CHAPTER 5 137

machine-representable numbers, and h : R→ R be a continuous, piecewise-analytic function such
that ndf(h) = {x1, . . . , xα}. Note that such xj always exists since |M| ≥ α (by assumption). Using
h, define a function f : RW → R as

f(w) = wn+1 +
∑
i∈[n]

h(wi).

We assume here (and in the rest of the proof) that w ∈ RW is represented as w = (w1, . . . , wW) for
wi ∈ R (instead of w = (w1,1, w1,2, . . . , wL,WL

) with wl,j ∈ R as we assumed so far).
Given these, we construct a neural network zL : RW → R that is essentially the same as f , as follows

z0(w) = 0 ∈ R,

y1(w) = (w1, . . . , wn) ∈ Rn, z1(w) = (h(w1), . . . , h(wn)) ∈ Rn,

y2(w) = f(x) ∈ R, z2(w) = f(x) ∈ R.

Then, zL has 2 layers, n+1 neurons, and n+1 parameters, and |ndf(σ1,i)| = |ndf(h)| = α for all i. Also,
we can easily make all τl have bias parameters (e.g., by using τ1(x,w1, . . . , wn) = (x+w1, . . . , x+wn)).
What remains is to prove that zL satisfies the inequality in the conclusion. To do so, observe that

ndfΩ(zL) ⊇ {w ∈ Ω | wi ∈ ndf(h) for some i ∈ [n]}

= Ω \ {w ∈ Ω | wi /∈ ndf(h) for all i ∈ [n]},

which follows from the definition of f and ndf(h) ⊆M. From this, we have

|ndfΩ(zL)|
|Ω|

≥ 1

|M|n+1

(
|M|n+1 − |M| · (|M| − α)n

)
= 1−

(
1− α

|M|

)n
≥ 1−

(
1− n α

|M|
+

1

2
n(n− 1)

(α

|M|

)2)
=

nα

|M|

(
1− n− 1

2

α

|M|

)
≥ 1

2
· nα
|M|

,

where the first inequality uses ndf(h) ⊆ M and |ndf(h)| = α, the second inequality follows from
(1− x)n ≤ 1− nx+ 1

2n(n− 1)x2 (for any x ≤ 1 and n ∈ N) and α ≤ |M|, and the third inequality
is by the assumption that α ≤ |M|/(n− 1). By combining this result and

1

|M|
∑

(l,i)∈Idx

|ndf(σl,i)| =
nα

|M|
,

we obtain the desired inequality.

APPENDIX B. APPENDIX FOR CHAPTER 5 138

B.4.2 Theorem 5.13 (Main Proof)

Theorem 5.13. For any M ⊆ R and n, α ∈ N with 1 ≤ |M| <∞, n ≥ 4, and α ≤ |M|/(n− 1), there
is a neural network zL : RW → R that satisfies

|ndfΩ(zL)|
|Ω|

≥ 1

9
· 1

|M|
∑

(l,i)∈Idx

∣∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣∣

and the following: (i) τl is well-structured biaffine without bias parameters for all l < L, and has
bias parameters for l = L; (ii) zL has n+1 neurons; and (iii) |ndf(σ1,i)|=α, |bdz(σ1,i)|=0 for all i.
We get the same result for (i), (ii’), and (iii’): (ii’) zL has 2n+1 neurons; and (iii’) |ndf(σ1,i)|=0,
|bdz(σ1,i)|=α for all i.

Proof. We prove the two cases (one for (i), (ii), (iii), and the other for (i), (ii’), (iii’)) as follows.
Consider any M ⊆ R and n, α ∈ N that satisfy the assumption. Let {x1, . . . , xα} ⊆ M be distinct
machine-representable numbers; such xj always exists since |M| ≥ α (by assumption). In the rest
of the proof, we assume that w ∈ RW is represented as w = (w1, . . . , wW) for wi ∈ R, as in the proof
of Theorem 5.8 (see §B.4.1).

First case. Let W = n+ 1 and h : R→ R be a continuous, piecewise-analytic function such that
ndf(h) = {x1, . . . , xα} and h(x) > 0 for all x ∈ R. Using this h, define a function f : RW → R as

f(w) = wn+1 +
∑
i∈[n]

h(wi).

We now construct a neural network zL : RW → R that is essentially the same as f , as follows:

z0(w) = 1 ∈ R,

y1(w) = (w1, . . . , wn) ∈ Rn, z1(w) = (h(w1), . . . , h(wn)) ∈ Rn,

y2(w) = f(x) ∈ R, z2(w) = f(x) ∈ R.

Then, zL has L = 2 layers, N = n + 1 neurons, and W = n + 1 parameters, and |ndf(σ1,i)| =
|ndf(h)| = α and |bdz(σ1,i)| = |bdz(h)| = 0 for all i. Also, we can easily make τl be well-structured
biaffine without bias parameters for all l < L, and make τL have bias parameters (e.g., by using
τ1(x,w1, . . . , wn) = (x · w1, . . . , x · wn)). This shows that (i), (ii), and (iii) are satisfied.

What remains is to prove that zL satisfies the inequality in the conclusion. To do so, observe that

ndfΩ(zL) ⊇ {w ∈ Ω | wi ∈ ndf(h) for some i ∈ [n]},

APPENDIX B. APPENDIX FOR CHAPTER 5 139

which follows from the definition of f and ndf(h) ⊆M. From this, we have

|ndfΩ(zL)|
|Ω|

≥ 1

2
· nα
|M|

,

as shown in the proof of Theorem 5.8 (see §B.4.1). Here we used ndf(h) ⊆M and |ndf(h)| = α, as
well as α ≤ |M|/(n− 1) and n ≥ 2 (by assumption). Further, observe that

1

|M|
∑

(l,i)∈Idx

∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣ = nα+ 1

|M|
=
(
1 +

1

nα

)
· nα
|M|
≤ 3

2
· nα
|M|

,

where the inequality uses n ≥ 2 and α ≥ 1 (by assumption). From these results, we obtain the
desired inequality.

Second case. Let W = n+ 2 and h : R→ R be an analytic function such that h(xj) = 0 and
Dh(xj) = 1 for all j ∈ [α], and |bdz(h)| = α. We remark that such a function h always exists due
to Hermite interpolation [21]. Using this h, define a function f : RW → R as

f(w) = wn+2 +
∑
i∈[n]

ReLU(h(wi) · wn+1).

We now construct a neural network zL : RW → R that is essentially the same as f , as follows:

z0(w) = 1,

y1(w) = (w1, . . . , wn), z1(w) = (h(w1), . . . , h(wn)),

y2(w) = (h(w1) · wn+1, . . . , h(wn) · wn+1), z2(w) = (ReLU(h(w1) · wn+1), . . . ,ReLU(h(wn) · wn+1)),

y3(w) = f(x), z3(w) = f(x).

Then, zL has L = 3 layers, N = 2n + 1 neurons, and W = n + 2 parameters, and |ndf(σ1,i)| =
|ndf(h)| = 0 and |bdz(σ1,i)| = |bdz(h)| = α for all i. Also, we can easily make τl be well-structured
biaffine without bias parameters for all l < L, and make τL have bias parameters, as discussed above.
This shows that (i), (ii’), and (iii’) are satisfied.

What remains is to prove that zL satisfies the inequality in the conclusion. To do so, observe that

ndfΩ(zL) ⊇ {w ∈ Ω | wn+1 ̸= 0 and wi ∈ bdz(h) for some i ∈ [n]}

= Ω \
(
{w ∈ Ω | wn+1 = 0} ∪ {w ∈ Ω | wi /∈ bdz(h) for all i ∈ [n]}

)
,

which follows from the definition of f and bdz(h) ⊆M. From this, we have

|ndfΩ(zL)|
|Ω|

≥ 1

|M|n+2

(
|M|n+2 − |M|n+1 − |M|2 · (|M| − α)n

)

APPENDIX B. APPENDIX FOR CHAPTER 5 140

≥ 1

2
· nα
|M|
− 1

|M|
=
(1
2
− 1

nα

)
· nα
|M|

≥ 1

4
· nα
|M|

,

where the second inequality follows from an argument in the proof of Theorem 5.8 (see §B.4.1),
and the third inequality uses n ≥ 4 and α ≥ 1 (by assumption). Note that when proving the
second inequality, we used bdz(h) ⊆M and |bdz(h)| = α, as well as α ≤ |M|/(n− 1) and n ≥ 2 (by
assumption). Further, observe that

1

|M|
∑

(l,i)∈Idx

∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣ = nα+ n+ 1

|M|
=
(
1 +

1

α
+

1

nα

)
· nα
|M|
≤ 9

4
· nα
|M|

,

where the inequality uses n ≥ 4 and α ≥ 1 (by assumption). From these results, we obtain the
desired inequality.

B.4.3 Theorem 5.15 (Main Proof)

Theorem 5.15. For any M ⊆ R and n, α ∈ N with 1 ≤ |M| <∞, n ≥ 4, and α ≤ |M|/(n− 1), there
is a neural network zL : RW → R that satisfies

|incΩ(zL)|
|Ω|

≥ 1

13
· 1

|M|
∑

(l,i)∈Idx

∣∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣∣

and the following: (i) τl is well-structured biaffine without bias parameters for all l < L, and has bias
parameters for l = L; (ii) zL has 2n+1 neurons; and (iii) |ndf(σ1,i)|=α, |bdz(σ1,i)|=0 for all i.
We get the same result for (i), (ii’), and (iii’): (ii’) zL has 3n+1 neurons; and (iii’) |ndf(σ1,i)|=0,
|bdz(σ1,i)|=α for all i.

Proof. We prove the two cases (one for (i), (ii), (iii), and the other for (i), (ii’), (iii’)) as follows.
Consider any M ⊆ R and n, α ∈ N that satisfy the assumption. Let {x1, . . . , xα} ⊆ M be distinct
machine-representable numbers; such xj always exists since |M| ≥ α (by assumption). In the rest
of the proof, we assume that w ∈ RW is represented as w = (w1, . . . , wW) for wi ∈ R, as in the proof
of Theorem 5.8 (see §B.4.1).

First case. Let W = n + 1. Without loss of generality, assume that α is even and 0 < x1 <

· · · < xα/2; other cases can be handled in a similar way. Consider a continuous, piecewise-analytic
function h : R→ R that satisfies the following conditions: for all j ∈ [α/2], h(xj) = 1 if j is odd, and
h(xj) = 2 if j is even; ndf(h) ∩ (0,∞) = {x1, . . . , xα/2}; h is piecewise linear, constant on [xα/2,∞),
and even (i.e., h(x) = h(−x) for all x ∈ R). For this h, consider a (consistent) extended derivative
DADh : R→ R that takes the slope of the right piece of the function at non-differentiable points: e.g.,
DADh(x2) = (h(x3)− h(x2))/(x3 − x2) and DADh(−x2) = (h(−x1)− h(−x2))/(−x1 + x2). Using this

APPENDIX B. APPENDIX FOR CHAPTER 5 141

h, define a function f : RW → R as

f(w) = wn+1 +
∑
i∈[n]

h(wi)− h(−wi).

Then, by using a similar approach taken in the proof of Theorem 5.13 (see §B.4.2), we can construct
a neural network zL : RW → R that is essentially the same as f and satisfies the following: zL has
L = 2 layers, N = 2n + 1 neurons, and W = n + 1 parameters (where 2n neurons are at layer 1
and 1 neuron is at layer 2); τl is well-structured biaffine without bias parameters for all l < L, and
has bias parameters for l = L; and |ndf(σ1,i)| = |ndf(h)| = α and |bdz(σ1,i)| = |bdz(h)| = 0 for all
i. This shows that (i), (ii), and (iii) are satisfied.

What remains is to prove that zL satisfies the inequality in the conclusion. To do so, observe that

incΩ(zL) ⊇ {w ∈ Ω | wi ∈ {x1, . . . , xα/2} for some i ∈ [n]},

which follows from the definition of f and {x1, . . . , xα/2} ⊆M. From this, we have

|incΩ(zL)|
|Ω|

≥ 1

4
· nα
|M|

by a similar argument to that in the proof of Theorem 5.8 (see §B.4.1). Here we used {x1, . . . , xα/2} ⊆
M as well as α ≤ |M|/(n− 1) and n ≥ 2 (by assumption). Further, observe that

1

|M|
∑

(l,i)∈Idx

∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣ = 2nα+ 1

|M|
=
(
2 +

1

nα

)
· nα
|M|
≤ 9

4
· nα
|M|

,

where the inequality uses n ≥ 4 and α ≥ 1 (by assumption). From these results, we obtain the
desired inequality.

Second case. Let W = n+ 2 and h : R→ R be an analytic function such that h(xj) = 0 and
Dh(xj) = 1 for all j ∈ [α], and |bdz(h)| = α. Using this h, define a function f : RW → R as

f(w) = wn+2 +
∑
i∈[n]

ReLU(h(wi) · wn+1)− ReLU(−h(wi) · wn+1),

and let DADReLU = 1(0,∞). By using an approach similar to the above, we can construct a neural
network zL : RW → R that is essentially the same as f and satisfies the following: zL has L = 3

layers, N = 3n+ 1 neurons, and W = n+ 2 parameters (where n neurons are at layer 1, 2n neurons
at layer 2, and 1 neuron at layer 3); τl is well-structured biaffine without bias parameters for all l < L,
and has bias parameters for l = L; and |ndf(σ1,i)| = |ndf(h)| = 0 and |bdz(σ1,i)| = |bdz(h)| = α for
all i. This shows that (i), (ii’), and (iii’) are satisfied.

APPENDIX B. APPENDIX FOR CHAPTER 5 142

What remains is to prove that zL satisfies the inequality in the conclusion. To do so, observe that

incΩ(zL) ⊇ {w ∈ Ω | wn+1 ̸= 0 and wi ∈ bdz(h) for some i ∈ [n]},

which follows from the definition of f and bdz(h) ⊆M. From this, we have

|incΩ(zL)|
|Ω|

≥ 1

4
· nα
|M|

,

as shown in the proof of Theorem 5.13 (see §B.4.2). Here we used bdz(h) ⊆M and |bdz(h)| = α, as
well as 1 ≤ α ≤ |M|/(n− 1) and n ≥ 4 (by assumption). Further, observe that

1

|M|
∑

(l,i)∈Idx

∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣ = nα+ 2n+ 1

|M|
=
(
1 +

2

α
+

1

nα

)
· nα
|M|
≤ 13

4
· nα
|M|

,

where the inequality uses n ≥ 4 and α ≥ 1 (by assumption). From these results, we obtain the
desired inequality.

B.5 Computation of Standard Derivatives

B.5.1 Lemmas (Basic)

Lemma B.42. Let f, f1, . . . , fn : Rd → Rd′ (n ∈ N), x ∈ Rd, and U ⊆ Rd be an open neighborhood
of x. Suppose that for all y ∈ U , f(y) = fi(y) for some i ∈ [n]. Also, assume that f(x) = fi(x) for
all i ∈ [n], and Dfi(x) = Dfj(x) ̸= ⊥ for all i, j ∈ [n]. Then,

Df(x) = Dfi(x) ̸= ⊥ for all i ∈ [n].

Proof. Consider the setup of the statement. By the assumption, it suffices to show that Df(x) =
Df1(x), which is equivalent to the following: for all ε > 0, there exists δ > 0 such that for all h ∈ Rd,

0 < ∥h∥ < δ =⇒ ∥f(x+ h)− f(x)−Df1(x) · h∥
∥h∥

< ε,

where ∥ ·∥ denotes the ℓ2-norm. To show this, consider any ε > 0. Since Dfi(x) ̸= ⊥ (by assumption),
there is δi > 0 for each i ∈ [n] such that for all h ∈ Rd,

0 < ∥h∥ < δi =⇒ ∥fi(x+ h)− fi(x)−Dfi(x) · h∥
∥h∥

=
∥fi(x+ h)− f1(x)−Df1(x) · h∥

∥h∥
< ε,

where the equality is by assumption. Choose 0 < δ < min{δi | i ∈ [n]} such that {x+h | ∥h∥ < δ} ⊆ U ,
which is possible because U is an open neighborhood of x. Then, for all h ∈ Rd, 0 < ∥h∥ < δ implies

APPENDIX B. APPENDIX FOR CHAPTER 5 143

that

∥f(x+ h)− f(x)−Df1(x) · h∥
∥h∥

=
∥fj(x+ h)− f1(x)−Df1(x) · h∥

∥h∥
< ε

for some j ∈ [n], where the equality is by assumption and x+ h ∈ U and the inequality is by δ < δj .
This proves Df(x) = Df1(x) as desired.

B.5.2 Lemmas (Technical: Part 1)

In this subsection, we formally define the partial derivative ∂ADzL/∂zl,i ∈ RNL of zL with respect
to zl,i that reverse-mode automatic differentiation computes (as a byproduct of computing DADzL).
To do so, we fix l′ ∈ [L] and w′ ∈ RW , and define ∂ADzL/∂zl′,i ∈ RNL at w′ (i ∈ [Nl′]) in a similar
way we defined DADzL in §B.1.3.

We first define a program Q (different from P in §B.1.3) that represents a function from RNl′ to
R as follows:

Q ::= r | xi | f(Q1, . . . , Qn)

where r ∈ R, i ∈ [Nl′], f ∈ {τl,i, σl,i | (l, i) ∈ Idx, l > l′}, and n ∈ N. This definition says that a
program Q can be either a real-valued constant r, a real-valued variable xi denoting the neuron zl′,i,
or the application of a function f : Rn → R to subprograms Q1, . . . , Qn. We focus on particular
programs Qyl,i and Qzl,i (l > l′) that represent the neurons yl,i and zl,i but as functions of the
neurons zl′,1, . . . , zl′,Nl′ (instead of functions of parameters w1,1, w1,2, . . . , wL,WL

). These programs
are defined in a canonical way as follows:

Qyl,i ≜ τl,i(Qzl−1,1
, . . . , Qzl−1,Nl−1

, w′
l,1, . . . , w

′
l,Wl

),

Qzl,i ≜ σl,i(Qyl,i),

where Qzl′,i ≜ xi for i ∈ [Nl′] represents the projection function from RNl′ to R. Note that w′
l,j in

the above equation is not a variable but a constant, while xi in the definition of Qzl′,i is a variable.
Given a program Q, we define the function JQK : RNl′ → R that Q represents, and the function

JQKAD : RNl′ → R1×Nl′ that reverse-mode automatic differentiation computes for Q (as a byproduct
of computing other derivatives):

JrK(x) ≜ r,

JxiK(x) ≜ xi,

Jf(Q1, . . . , Qn)K(x) ≜ f
(
JQ1K(x), . . . , JQnK(x)

)
,

JrKAD(x) ≜ ,

APPENDIX B. APPENDIX FOR CHAPTER 5 144

JxiKAD(x) ≜ 1i,

Jf(Q1, . . . , Qn)KAD(x) ≜ DADf
(
JQ1K(x), . . . , JQnK(x)

)
·
[
JQ1KAD(x)

/
· · ·
/

JQnKAD(x)
]
.

Here (x1, . . . , xNl′) ≜ x denote the scalar values of x, the notation ,1i ∈ R1×W denote the zero matrix
and the matrix whose entries are all zeros except for a single one at the i-th entry, DADf : Rn → R1×n

denotes a “derivative” of f used by automatic differentiation, and [M1 / · · · /Mn] denotes the matrix
that stacks up matrices M1, . . . ,Mn vertically. Note that the definitions of JQK and JQKAD are almost
the same as that of JPK and JPKAD in §B.1.3.

Using the above definitions, ∂ADzL/∂zl′,i at w′ for i ∈ [Nl′] (i.e., the partial derivative of zL with
respect to zl′,i at w′ that reverse-mode automatic differentiation computes) can be defined as follows:

∂ADzL
∂zl′,i

at w′ ≜
[
JQzL,1

KAD(zl′(w′))
/
· · ·
/

JQzL,NL
KAD(zl′(w′))

]
1:NL, i

∈ RNL .

Lemma B.43 (shown below) shows that ∂ADzL/∂zl,i can be expressed in terms of z̃γl+1 (defined
in §B.3), as DADzL can be expressed in terms of zγL (Lemma B.12). We will rely on this lemma in
the rest of this section, when working with ∂ADzL/∂zl,i.

Lemma B.43. Let γ ∈ Γ. Then, for all l ∈ [L] and w ∈ Rγ ,

∂ADzL
∂zl,i

at w = Diz̃
γ
l+1

(
zl(w), wl+1, . . . , wL

)
.

Proof. The proof is similar to Lemma B.12, except that it uses Lemma B.33 instead of Lemma B.11;
thus, we omit it.

B.5.3 Lemmas (Technical: Part 2)

Lemma B.44. Let w ∈ RW . Suppose that for all (l, i) ∈ Idx, yl,i(w) ∈ ndf(σl,i) implies that

Diz̃
γ
l+1(zl(w), wl+1, . . . , wL) = (0, . . . , 0)

for the γ ∈ Γ with w ∈ Rγ . Then, for all l ∈ [L+ 1] and γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R
γ2
cl ,

Dz̃γ1l (zl−1(w), wl, . . . , wL) = Dz̃γ2l (zl−1(w), wl, . . . , wL).

Proof. The proof is similar to that of Lemma B.38, except that this lemma assumes that certain
partial derivatives are all zero while Lemma B.38 derives this assumption (in addition to proving
the conclusion of this lemma). Let w ∈ RW that satisfies the assumption of this lemma. The proof
proceeds by induction on l (starting from l = L+ 1).

Case l = L+ 1. In this case, z̃γL+1 is the identity function for all γ ∈ Γ. Hence, the conclusion

APPENDIX B. APPENDIX FOR CHAPTER 5 145

clearly holds.
Case l < L+1. For simple notation, let x ≜ (zl−1(w), wl, . . . , wL) and x′ ≜ (zl(w), wl+1, . . . , wL).

Observe that the following hold for any γ ∈ Γ with w ∈ Rγcl, due to Eqs. (B.21)–(B.23) in the proof
of Lemma B.38:

Dz̃γl (x) = Dz̃γl+1

(
(σ̃γl ◦ τ̃ l)(x)

)
·Dσ̃γl

(
τ̃ l(x)

)
·Dτ̃ l(x),(

Dz̃γl+1((σ̃
γ
l ◦ τ̃ l)(x)) ·Dσ̃

γ
l (τ̃ l(x))

)
∗, i

= Diz̃
γ
l+1(x

′) ·

Dσ
γ(l,i)
l,i

(
yl,i(w)

)
if i ≤ Nl

1 if i > Nl.

Using this observation, we prove the conclusion for l. Let γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R
γ2
cl . We want

to show Dz̃γ1l (x) = Dz̃γ2l (x). By induction hypothesis on l + 1, we obtain Dz̃γ1l+1(x
′) = Dz̃γ2l+1(x

′).
From this and the above equation, it suffices to show the following claim for all i ∈ [Nl]:

Diz̃
γ1
l+1(x

′) ·Dσγ1(l,i)l,i

(
yl,i(w)

)
= Diz̃

γ1
l+1(x

′) ·Dσγ2(l,i)l,i

(
yl,i(w)

)
.

Let i ∈ [Nl]. We prove this claim by case analysis on i.
Subcase 1: yl,i(w) ∈ ndf(σl,i). Observe that for the γ ∈ Γ with w ∈ Rγ , we have

Diz̃
γ1
l+1(x

′) = Diz̃
γ
l+1(x

′) = (0, . . . , 0),

where the first equality is by induction hypothesis on l + 1 with w ∈ Rγ ⊆ Rγcl, and the second
equality by assumption with yl,i(w) ∈ ndf(σl,i). This directly implies the claim.

Subcase 2: yl,i(w) /∈ ndf(σl,i). To show the claim, it suffices to show that for all j ∈ [2],

Dσ
γj(l,i)
l,i

(
yl,i(w)

)
= Dσl,i

(
yl,i(w)

)
.

This is exactly the same as Eq. (B.26) in the proof of Lemma B.38, and we can prove this in the
exact same way as before. Therefore, the claim holds and this completes the proof.

Lemma B.45. Let w ∈ RW . Suppose that for all γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R
γ2
cl ,

Dzγ1L (w) = Dzγ2L (w).

Then, zL is differentiable at w.

Proof. Consider the setup of this lemma. To apply Lemma B.42, we show the following claims for
Γw ≜ {γ ∈ Γ | w ∈ Rγcl}:

(i) For some open neighborhood U ⊆ RW of w, if w′ ∈ U , then zL(w′) = zγL(w
′) for some γ ∈ Γw.

(ii) zL(w) = zγL(w) for all γ ∈ Γw.

APPENDIX B. APPENDIX FOR CHAPTER 5 146

(iii) Dzγ1L (w) = Dzγ2L (w) ̸= ⊥ for all γ1, γ2 ∈ Γw.

If these claims hold, then Lemma B.42 implies that DzL(w) ̸= ⊥ (i.e., zL is differentiable at w). So
what remains is to show these claims. First, (iii) follows from the assumption of this lemma and
that zγL is analytic for all γ ∈ Γ. Second, (ii) follows from Lemma B.31. Finally, (i) holds as follows.
Consider any γ ∈ Γ \ Γw. Then, by w /∈ Rγcl and the definition of Rγcl, there is (l, i) ∈ Idx such that
yl,i(w) ∈ A and A ∩ Iγ(l,i)l,i = ∅ for some open A ⊆ R. Since yl,i is continuous and Rγ ⊆ y−1

l,i (I
γ(l,i)
l,i),

the set Uγ ≜ y−1
l,i (A) is an open neighborhood of w such that Uγ ∩Rγ = ∅. We now define

U ≜
⋂

γ∈Γ\Γw

Uγ .

Then, because Γ is finite, U is an open neighborhood of w such that U ∩
⋃
γ∈Γ\Γw

Rγ = ∅. Using this,
we obtain (i) as follows: for any w′ ∈ U , we have w′ /∈

⋃
γ∈Γ\Γw

Rγ and so w′ ∈ Rγ for some γ ∈ Γw

(by Lemma B.8); this implies that zL(w′) = zγL(w
′) (by Lemma B.11). This completes the proof.

B.5.4 Theorems 5.9 and 5.16 (Main Lemmas)

Lemma B.46. Let w ∈ RW . Suppose that the following holds:

• For all (l, i) ∈ Idx, yl,i(w) ∈ ndf(σl,i) implies that Diz̃
γ
l+1(zl(w), wl+1, . . . , wL) = 0⃗ for the γ ∈ Γ

with w ∈ Rγ .

Then, we have the following:

• w /∈ ndfR(zL) (i.e., zL is differentiable at w).

Proof. Consider the setup of this lemma. For all γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R
γ2
cl ,

Dzγ1L (w) = Dz̃γ11 (z0(w), w1, . . . , wL) = Dz̃γ21 (z0(w), w1, . . . , wL) = Dzγ2L (w),

where the first and last equalities are by Lemma B.32, and the second equality is by Lemma B.44.
Then, by applying Lemma B.45, we obtain that zL is differentiable at w, as desired.

Lemma B.47. Let w ∈ RW . Suppose that the following hold:

• w /∈ ndfR(zL) (i.e., zL is differentiable at w).

• For all (l, i) ∈ Idx, yl,i(w) ∈ ndf(σl,i) implies that τl has bias parameters.

Then, we have the following:

• w /∈ ndfR(zL) ∪ incR(zL) (i.e., DADzL(w) = DzL(w) ̸= ⊥).

• For all (l, i) ∈ Idx, yl,i(w) ∈ ndf(σl,i) implies that Diz̃
γ
l+1(zl(w), wl+1, . . . , wL) = 0⃗ for the γ ∈ Γ

with w ∈ Rγ .

APPENDIX B. APPENDIX FOR CHAPTER 5 147

Proof. Consider the setup in the statement. By exactly following the proof of Theorem 5.6 (given
in §B.3.5) under this setup, we obtain the conclusion of Theorem 5.6: DADzL(w) = DzL(w), which
implies the first conclusion of this lemma. Moreover, the second conclusion was already shown in
the proof of Lemma B.38 (which has the same assumption as this lemma), especially in Subcase 1
of Case l < L+ 1 in the proof. This completes the proof.

B.5.5 Theorems 5.9 and 5.16 (Main Proofs)

Theorem 5.9. If zL has bias parameters, then the following are equivalent for all w ∈ RW .

• zL is non-differentiable at w.

• yl,i(w) ∈ ndf(σl,i) and ∂ADzL/∂zl,i ̸= 0⃗ at w for some (l, i) ∈ Idx.

Proof. Let w ∈ RW . Suppose that zL has bias parameters. Then, by Lemmas B.46 and B.47, the
following are equivalent:

(i) w /∈ ndfR(zL) (i.e., zL is differentiable at w).

(ii) For all (l, i) ∈ Idx, yl,i(w) ∈ ndf(σl,i) implies that Diz̃
γ
l+1(zl(w), wl+1, . . . , wL) = 0⃗ for the γ ∈ Γ

with w ∈ Rγ .

By taking the negation of (i)-(ii) and applying Lemma B.43 to (ii), we obtain the conclusion.

Theorem 5.16. Let w ∈ RW . If yl,i(w) /∈ ndf(σl,i) for all (l, i) ∈ Idx such that τl does not have
bias parameters or ∂ADzL/∂zl,i ̸= 0⃗ at w, then

DADzL(w) = DzL(w) ̸= ⊥.

Proof. Let w ∈ RW . Suppose that it satisfies the given assumption, which is equivalent to the
following by Lemma B.43:

For all (l, i) ∈ Idx, yl,i(w) ∈ ndf(σl,i) implies that

(i) τl has bias parameters, and

(ii) Diz̃
γ
l+1(zl(w), wl+1, . . . , wL) = 0⃗ for the γ ∈ Γ with w ∈ Rγ .

First, by Lemma B.46 with (ii), we have

(iii) w /∈ ndfR(zL) (i.e., zL is differentiable at w).

Next, by Lemma B.47 with (i) and (iii), we have the conclusion:

w /∈ ndfR(zL) ∪ incR(zL) (i.e., DADzL = DzL(w) ̸= ⊥).

APPENDIX B. APPENDIX FOR CHAPTER 5 148

B.6 Computation of Clarke Subderivatives

B.6.1 Lemmas (Basic)

Definition B.48. Let A ⊆ Rn and x ∈ Rn (where A does not need to contain x). For B ⊆ Rn, we
say that A has B-directions around x if for all b ∈ B, there is δ > 0 such that {x+ tb | t ∈ (0, δ)} ⊆ A.
We say that A has sufficient directions around x if A has B-directions around x for some B ⊆ Rn

with span(B) = Rn, where span(B) ≜ {
∑k
i=1tibi | k ∈ N, ti ∈ R, bi ∈ B} denotes the span of B.

Lemma B.49. Let A ⊆ Rn and x ∈ Rn.

1. If x ∈ int(A), then A has Rn-directions around x.

2. Let α ∈ {±1}, ε ∈ R>0 ∪ {∞}, and f : Rn → R. If f is differentiable at x and

A = {y ∈ Rn | α · (f(y)− f(x)) ∈ (0, ε)},

then A has B-directions around x for

B ≜ {y ∈ Rn | α · (Df(x) · y) ∈ (0,∞)}.

3. Let A′, B ⊆ Rn. If A has B-directions around x and A ⊆ A′, then A′ has B-directions around x.

4. Let A′, B,B′ ⊆ Rn. If A has B-directions around x and A′ has B′-directions around x, then
(A ∩A′) has (B ∩B′)-directions around x.

5. If A has B-directions around x for some nonempty, open B ⊆ Rn, then A has sufficient
directions around x.

Proof. The proofs of (1), (3), and (4) are straightforward, so we omit them.

Proof of (2). Consider the setup stated above. Assume that f is differentiable at x, and let b ∈ B.
We want to show there is δ > 0 such that {x+ tb | t ∈ (0, δ)} ⊆ A. We show this when α = 1; we
omit the case when α = −1, as the proof is similar. Observe that since f is differentiable at x, there
is δ′ > 0 such that for all h ∈ Rn,

0 < ∥h∥ < δ′ =⇒ |f(x+ h)− f(x)−Df(x) · h|
∥h∥

<
Df(x) · b

2∥b∥
, (B.30)

where ∥ · ∥ denotes the ℓ2-norm. Here we used Df(x) · b > 0 and ∥b∥ > 0, which hold by b ∈ B and
the definition of B.

We claim that {x+ tb | t ∈ (0, δ)} ⊆ A holds for the following choice of δ:

δ ≜ min
{ δ′

∥b∥
,

2ε

3(Df(x) · b)

}
> 0.

APPENDIX B. APPENDIX FOR CHAPTER 5 149

To show this, consider any t ∈ (0, δ). It suffices to show x+ tb ∈ A. Observe that for h = tb, we have
0 < ∥h∥ = ∥tb∥ < δ∥b∥ ≤ (δ′/∥b∥) · ∥b∥ = δ′. Hence, Eq. (B.30) implies that

∣∣f(x+ tb)− f(x)−Df(x) · (tb)
∣∣ < ∥tb∥ · 1

2∥b∥ (Df(x) · b) =
1
2 (Df(x) · b)t,

0 < 1
2 (Df(x) · b)t < f(x+ tb)− f(x) < 3

2 (Df(x) · b)t < ε,

where the second line uses Df(x) · b > 0 and t < δ ≤ 2
3ε/(Df(x) · b). From this, and by the definition

of A, we have x+ tb ∈ A as desired.

Proof of (5). This follows from the fact that the span of any nonempty, open set in Rn is Rn.

Lemma B.50. Let f, g : Rn → Rm, A ⊆ Rn, and x ∈ Rn. Suppose that f = g on A ∪ {x}, A has
sufficient directions around x, and f and g are differentiable at x. Then,

Df(x) = Dg(x).

Proof. Consider the setup stated above. Since A has sufficient directions around x, there is B ⊆ Rn

such that A has B-directions around x and span(B) = Rn. We claim that Df(x) · b = Dg(x) · b for
all b ∈ B. Note that this claim implies the conclusion: by the claim and span(B) = Rn, we have
Df(x) · v = Dg(x) · v for all v ∈ Rn, and so Df(x) = Dg(x).

We now prove the above claim. Let b ∈ B. Note that it suffices to show:

∥(Df(x)−Dg(x)) · b∥ < ∥b∥ε for all ε > 0,

since this implies (Df(x)−Dg(x)) · b = 0, where ∥ · ∥ denotes the ℓ2-norm. Let ε > 0. Since f and
g are differentiable at x, there is δ > 0 such that for any t ∈ (0, δ),

∥f(x+ tb)− f(x)−Df(x) · (tb)∥
∥tb∥

<
ε

2
,

∥g(x+ tb)− g(x)−Dg(x) · (tb)∥
∥tb∥

<
ε

2
. (B.31)

Also, since b ∈ B, there is δ′ > 0 such that {x+ tb | t ∈ (0, δ′)} ⊆ A. Fix t ≜ min{δ, δ′}/2 > 0. Then,
we obtain the desired equation based on this t:

∥∥(Df(x)−Dg(x)) · b∥∥ =
1

t

∥∥(Df(x)−Dg(x)) · (tb)∥∥
=

1

t

∥∥(f(x+ tb)− f(x)−Df(x) · (tb)
)
−
(
f(x+ tb)− f(x)−Dg(x) · (tb)

)∥∥
=

1

t

∥∥(f(x+ tb)− f(x)−Df(x) · (tb)
)
−
(
g(x+ tb)− g(x)−Dg(x) · (tb)

)∥∥
=

1

t

(∥∥f(x+ tb)− f(x)−Df(x) · (tb)
∥∥+ ∥∥g(x+ tb)− g(x)−Dg(x) · (tb)

∥∥)
=

1

t
·
(ε
2
+
ε

2

)
∥tb∥ = ∥b∥ε,

APPENDIX B. APPENDIX FOR CHAPTER 5 150

where the third line uses that f = g on A ∪ {x} (by assumption) and x+ tb ∈ A (by t < δ′), and
the last line uses Eq. (B.31) (by t < δ).

Lemma B.51. Let n ∈ N, {di ∈ N}i∈[n] such that d1 < · · · < dn, and {fi : Rdi−1 → R}i∈[n]. Then,
for any c ∈ Rn, there is u ∈ Rdn such that

fi(u1, . . . , udi−1) + udi = ci for all i ∈ [n].

Proof. The proof proceeds by induction on n.

Case n = 1. For any c ∈ R, u ≜ (0, . . . , 0, c− f1(0, . . . , 0)) ∈ Rd1 satisfies the desired equation.

Case n > 1. Let c ∈ Rn. By induction hypothesis on n − 1, there is v ∈ Rdn−1 such that
fi(v1, . . . , vdi−1) + vdi = ci for all i ∈ [n − 1]. Define u ≜ (v, 0, . . . , 0, cn − fn(v, 0, . . . , 0)) ∈ Rdn .
Then, u satisfies the desired equations, since (u1, . . . , udn−1) = v by dn−1 < dn.

B.6.2 Lemmas (Technical)

In the following subsections, we consider a piecewise-C1 (not piecewise-differentiable) representation of
each σl,i, using the same notation in the previous sections. Formally, we make the following definitions.

Definition B.52. For each (l, i) ∈ Idx, let

{(Ikl,i, σkl,i)}k∈[Kl,i]

be a piecewise-C1 representation of σl,i : R→ R that defines DADσl,i, where Kl,i ∈ N, Ikl,i ⊆ R, and
σkl,i : R→ R. We assume that the representation satisfies:

⋃
k∈[Kl,i]

bd(Ikl,i) =
⋃

k∈[Kl,i]

pbd(Ikl,i) = ncdf(σl,i),

where ncdf(f) ⊆ R denotes the set of real numbers at which f : R → R is not continuously
differentiable. If DADσl,i is consistent, we further assume that the representation satisfies the following:

int(Ikl,i) ̸= ∅ for all k ∈ [Kl,i].

Note that such a representation always exists by Theorem B.4. Based on these new representations
{(Ikl,i, σkl,i)}k∈[Kl,i], we define Γ, Rγ , yγl , z

γ
l , and σγl for γ ∈ Γ and l ∈ [L], as we defined them in

§B.1.2; we omit their definitions here.

Since we consider a piecewise-C1 (not piecewise-differentiable) representation of σl,i, we have
Lemma B.53 (shown below) that is stronger than Lemma B.9. Moreover, Lemmas B.8 and B.10–B.12

APPENDIX B. APPENDIX FOR CHAPTER 5 151

continue to hold under the new representations; the proofs are exactly the same as before, so we
omit them.

Lemma B.53. For all l ∈ [L] and γ ∈ Γ, yl and zl are continuous, and yγl and zγl are C1.

Proof. The continuity of yl and zl follows directly from that τl′ , πl′ , and σl′,i′ are continuous for all
(l′, i′) ∈ Idx. Similarly, the continuous differentiability of yγl and zγl follows directly from that τl′ , πl′ ,
and σk

′

l′,i′ are C1 for all (l′, i′) ∈ Idx and k′ ∈ [Kl′,i′].

B.6.3 Theorems 5.10 and 5.17 (Main Lemmas)

Lemma B.54. Let γ ∈ Γ and w ∈ Rγ. Suppose that for all l ∈ [L], if τl does not have bias
parameters, then yl,i(w) /∈ pbd(Iγ(l,i)l,i) for all i ∈ [Nl]. Also, assume that DADσl,i is consistent for
all (l, i) ∈ Idx. Then,

int(Rγ) has sufficient directions around w.

Proof. First, observe that

int(Rγ) = int
(⋂

(l,i)∈Idx

{
w′ ∈ RW | yl,i(w′) ∈ Iγ(l,i)l,i

})
= int

(⋂
(l,i)∈Idx

{
w′ ∈ RW | yγl,i(w

′) ∈ Iγ(l,i)l,i

})
=

⋂
(l,i)∈Idx

int
({
w′ ∈ RW | yγl,i(w

′) ∈ Iγ(l,i)l,i

})
⊇

⋂
(l,i)∈Idx

Al,i for Al,i ≜
{
w′ ∈ RW | yγl,i(w

′) ∈ int(Iγ(l,i)l,i)
}
,

where the second line uses Lemma B.10, the third line uses that int(U ∩V) = int(U)∩ int(V) for any
U, V ⊆ Rn, and the fourth line uses that int(f−1(U)) ⊇ f−1(int(U)) for any U ⊆ Rm and continuous
f : Rn → Rm. Note that Al,i is open, since int(Iγ(l,i)l,i) is open and yγl,i is continuous (by Lemma B.53).

Next, we show that it suffices to find some Bl,i ⊆ RW for every (l, i) ∈ Idx such that

(i) Al,i has Bl,i-directions around w, and

(ii)
⋂

(l,i)∈IdxBl,i is nonempty and open.

Suppose that there are such Bl,i’s. By applying Lemma B.49-(4) to (i), we have

⋂
(l,i)∈IdxAl,i has

⋂
(l,i)∈IdxBl,i-directions around w.

By applying Lemma B.49-(3) to the above and
⋂

(l,i)∈IdxAl,i ⊆ int(Rγ), we have

int(Rγ) has
⋂

(l,i)∈IdxBl,i-directions around w.

APPENDIX B. APPENDIX FOR CHAPTER 5 152

By applying Lemma B.49-(5) to the above and (ii), we obtain the desired conclusion:

int(Rγ) has sufficient directions around w.

What remains is to show that there is Bl,i satisfying (i) and (ii). We claim that the Bl,i defined
below satisfies (i) and (ii):

Bl,i =

RW if w ∈ Al,i

{v ∈ RW | αl,i · (Dyγl,i(w) · v) ∈ (0,∞)} if w /∈ Al,i,

where αl,i ∈ {±1} is defined as

αl,i =

1 if w /∈ Al,i and yγl,i(w) = inf Iγ(l,i)l,i

−1 if w /∈ Al,i and yγl,i(w) = sup Iγ(l,i)l,i .

Before proving (i) and (ii), we point out that Bl,i is well-defined. In particular, Dyγl,i(w) exists since
yγl,i is differentiable (by Lemma B.53); and αl,i is well-defined (i.e., the cases in the definition of αl,i
covers all possible cases) since w /∈ Al,i implies

yγl,i(w) ∈ pbd(Iγ(l,i)l,i) = {inf Iγ(l,i)l,i , sup Iγ(l,i)l,i }. (B.32)

Here the equality comes from that Iγ(l,i)l,i is an interval in R, and the inclusion comes from:

yγl,i(w) = yl,i(w), yγl,i(w) /∈ int(Iγ(l,i)l,i), yl,i(w) ∈ Iγ(l,i)l,i , (B.33)

where the first equation is by Lemma B.11 and w ∈ Rγ , the second equation by w /∈ Al,i, and the
third equation by w ∈ Rγ .

We now prove that the Bl,i defined above satisfies (i) and (ii).

Proof of (i). Consider (l, i) ∈ Idx. If w ∈ Al,i, then Al,i has RW -directions around w by
Lemma B.49-(1), since w ∈ int(Al,i) = Al,i (as Al,i is open); hence, (i) holds for this case. For the
other case, suppose that w /∈ Al,i. Let εl,i ∈ R ∪ {∞} be the length of the interval Iγ(l,i)l,i . Then,

εl,i > 0, Al,i = {v ∈ RW | αl,i · (yγl,i(v)− y
γ
l,i(w)) ∈ (0, εl,i)}.

Here the former holds, since we have int(Iγ(l,i)l,i) ̸= ∅ (by Definition B.52) and that DADσl,i is
consistent (by assumption). The latter holds, since int(Iγ(l,i)l,i) is either (yγl,i(w), y

γ
l,i(w) + εl,i) or

(yγl,i(w) − ε, yγl,i(w)) by w /∈ Al,i and Eq. (B.32). By these two observations, and since yγl,i is
differentiable, Lemma B.49-(2) is applicable to (Al,i, Bl,i, w) and directly implies (i).

APPENDIX B. APPENDIX FOR CHAPTER 5 153

Proof of (ii). First,
⋂

(l,i)∈IdxBl,i is open as desired, since every Bl,i is open and Idx is finite.
Second, we show that

⋂
(l,i)∈IdxBl,i is nonempty. Let Idx′ ≜ {(l, i) ∈ Idx | w /∈ Al,i}. By the definition

of Bl,i, what we want to show is that for some v′ ∈ RW ,

αl,i · (Dyγl,i(w) · v
′) > 0 for all (l, i) ∈ Idx′.

Since αl,i ̸= 0 for all (l, i) ∈ Idx′, it suffices to show that for some v′ ∈ RW ,

Dyγl,i(w) · v
′ = αl,i for all (l, i) ∈ Idx′. (B.34)

To prove this, we analyze the above equation as follows. Consider any (l, i) ∈ Idx′. Then, we have
w /∈ Al,i, which implies yl,i(w) ∈ pbd(Iγ(l,i)l,i) by Eqs. (B.32) and (B.33). From this, τl has bias
parameters (by assumption). So, for all v = (v1, . . . , vW) ∈ RW ,

yγl,i(v) = τl,i
(
zγl−1(v), πl(v)

)
= τl,i

(
zγl−1(v1, . . . , vW ′ , 0, . . . , 0), (vW ′+1, . . . , vW ′+Wl

)
)

= τ ′l,i
(
zγl−1(v1, . . . , vW ′ , 0, . . . , 0), (vW ′+1, . . . , vW ′+(Wl−Nl)

)
+ vW ′+(Wl−Nl+i), (B.35)

where the second line uses W ′ ≜W1 + · · ·+Wl−1 and the fact that zγl−1 depends only on the parame-
ters of τ1, . . . , τl−1, and the third line uses that τl has bias parameters. Let ψl,i ≜W ′ +(Wl−Nl+ i).
Since the first term in Eq. (B.35) does not depend on vψl,i

, . . . , vW , the following holds for all j ≥ ψl,i:

(
Dyγl,i(w)

)
j
=

1 if j = ψl,i

0 if j > ψl,i.

From this, the following holds for all v ∈ RW :

Dyγl,i(w) · v =
∑
j∈[W]

(
Dyγl,i(w)

)
j
· vj = fl,i(v1, . . . , vψl,i−1) + vψl,i

,

where fl,i : Rψl,i−1 → R is defined as fl,i(u) ≜
∑
j∈[ψl,i−1]

(
Dyγl,i(w)

)
j · uj . Hence, what we planned

to show (i.e., Eq. (B.34) holds for some v′ ∈ RW) is equivalent to the following: for some v′ ∈ RW ,

fl,i(v
′
1, . . . , v

′
ψl,i−1) + v′ψl,i

= αl,i for all (l, i) ∈ Idx′. (B.36)

Since ψl,i ̸= ψl′,i′ for any (l, i) ̸= (l′, i′), Lemma B.51 implies that there is v′ ∈ RW satisfying
Eq. (B.36). This proves (ii), and concludes the proof.

Lemma B.55. Let γ ∈ Γ and w ∈ Rγ. Suppose that int(Rγ) has sufficient directions around w.

APPENDIX B. APPENDIX FOR CHAPTER 5 154

Then,

DADzL(w) =

DzL(w) if DzL(w) ̸= ⊥

limn→∞DzL(w
′
n) for some w′

n → w if DzL(w) = ⊥.

Proof. Let γ ∈ Γ and w ∈ Rγ such that int(Rγ) has sufficient directions around w. By Lemmas B.11
and B.12,

zL(w
′) = zγL(w

′) ∧ DADzL(w
′) = DzγL(w

′) for all w′ ∈ Rγ . (B.37)

We prove the conclusion for each of the two cases: DzL(w) ̸= ⊥ and DzL(w) = ⊥.

Case 1: DzL(w) ̸= ⊥ (i.e., zL is differentiable at w). We want to show

DADzL(w) = DzL(w).

This holds as follows:
DADzL(w) = DzγL(w) = DzL(w),

where the first equality is by Eq. (B.37), and the second equality follows directly from Lemma B.50
applied to (zγL, zL,Rγ , w). Here Lemma B.50 is applicable since its preconditions are satisfied: zγL
is differentiable at w (by Lemma B.53); zL is differentiable at w (by assumption); zγL = zL on
int(Rγ) ∪ {w} (by Eq. (B.37)); and int(Rγ) has sufficient directions around w (by assumption).

Case 2: DzL(w) = ⊥ (i.e., zL is not differentiable at w). We want to show:

DADzL(w) = lim
n→∞

DzL(w
′
n) for some w′

n → w. (B.38)

Since int(Rγ) has sufficient directions around w (by assumption), there is {w′
n ∈ int(Rγ)}n∈N such

that w′
n → w. We show that these w′

n satisfy Eq. (B.38) as follows:

DADzL(w) = DzγL(w) = lim
n→∞

DzγL(w
′
n) = lim

n→∞
DzL(w

′
n),

where the first equality is by Eq. (B.37), the second equality uses that DzγL is continuous (by
Lemma B.53), and the third equality uses that DzγL(w

′
n) = DzL(w

′
n) for all n (since w′

n ∈ int(Rγ)
and zγL = zL on Rγ by Eq. (B.37)). This concludes the proof.

B.6.4 Theorems 5.10 and 5.17 (Main Proofs)

Theorem 5.10. If zL has bias parameters and DADσl,i is consistent for all (l, i) ∈ Idx, then for all

APPENDIX B. APPENDIX FOR CHAPTER 5 155

w ∈ RW ,

DADzL(w) =

DzL(w) if DzL(w) ̸= ⊥

limn→∞DzL(w
′
n) for some w′

n → w if DzL(w) = ⊥.

This implies that DADzL is a Clarke subderivative of zL.

Proof. This theorem is a special case of Theorem 5.17; we omit the proof.

Theorem 5.17. Let w ∈ RW and assume that DADσl,i is consistent for all (l, i) ∈ Idx. If
yl,i(w) /∈ ncdf(σl,i) for all (l, i) ∈ Idx such that τl does not have bias parameters, then

DADzL(w) =


DzL(w) if DzL(w) ̸= ⊥

limn→∞DzL(w
′
n)

for some w′
n → w

if DzL(w) = ⊥

and so DADzL(w) is a Clarke subderivative of zL at w.

Proof. Let w ∈ RW that satisfies the assumption in the statement. By Lemma B.8, there is γ ∈ Γ such
that w ∈ Rγ . Note that Lemma B.54 is applicable to (γ,w) because: DADσl,i is consistent for all (l, i) ∈
Idx (by assumption); and for all l ∈ [L], if τl does not have bias parameters, then yl,i(w) /∈ ncdf(σl,i)

and so yl,i(w) /∈ pbd(Iγ(l,i)l,i) for all i ∈ [Nl], where the former follows from the assumption and the
latter from pbd(Iγ(l,i)l,i) ⊆ ncdf(σl,i) (by Definition B.52). Hence, Lemma B.54 implies that int(Rγ)
has sufficient directions around w, which subsequently implies the conclusion by Lemma B.55.

Appendix C

Appendix for Chapter 6

C.1 Problem: Deferred Proof

Theorem 6.2. Problem 6.1 is NP-hard.

Proof. We prove the NP-hardness of Problem 6.1 (the memory-accuracy tradeoff problem) by reducing
the knapsack problem (which is NP-hard) to the tradeoff problem. More precisely, we prove that the
knapsack problem can be solved in polynomial time if we assume an oracle for the tradeoff problem.

Recall the knapsack problem: given n items with weights wi ∈ N and profits pi ∈ N (i ∈ [n]), and
given a threshold W ∈ N, decide which items to choose such that the total profit of the chosen items
is maximized while their total weight does not exceed W . That is, find α ∈ {0, 1}n that maximizes∑
i∈[n] αipi subject to

∑
i∈[n] αiwi ≤W. This problem is well-known to be NP-hard [79].

Given an instance of the knapsack problem (w, p,W), we construct an instance of the tradeoff
problem as follows.

• Notations. The following construct uses a constant k ∈ N and floating-point formats
fphi, fp lo ∈ FP (one for high precision and the other for low precision). Below we will specify the
conditions they should satisfy, and show that some k, fphi, and fp lo indeed satisfy the conditions.
We write rndhi(·) and rndlo(·) as shorthand for rndfphi

(·) and rndfp lo
(·).

• Training setups. We consider a very simple setting for training: the gradient descent al-
gorithm with a learning rate η = 2−l (l ∈ N) is applied for just one epoch; all parameters
are initialized to 0 and their master copies are represented in fphi; and the negative loss of a
model on training data (i.e., −L(fθ(x), y) using notations to be described below) is used as
the accuracy of the model. Here l ∈ N can be any natural number.

• Model and loss networks. A model networkM and a loss network L are given as Figure C.1,
where M has n parameter tensors θi ∈ Rwi of size wi (i ∈ [n]). For an input-output pair

156

APPENDIX C. APPENDIX FOR CHAPTER 6 157

⫶

𝑥! !∈ # .∑!∈ # ∑$∈ %! 𝑣#&!,$. 2() 𝑣*#&+ − 𝑦𝑣,,+ 𝜃+,$ ⋅ 𝑣+ .$∈ %"

𝑣,,#

𝜃+,$.$∈ %"

𝜃#,$ ⋅ 𝑣# .$∈ %#

𝜃#,$.$∈ %#

𝑦

𝑣,∈ℝ# 𝑣+∈ℝ

𝑣#∈ℝ

𝜃#∈ℝ%#

𝜃+∈ℝ%"

𝑣*#∈ℝ%#

𝑣#&+∈ℝ%" 𝑣*#&+∈ℝ 𝑣*#&*∈ℝ

𝑦∈ℝ

⫶
⫶

split conv

conv

sum loss

ℳ ℒ

Figure C.1: The model networkM and the loss network L used in the proof of Theorem 6.2.

(x, y) ∈ Rn × R, M and L compute a predicted output fθ(x) ∈ R and a loss L(fθ(x), y) ∈ R
as follows (assuming that no rounding functions are applied):

fθ(x) =
∆
∑
i∈[n]

∑
j∈[wi]

θi,jxi, L(fθ(x), y) =
∆ 2−k|fθ(x)− y|.

Roughly speaking, M is (a variant of) a linear classifier and L is a ℓ1-loss (scaled by 2−k).

• Training data. Training data consists of a single input-output pair (x, y) ∈ Rn × R that
satisfies the following:

xi = rndlo(
√
pi/wi), y < −2−(k+l)

∑
i∈[n]

wix
2
i

for all i ∈ [n]. Here y can take any value as long as it satisfies the above inequality. Note that
xi can be different from

√
pi/wi since the latter value may not be representable in fp lo.

• Precision-candidate assignment. A precision-candidate assignment C : TS× {hi, lo} → FP

is given as:
C(t, hi) =∆ fphi, C(t, lo) =∆ fp lo for all t ∈ TS.

That is, for all tensors, fphi is used as a high-precision format and fphi as a low-precision format.
Here fphi and fp lo should satisfy the following:

ehi ≥ elo, mhi ≥ mlo, (C.1)

|rndlo(s)− s| < |s| · err for all s ∈ S1, (C.2)

rndlo(s) = 0 for all s ∈ S2, (C.3)

rndhi(s) = s for all s ∈ S2 ∪ S3. (C.4)

Here ehi and mhi (and elo and mlo) denote the number of exponent bits and mantissa bits of fphi

APPENDIX C. APPENDIX FOR CHAPTER 6 158

(and fp lo), and err and Sj are defined as: err =∆ 1/(6n ·maxi∈[n]pi), S1 =∆ {
√
pi/wi | i ∈ [n]},

S2 =∆ {2−k} ∪ {2−kxi | i ∈ [n]}, and S3 =∆ {2−(k+l)xi | i ∈ [n]}. Eq. (C.2) says that the relative
error of representing each s ∈ S1 in fp lo should be less than err . Eq. (C.3) says that each
s ∈ S2 should underflow to 0 when represented in fp lo. Eq. (C.4) says that each s ∈ S2 ∪ S3

should be representable in fphi.

• Low-precision ratio. A lower bound r ∈ [0, 1] on the low-precision ratio is given as:

r =∆ max
{
0, 1− 2W + 1

size(TS)

}
∈ [0, 1].

So r decreases linearly as W increases.

We make three points on the above construction.

• First, each part of the knapsack problem (w, p,W) is used in the following parts of the con-
struction: wi is used mainly in the size of the parameter tensor θi; pi in the input xi; and W
in the lower bound r.

• Second, there exist k ∈ N and fphi, fp lo ∈ FP that satisfy Eqs. (C.1)–(C.4). This can be shown
as follows: first, by taking sufficiently many exponent and mantissa bits for fp lo, we can make
Eq. (C.2) satisfied; next, by taking a sufficiently large k, we can make Eq. (C.3) satisfied; finally,
by taking sufficiently many exponent and mantissa bits for fphi, we can make Eq. (C.1) and
Eq. (C.4) satisfied (since xi is representable in fp lo and 2−(k+l) is a power of two).

• Third, some well-known models (e.g., ShuffleNet-v2) have a similar structure to M in that
they apply the following operations as a subroutine: split a tensor into multiple tensors, apply
some operators to each split tensor, and combine the resulting tensors into a single tensor.

We now prove that the knapsack problem (w, p,W) can be solved in polynomial time, if an oracle to
the above tradeoff problem is given. Suppose that π ∈ Π(C) is an optimal solution to the above tradeoff
problem (given by the oracle). Define an item selection α ∈ {0, 1}n for the knapsack problem as:

αi =
∆

1 if π(dθi) = π(dvn+i) = π(dv2n+1) = fphi

0 otherwise

for each i ∈ [n]. Note that α can be constructed from π in linear time. Thus, it suffices to show that α is
an optimal solution to the knapsack problem (w, p,W), which is equivalent to the following two claims:

• Claim 1: We have
∑
i∈[n] αiwi ≤W .

• Claim 2: For any α′ ∈ {0, 1}n with
∑
i∈[n] α

′
iwi ≤W , we have

∑
i∈[n] α

′
ipi ≤

∑
i∈[n] αipi.

APPENDIX C. APPENDIX FOR CHAPTER 6 159

We now prove each claim as follows.
Proof of Claim 1. If α = (0, . . . , 0), then the claim clearly holds. Suppose that α ̸= (0, . . . , 0).

Then,

1−
1 + 2

∑
i∈[n] αiwi

size(TS)
≥ ratio lo(π) ≥ r ≥ 1− 1 + 2W

size(TS)
.

Here the first inequality uses α ̸= (0, . . . , 0) and the definition of α and M; the second inequality
uses the fact that π is a valid solution to the above tradeoff problem; and the third inequality uses
the definition of r. Hence, the claim holds.

Proof of Claim 2. Suppose that the claim does not hold. Then, there exists α′ ∈ {0, 1}n such that

∑
i∈[n]

α′
iwi ≤W,

∑
i∈[n]

α′
ipi >

∑
i∈[n]

αipi.

Define a precision assignment π′ ∈ Π(C) as:

π′(dv2n+1) =
∆ fphi,

π′(dθi) =
∆ π′(dvn+i) =

∆ fphi for all i ∈ [n] with α′
i = 1,

π′(t) =∆ fp lo for all other t ∈ TS.

Then, we have ratio lo(π′) ≥ r by
∑
i∈[n] α

′
iwi ≤W and the definition of π′,M, and r. Hence, it suffices

to show acc(π) < acc(π′), because this would contradict to the fact that π is an optimal solution.
To show acc(π) < acc(π′), we prove the following two lemmas: the first lemma gives a closed

form of acc(π) and acc(π′), and the second lemma shows that
∑
i∈[n] βiwix

2
i is close to

∑
i∈[n] βipi

(where the former summation appears in acc(π) and acc(π′)).

Lemma C.1. The following hold:

acc(π) = 2−ky + 2−(2k+l)
∑
i∈[n]

αiwix
2
i , acc(π′) = 2−ky + 2−(2k+l)

∑
i∈[n]

α′
iwix

2
i .

Proof. We prove the equation for acc(π) only, since the equation for acc(π′) can be proved similarly.
First, we show that for all i ∈ [n] and j ∈ [wi],

d̂θi,j = αi · 2−kxi. (C.5)

Pick any i ∈ [n] and j ∈ [wi]. Note that by the definition ofM, we have

d̂θi,j = rndπ(dθi)

(
rndπ(dvn+i)(rndπ(dv2n+1)(2

−k)) · rndvi(rndv0(xi))
)

= rndπ(dθi)

(
rndπ(dvn+i)(rndπ(dv2n+1)(2

−k)) · xi
)
,

APPENDIX C. APPENDIX FOR CHAPTER 6 160

where the second equality uses Eq. (C.1) and that xi is representable in fp lo. We prove Eq. (C.5) by case
analysis on αi. Suppose αi = 1. Then, by the definition of αi, π(dθi) = π(dvn+i) = π(dv2n+1) = fphi.
From this, we get the desired equation:

d̂θi,j = rndhi

(
rndhi(rndhi(2

−k)) · xi
)
= rndhi(2

−k · xi) = 2−kxi,

where the last two equalities use Eq. (C.4). Suppose now αi = 0. Then, by the definition of αi, at
least one of π(dθi), π(dvn+i), and π(dv2n+1) is fp lo. If π(dvn+i) = fp lo or π(dv2n+1) = fp lo, we get
the desired equation:

d̂θi,j = rndπ(dθi)

(
rndlo(2

−k) · xi
)
= rndπ(dθi)(0 · xi) = 0,

where the first equality uses Eq. (C.1) and Eq. (C.4), and the second equality uses Eq. (C.3). The
remaining case is when π(dvn+i) = π(dv2n+1) = fphi and π(dθi) = fp lo. We get the desired equation
in this case as well:

d̂θi,j = rndlo

(
rndhi(rndhi(2

−k)) · xi
)
= rndlo(2

−k · xi) = 0,

where the second equality uses Eq. (C.4), and the last equality uses Eq. (C.3). Hence, we have proved
Eq. (C.5).

Next, let θi be the i-th parameter tensor before training starts, and θ′i be the corresponding tensor
after training ends (i ∈ [n]). Then, by the definition of the tradeoff problem constructed above, we
have θi,j = 0 and

θ′i,j = θi,j − rndhi(2
−l · d̂θi,j) = 0− rndhi(2

−l · (αi · 2−kxi)) = αi · (−2−(k+l)xi),

where the second equality uses Eq. (C.5) and the third equality uses Eq. (C.4). Using this equation,
we finally obtain the conclusion of this lemma:

acc(π) = −L(fθ′(x), y)

= −2−k
∣∣∣y −∑

i∈[n]

∑
j∈[wi]

θ′i,jxi

∣∣∣
= −2−k

∣∣∣y −∑
i∈[n]

∑
j∈[wi]

αi · (−2−(k+l)xi) · xi
∣∣∣

= −2−k
∣∣∣y + ∑

i∈[n]

αi · 2−(k+l)wix
2
i

∣∣∣
= 2−k

(
y +

∑
i∈[n]

αi · 2−(k+l)wix
2
i

)

APPENDIX C. APPENDIX FOR CHAPTER 6 161

= 2−ky + 2−(2k+l)
∑
i∈[n]

αiwix
2
i ,

where the first two equalities use the definition of accuracy, and the second last equality uses the
definition of y. This concludes the proof of the lemma. ■

Lemma C.2. For any β ∈ {0, 1}n,∣∣∣ ∑
i∈[n]

βiwix
2
i −

∑
i∈[n]

βipi

∣∣∣ < 1

2
.

Proof. We first show that for any i ∈ [n],

|wix2i − pi| <
1

2n
.

Pick any i ∈ [n]. By Eq. (C.2) and the definition of xi, we have

∣∣∣xi −√ pi
wi

∣∣∣ <√ pi
wi
· 1

6n ·maxj∈[n] pj
≤
√
pi
wi
· 1

6npi
.

From this, we have√
pi
wi

(
1− 1

6npi

)
< xi <

√
pi
wi

(
1 +

1

6npi

)
,

pi
wi

(
1− 1

6npi

)2
< x2i <

pi
wi

(
1 +

1

6npi

)2
.

From this, we obtain the desired result:

|wix2i − pi| < pi

((
1 +

1

6npi

)2
− 1
)
= pi

(1

3npi
+

1

(6npi)2

)
< pi

(1

3npi
+

1

6npi

)
= pi ·

1

2npi
=

1

2n
,

where the second inequality uses 6npi > 1 (as n, pi ∈ N).
Using this result, we can show the conclusion as follows:∣∣∣ ∑

i∈[n]

βiwix
2
i −

∑
i∈[n]

βipi

∣∣∣ = ∣∣∣ ∑
i∈[n]

βi(wix
2
i − pi)

∣∣∣ ≤ ∑
i∈[n]

|βi| · |wix2i − pi| <
∑
i∈[n]

1

2n
=

1

2
,

where the last inequality uses |βi| ≤ 1. This completes the proof of the lemma. ■

Using the two lemmas, we now prove acc(π) < acc(π′). By Lemma C.2 and
∑
i∈[n] αipi

<
∑
i∈[n] α

′
ipi, we have

∑
i∈[n]

αiwix
2
i <

∑
i∈[n]

αipi +
1

2
≤
∑
i∈[n]

α′
ipi −

1

2
<
∑
i∈[n]

α′
iwix

2
i ,

where the second inequality comes from αi, α
′
i ∈ {0, 1} and pi ∈ N. From this, and by Lemma C.1,

APPENDIX C. APPENDIX FOR CHAPTER 6 162

we obtain acc(π) < acc(π′) as desired. This concludes the proof of Claim 2, thereby finishing the
proof of the theorem.

Remark C.3. In the proof of Theorem 6.2, we proved the NP-hardness of Problem 6.1 by making
use of only a few limited aspects of the problem. For instance, we used the fact that some values
representable in a high-precision format round to zero in a low-precision format; on the other hand,
many other values representable in a high-precision format round to non-zero values in a low-precision
format, and this indeed occurs in practical training (even more frequently than underflows). Also,
we used a simple setting for training in which a gradient descent algorithm is applied for one epoch,
training data consist of one input-output pair, and test data is the same as training data; on the
other hand, in practical training, a gradient descent algorithm is applied for many epochs, training
data consists of many input-output pairs, and test data is different from training data.

Problem 6.1 is general enough so that it embraces all the aforementioned aspects of floating-points
and training, including those that are not considered in the proof of Theorem 6.2. Since those aspects
are likely to make the problem even more difficult, we conjecture that the problem would be more
intractable than being NP-hard.

C.2 Experiments: Deferred Details

The datasets we use have the following licenses:

• CIFAR-10 and CIFAR-100: These datasets are under the MIT license.

• ImageNet: This dataset can be used “only for non-commercial research and educational pur-
poses.” For more details, see its webpage [145].

The implementations of models we use have the following licenses:

• SqueezeNet for CIFAR-10 and CIFAR-100: We adapt an implementation of the model in a
public GitHub repository [119], whose license information is not available.

• ShuffleNet-v2, MobileNet-v2, and ResNet-18 for CIFAR-10 and CIFAR-100: We adapt an imple-
mentation of these models in a public GitHub repository [86], which is under the MIT license.

• ShuffleNet-v2 for ImageNet and ImageNet-200-i: We adapt an implementation of the model
in the torchvision library [122], which is under the BSD 3-Clause license.

The details of how we train models are as follows:

• Four models on CIFAR-10 and CIFAR-100: We train the four models with a standard setup [86].
In particular, we run the (non-Nesterov) SGD optimizer for 200 epochs with minibatch size of
128 (over 1 GPU), learning rate of 0.1, momentum of 0.9, weight decay of 5×10−4, and the cosine

APPENDIX C. APPENDIX FOR CHAPTER 6 163

annealing scheduler for learning rate. For dynamic loss scaling, we use initial scale of 216, growth
factor of 2, back-off factor of 0.5, and growth interval of 1 epoch, as suggested in PyTorch [121].

• ShuffleNet-v2 on ImageNet: We train the model with the default setup given in PyTorch’s
GitHub repository [123], except that we use larger minibatch size and learning rate as
in [55, 78, 85, 124] to reduce the wall-clock time of training. In particular, we run the
(non-Nesterov) SGD optimizer for 90 epochs with minibatch size of 1024 (over 16 GPUs),
learning rate of 0.4, momentum of 0.9, weight decay of 10−4, and the cosine annealing scheduler
for learning rate. For dynamic loss scale, we use initial scale of 216, growth factor of 2, back-off
factor of 0.5, and growth interval of 0.5 epoch, as suggested in PyTorch [121].

• ShuffleNet-v2 on ImageNet-200-i: We train the model with the same settings for ImageNet
except that we use the default values for minibatch size and learning rate given in [123], i.e.,
minibatch size of 256 (over 4 GPUs) and learning rate of 0.1.

C.3 Experiments: Deferred Results

C.3.1 Comparison with Existing Precision Assignments

Figure C.2 presents a zoomed-in version of Figure 6.3 (left).
Figure C.3 presents results omitted in Figure 6.4: training results of smaller variant models (which

have width multiplier 0.5 or 0.1) on CIFAR-100 with πfp32, πunif , πop, πop′ , and πours,r. The figure
shows similar results to Figure 6.4: the results for the variant models with width multiplier 0.5 (and
0.1) are similar to those for the original models (and the variant models with width multiplier 0.25).

Figures C.4 and C.5 show the average training trajectories for the configurations presented in
Figures 6.4 and C.3.

Figures C.6 and C.7 present the same results as Figures 6.3 and 6.4 except the following: in the
former, πop and πop′ are equipped with our precision promotion technique, whereas in the latter
they do not so. Figures C.6 and C.7 do not include πunif because this assignment with the precision
promotion is identical to πours,1.

C.3.2 Ablation Study: Precision Demotion and Promotion

Figure C.9 presents results omitted in Figure 6.5: training results of ResNet-18 on CIFAR-100 with
πours,r, πours[inc],r, and πours[rand],r. The figure shows similar results to Figure 6.5 except that it shows
smaller differences in memory-accuracy tradeoff between the three precision assignments.

Figure C.10 presents results omitted in Figure 6.6: training results of four models on CIFAR-10
with πours,r and πours[no-promo],r. The figure shows similar results to Figure 6.6 except that the
training of ResNet-18 on CIFAR-10 does not diverge even with πours[no-promo],r for all r values.

APPENDIX C. APPENDIX FOR CHAPTER 6 164

Figure C.2: A zoomed-in version of Figure 6.3 (left). Results of training ShuffleNet-v2 on ImageNet
with πfp32, πunif [104], πop [147], πop′ [78], and πours,r. Each line shows the average training
trajectory for each precision assignment; πours,r is colored from navy to yellow (darker for smaller r).

APPENDIX C. APPENDIX FOR CHAPTER 6 165

(a) CIFAR-100, SqueezeNet‡ (b) CIFAR-100, SqueezeNet¶

(c) CIFAR-100, ShuffleNet-v2‡ (d) CIFAR-100, ShuffleNet-v2¶

(e) CIFAR-100, MobileNet-v2‡ (f) CIFAR-100, MobileNet-v2¶

(g) CIFAR-100, ResNet-18‡ (h) CIFAR-100, ResNet-18¶

Figure C.3: Results continued from Figure 6.4. Memory-accuracy tradeoffs of πunif [104], πop [147],
πop′ [78], and πours,r for smaller variants of four models on CIFAR-100. The variant models have
width multiplier 0.5 (marked by ‡) or 0.1 (marked by ¶). Top-right points are better than bottom-left
ones. In all but one plots, there are •s above and to the right of and , respectively; even in
the one plot (g), •s have almost the same tradeoffs to and . In three of all plots, ⋆ has much
smaller y-values than other points; ⋆ is missing in (h) as its y-value is too small.

APPENDIX C. APPENDIX FOR CHAPTER 6 166

(a) CIFAR-10, SqueezeNet (b) CIFAR-100, SqueezeNet (c) CIFAR-100, SqueezeNet†

(d) CIFAR-10, ShuffleNet-v2 (e) CIFAR-100, ShuffleNet-v2 (f) CIFAR-100, ShuffleNet-v2†

(g) CIFAR-10, MobileNet-v2 (h) CIFAR-100, MobileNet-v2 (i) CIFAR-100, MobileNet-v2†

(j) CIFAR-10, ResNet-18 (k) CIFAR-100, ResNet-18 (l) CIFAR-100, ResNet-18†

Figure C.4: Training trajectories for the configurations shown in Figure 6.4. Each line shows the
average training trajectory for each precision assignment. πours,r is colored from navy to yellow
(darker for smaller r).

APPENDIX C. APPENDIX FOR CHAPTER 6 167

(a) CIFAR-100, SqueezeNet‡ (b) CIFAR-100, SqueezeNet¶

(c) CIFAR-100, ShuffleNet-v2‡ (d) CIFAR-100, ShuffleNet-v2¶

(e) CIFAR-100, MobileNet-v2‡ (f) CIFAR-100, MobileNet-v2¶

(g) CIFAR-100, ResNet-18‡ (h) CIFAR-100, ResNet-18¶

Figure C.5: Training trajectories for the configurations shown in Figure C.3. Each line shows the
average training trajectory for each precision assignment. πours,r is colored from navy to yellow
(darker for smaller r).

APPENDIX C. APPENDIX FOR CHAPTER 6 168

Figure C.6: Results corresponding to Figure 6.3. The only difference from Figure 6.3 is that πop
and πop′ here are equipped with our precision promotion technique, whereas πop and πop′ in the
previous figure do not so.

APPENDIX C. APPENDIX FOR CHAPTER 6 169

(a) CIFAR-10, SqueezeNet (b) CIFAR-100, SqueezeNet (c) CIFAR-100, SqueezeNet†

(d) CIFAR-10, ShuffleNet-v2 (e) CIFAR-100, ShuffleNet-v2 (f) CIFAR-100, ShuffleNet-v2†

(g) CIFAR-10, MobileNet-v2 (h) CIFAR-100, MobileNet-v2 (i) CIFAR-100, MobileNet-v2†

(j) CIFAR-10, ResNet-18 (k) CIFAR-100, ResNet-18 (l) CIFAR-100, ResNet-18†

Figure C.7: Results corresponding to Figure 6.4. The only difference from Figure 6.4 is that πop
and πop′ here are equipped with our precision promotion technique, whereas πop and πop′ in the
previous figure do not so.

APPENDIX C. APPENDIX FOR CHAPTER 6 170

(a) CIFAR-100, SqueezeNet‡ (b) CIFAR-100, SqueezeNet¶

(c) CIFAR-100, ShuffleNet-v2‡ (d) CIFAR-100, ShuffleNet-v2¶

(e) CIFAR-100, MobileNet-v2‡ (f) CIFAR-100, MobileNet-v2¶

(g) CIFAR-100, ResNet-18‡ (h) CIFAR-100, ResNet-18¶

Figure C.8: Results corresponding to Figure C.3. The only difference from Figure C.3 is that πop
and πop′ here are equipped with our precision promotion technique, whereas πop and πop′ in the
previous figure do not so.

APPENDIX C. APPENDIX FOR CHAPTER 6 171

(a) ResNet-18

Figure C.9: Results continued from Figure 6.5. Memory-accuracy tradeoffs of πours,r, πours[inc],r,
and πours[rand],r for ResNet-18 on CIFAR-100. Observe that •s are above and to the right of other
points in nearly all cases.

APPENDIX C. APPENDIX FOR CHAPTER 6 172

(a) CIFAR-10, SqueezeNet

(b) CIFAR-10, ShuffleNet-v2

(c) CIFAR-10, MobileNet-v2

(d) CIFAR-10, ResNet-18

Figure C.10: Results continued from Figure 6.6. Training four models on CIFAR-10 with πours,r
and πours[no-promo],r. Column 1: Training trajectories of πours[no-promo],r for different r; colors denote
r values (darker for smaller r). Column 2: Top-5 overflow ratios of tensors at each epoch, for
the highlighted trajectory in (a); the largest ratio is blue and the fifth largest red. Column 3:
Memory-accuracy tradeoffs of πours,r and πours[no-promo],r. Column 4: Low-precision ratio when
training ends vs. when training starts, for πours,r and πours[no-promo],r.

Bibliography

[1] M. Abadi and G. D. Plotkin. A simple differentiable programming language. Proceedings of
the ACM on Programming Languages, 4(POPL):38:1–38:28, 2020.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. G.
Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker,
V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous distributed
systems. arXiv:1603.04467, 2016.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. A.
Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A system
for large-scale machine learning. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 265–283, 2016.

[4] M. Andersch, G. Palmer, R. Krashinsky, N. Stam, V. Mehta, G. Brito, and S. Ramaswamy.
NVIDIA Hopper architecture in-depth. https://developer.nvidia.com/blog/nvidia-

hopper-architecture-in-depth/, 2022. Accessed on July 2023.

[5] R. Banner, I. Hubara, E. Hoffer, and D. Soudry. Scalable methods for 8-bit training of neural
networks. In Annual Conference on Neural Information Processing Systems (NeurIPS), pages
5151–5159, 2018.

[6] E. T. Barr, T. Vo, V. Le, and Z. Su. Automatic detection of floating-point exceptions. In
ACM Symposium on Principles of Programming Languages (POPL), pages 549–560, 2013.

[7] G. Barthe, R. Crubillé, U. D. Lago, and F. Gavazzo. On the versatility of open logical relations:
Continuity, automatic differentiation, and a containment theorem. In European Symposium
on Programming (ESOP), pages 56–83, 2020.

173

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

BIBLIOGRAPHY 174

[8] P. I. Barton, K. A. Khan, P. Stechlinski, and H. A. J. Watson. Computationally relevant
generalized derivatives: Theory, evaluation and applications. Optimization Methods and
Software, 33(4-6):1030–1072, 2018.

[9] A. G. Baydin, B. A. Pearlmutter, and J. M. Siskind. Diffsharp: An AD library for .NET
languages. In International Conference on Algorithmic Differentiation (AD), 2016. URL
https://arxiv.org/abs/1611.03423.

[10] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation
in machine learning: A survey. Journal of Machine Learning Research, 18:153:1–153:43, 2017.

[11] F. Benz, A. Hildebrandt, and S. Hack. A dynamic program analysis to find floating-point
accuracy problems. In ACM Symposium on Programming Language Design and Implementation
(PLDI), pages 453–462, 2012.

[12] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian,
D. Warde-Farley, and Y. Bengio. Theano: A CPU and GPU math compiler in Python. In
Python in Science Conference (SciPy), pages 18–24, 2010.

[13] D. Bertoin, J. Bolte, S. Gerchinovitz, and E. Pauwels. Numerical influence of ReLU’(0) on
backpropagation. In Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 468–479, 2021.

[14] J. Björck, X. Chen, C. De Sa, C. P. Gomes, and K. Weinberger. Low-precision reinforcement
learning: Running soft actor-critic in half precision. In International Conference on Machine
Learning (ICML), pages 980–991, 2021.

[15] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. A static analyzer for large safety-critical software. In ACM Symposium on
Programming Language Design and Implementation (PLDI), pages 196–207, 2003.

[16] S. Boldo, C.-P. Jeannerod, G. Melquiond, and J.-M. Muller. Floating-point arithmetic. Acta
Numerica, 32:203–290, 2023.

[17] J. Bolte and E. Pauwels. Conservative set valued fields, automatic differentiation, stochastic
gradient method and deep learning. Mathematical Programming, 188:19–51, 2020.

[18] J. Bolte and E. Pauwels. A mathematical model for automatic differentiation in machine
learning. In Annual Conference on Neural Information Processing Systems (NeurIPS), pages
10809–10819, 2020.

[19] J. Bolte, R. Boustany, E. Pauwels, and B. Pesquet-Popescu. On the complexity of nonsmooth au-
tomatic differentiation. In International Conference on Learning Representations (ICLR), 2023.

https://arxiv.org/abs/1611.03423

BIBLIOGRAPHY 175

[20] A. Brunel, D. Mazza, and M. Pagani. Backpropagation in the simply typed lambda-calculus with
linear negation. Proceedings of the ACM on Programming Languages, 4(POPL):64:1–64:27, 2020.

[21] R. L. Burden, J. D. Faires, and A. M. Burden. Numerical analysis. Cengage learning, 10th
edition, 2015.

[22] L. Cambier, A. Bhiwandiwalla, T. Gong, O. H. Elibol, M. Nekuii, and H. Tang. Shifted and
squeezed 8-bit floating point format for low-precision training of deep neural networks. In
International Conference on Learning Representations (ICLR), 2020.

[23] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K.
Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki, R. Sankaran, S. Shende, and C. S. Yoo.
Terascale direct numerical simulations of turbulent combustion using S3D. Computational
Science and Discovery, page 015001, 2009.

[24] W. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalakrishnan, and Z. Rakamaric.
Rigorous floating-point mixed-precision tuning. In ACM Symposium on Principles of
Programming Languages (POPL), pages 300–315, 2017.

[25] W.-F. Chiang, G. Gopalakrishnan, Z. Rakamaric, and A. Solovyev. Efficient search for inputs
causing high floating-point errors. In ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 43–52, 2014.

[26] B. Chmiel, L. Ben-Uri, M. Shkolnik, E. Hoffer, R. Banner, and D. Soudry. Neural gradients
are near-lognormal: Improved quantized and sparse training. In International Conference on
Learning Representations (ICLR), 2021.

[27] J. Choi, Z. Wang, S. Venkataramani, P. I. Chuang, V. Srinivasan, and K. Gopalakrishnan. PACT:
Parameterized clipping activation for quantized neural networks. arXiv:1805.06085, 2018.

[28] F. H. Clarke. Generalized gradients and applications. Transactions of the American
Mathematical Society, 205:247–262, 1975.

[29] F. H. Clarke. Optimization and nonsmooth analysis. Classics in Applied Mathematics:
Volume 5. SIAM, 1990.

[30] P. Collingbourne, C. Cadar, and P. H. J. Kelly. Symbolic crosschecking of floating-point and
simd code. In European Conference on Computer Systems (EuroSys), pages 315–328, 2011.

[31] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A Matlab-like environment for
machine learning. In NIPS BigLearn Workshop, 2011.

BIBLIOGRAPHY 176

[32] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect: Training deep neural networks
with binary weights during propagations. In Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 3123–3131, 2015.

[33] Y. Cui and J.-S. Pang. Modern nonconvex nondifferentiable optimization. MOS-SIAM Series
on Optimization. SIAM, 2021.

[34] C. Daramy-Loirat, D. Defour, F. de Dinechin, M. Gallet, N. Gast, and J.-M. Muller.
CR-Libm, a library of correctly rounded elementary functions in double-precision. Available
at https://ens-lyon.hal.science/ensl-01529804/document, 2005.

[35] E. Darulova and V. Kuncak. Sound compilation of reals. In ACM Symposium on Principles
of Programming Languages (POPL), pages 235–248, 2014.

[36] E. Darulova and V. Kuncak. Towards a compiler for reals. ACM Transactions on Programming
Languages and Systems, 39(2):8:1–8:28, 2017.

[37] A. Das, I. Briggs, G. Gopalakrishnan, S. Krishnamoorthy, and P. Panchekha. Scalable yet
rigorous floating-point error analysis. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), page 51, 2020.

[38] D. Das, N. Mellempudi, D. Mudigere, D. Kalamkar, S. Avancha, K. Banerjee, S. Sridharan,
K. Vaidyanathan, B. Kaul, E. Georganas, A. Heinecke, P. Dubey, J. Corbal, N. Shustrov,
R. Dubtsov, E. Fomenko, and V. Pirogov. Mixed precision training of convolutional neural
networks using integer operations. In International Conference on Learning Representations
(ICLR), 2018.

[39] M. Daumas and G. Melquiond. Certification of bounds on expressions involving rounded
operators. ACM Transactions on Mathematical Software, 37(1):2:1–2:20, 2010.

[40] D. Davis, D. Drusvyatskiy, S. M. Kakade, and J. D. Lee. Stochastic subgradient method
converges on tame functions. Foundations of Computational Mathematics, 20(1):119–154, 2020.

[41] F. de Dinechin, C. Q. Lauter, and G. Melquiond. Certifying the floating-point implementation
of an elementary function using Gappa. IEEE Transactions on Computers, 60(2):242–253, 2011.

[42] T. J. Dekker. A floating-point technique for extending the available precision. Numerische
Mathematik, 18(3):224–242, 1971.

[43] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine. Towards an industrial
use of FLUCTUAT on safety-critical avionics software. In International Workshop on Formal
Methods for Industrial Critical Systems (FMICS), pages 53–69, 2009.

https://ens-lyon.hal.science/ensl-01529804/document

BIBLIOGRAPHY 177

[44] M. Drumond, T. LIN, M. Jaggi, and B. Falsafi. Training DNNs with hybrid block floating
point. In Annual Conference on Neural Information Processing Systems (NeurIPS), pages
451–461, 2018.

[45] S. Duplichan. Intel overstates FPU accuracy. http://notabs.org/fpuaccuracy/, 2013.
Accessed on July 2023.

[46] A. Edelman. The mathematics of the Pentium division bug. SIAM Review, 39(1):54–67, 1997.

[47] C. Elliott. The simple essence of automatic differentiation. Proceedings of the ACM on
Programming Languages, 2(ICFP):70:1–70:29, 2018.

[48] S. Fox, S. Rasoulinezhad, J. Faraone, david boland, and P. Leong. A block minifloat
representation for training deep neural networks. In International Conference on Learning
Representations (ICLR), 2021.

[49] R. Frostig, M. Johnson, and C. Leary. Compiling machine learning programs via high-level
tracing. In SysML Conference, 2018.

[50] Z. Fu and Z. Su. Achieving high coverage for floating-point code via unconstrained programming.
In ACM Symposium on Programming Language Design and Implementation (PLDI), pages
306–319, 2017.

[51] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A survey of
quantization methods for efficient neural network inference. In Low-Power Computer Vision:
Improving the Efficiency of Artificial Intelligence, pages 291–326. CRC Press, 2022. URL
https://arxiv.org/abs/2103.13630.

[52] D. Goldberg. What every computer scientist should know about floating point arithmetic.
ACM Computing Surveys, 23(1):5–48, 1991.

[53] E. Goubault and S. Putot. Weakly relational domains for floating-point computation analysis.
In International Workshop on Numerical and Symbolic Abstract Domains (NSAD), 2005.

[54] E. Goubault, S. Putot, P. Baufreton, and J. Gassino. Static analysis of the accuracy in control
systems: Principles and experiments. In International Workshop on Formal Methods for
Industrial Critical Systems (FMICS), pages 3–20, 2007.

[55] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,
and K. He. Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv:1706.02677,
2017.

[56] A. Griewank and A. Walther. Evaluating derivatives: Principles and techniques of algorithmic
differentiation. SIAM, 2nd edition, 2008.

http://notabs.org/fpuaccuracy/
https://arxiv.org/abs/2103.13630

BIBLIOGRAPHY 178

[57] H. Guo and C. Rubio-González. Exploiting community structure for floating-point precision tun-
ing. In International Symposium on Software Testing and Analysis (ISSTA), page 333–343, 2018.

[58] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with limited numeri-
cal precision. In International Conference on Machine Learning (ICML), pages 1737–1746, 2015.

[59] J. L. Gustafson and I. T. Yonemoto. Beating floating point at its own game: Posit arithmetic.
The Journal of Supercomputing Frontiers and Innovations, 4(2):71–86, 2017.

[60] L. Haller, A. Griggio, M. Brain, and D. Kroening. Deciding floating-point logic with systematic
abstraction. In Formal Methods in Computer-Aided Design (FMCAD), pages 131–140, 2012.

[61] J. Harrison. Floating-point verification in HOL Light: The exponential function. Formal
Methods in System Design, 16(3):271–305, 2000.

[62] J. Harrison. Formal verification of floating point trigonometric functions. In Formal Methods
in Computer-Aided Design (FMCAD), pages 217–233, 2000.

[63] J. Harrison, T. Kubaska, S. Story, and P. T. P. Tang. The computation of transcendental
functions on the IA-64 architecture. Intel Technology Journal, 4:234–251, 1999.

[64] J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. R. Rice, H. G.
Thacher, and C. Witzgall. Computer approximations. John Wiley & Sons, 1968.

[65] L. Hascoët and V. Pascual. The Tapenade automatic differentiation tool: Principles, model,
and specification. ACM Transactions on Mathematical Software, 39(3):20:1–20:43, 2013.

[66] J. R. Hauser. Handling floating-point exceptions in numeric programs. ACM Transactions
on Programming Languages and Systems, 18(2):139–174, 1996.

[67] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[68] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2nd edition, 2002.

[69] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. MobileNets: Efficient convolutional neural networks for mobile vision applications.
arXiv:1704.04861, 2017.

[70] M. Huot, S. Staton, and M. Vákár. Correctness of automatic differentiation via diffeologies
and categorical gluing. In International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS), pages 319–338, 2020.

BIBLIOGRAPHY 179

[71] M. Huot, A. K. Lew, V. K. Mansinghka, and S. Staton. ωPAP spaces: Reasoning denotationally
about higher-order, recursive probabilistic and differentiable programs. In ACM/IEEE
Symposium on Logic in Computer Science (LICS), 2023.

[72] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <1mb model size. arXiv:1602.07360,
2016.

[73] IEEE Computer Society. IEEE standard for floating-point arithmetic (IEEE Std 754-2019), 2019.

[74] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko.
Quantization and training of neural networks for efficient integer-arithmetic-only inference. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2704–2713, 2018.

[75] A. Jacot, C. Hongler, and F. Gabriel. Neural tangent kernel: Convergence and generalization in
neural networks. In Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 8580–8589, 2018.

[76] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S. Guadarrama, and
T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In International
Conference on Multimedia (MM), pages 675–678, 2014.

[77] S. M. Kakade and J. D. Lee. Provably correct automatic sub-differentiation for qualified
programs. In Annual Conference on Neural Information Processing Systems (NeurIPS), pages
7125–7135, 2018.

[78] D. D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee, S. Avancha, D. T.
Vooturi, N. Jammalamadaka, J. Huang, H. Yuen, J. Yang, J. Park, A. Heinecke, E. Georganas,
S. Srinivasan, A. Kundu, M. Smelyanskiy, B. Kaul, and P. Dubey. A study of BFLOAT16
for deep learning training. arXiv:1905.12322, 2019.

[79] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103, 1972.

[80] K. A. Khan and P. I. Barton. A vector forward mode of automatic differentiation for
generalized derivative evaluation. Optimization Methods and Software, 30(6):1185–1212, 2015.

[81] P. Kidger and T. Lyons. Universal approximation with deep narrow networks. In Conference
on Learning Theory (COLT), pages 2306–2327, 2020.

[82] D. E. Knuth. The art of computer programming, Volume II: Seminumerical algorithms.
Addison-Wesley, 3rd edition, 1998.

BIBLIOGRAPHY 180

[83] F. Krawiec, S. P. Jones, N. Krishnaswami, T. Ellis, R. A. Eisenberg, and A. W. Fitzgibbon.
Provably correct, asymptotically efficient, higher-order reverse-mode automatic differentiation.
Proceedings of the ACM on Programming Languages, 6(POPL):48:1–48:30, 2022.

[84] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.
URL https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf. Accessed
on July 2023.

[85] A. Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv:1404.5997,
2014.

[86] kuangliu. https://github.com/kuangliu/pytorch-cifar, 2021.

[87] K. Lakhotia, N. Tillmann, M. Harman, and J. de Halleux. FloPSy: Search-based floating point
constraint solving for symbolic execution. In International Conference on Testing Software
and Systems (ICTSS), pages 142–157, 2010.

[88] T. Laurent and J. von Brecht. The multilinear structure of ReLU networks. In International
Conference on Machine Learning (ICML), pages 2914–2922, 2018.

[89] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[90] W. Lee, R. Sharma, and A. Aiken. Verifying bit-manipulations of floating-point. In ACM
Symposium on Programming Language Design and Implementation (PLDI), pages 70–84, 2016.

[91] W. Lee, R. Sharma, and A. Aiken. On automatically proving the correctness of math.h imple-
mentations. Proceedings of the ACM on Programming Languages, 2(POPL):47:1–47:32, 2018.

[92] W. Lee, H. Yu, X. Rival, and H. Yang. On correctness of automatic differentiation for
non-differentiable functions. In Annual Conference on Neural Information Processing Systems
(NeurIPS), pages 6719–6730, 2020.

[93] W. Lee, S. Park, and A. Aiken. On the correctness of automatic differentiation for neural
networks with machine-representable parameters. In International Conference on Machine
Learning (ICML), pages 19094–19140, 2023.

[94] W. Lee, R. Sharma, and A. Aiken. Training with mixed-precision floating-point assignments.
Transactions on Machine Learning Research, 2023.

[95] M. Leeser, S. Mukherjee, J. Ramachandran, and T. Wahl. Make it real: Effective floating-point
reasoning via exact arithmetic. In Design, Automation, and Test in Europe (DATE), pages
1–4, 2014.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://github.com/kuangliu/pytorch-cifar

BIBLIOGRAPHY 181

[96] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural networks: A view
from the width. In Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 6232–6240, 2017.

[97] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. ShuffleNet V2: Practical guidelines for efficient CNN
architecture design. In European Conference on Computer Vision (ECCV), pages 122–138, 2018.

[98] D. Maclaurin, D. Duvenaud, and R. P. Adams. Autograd: Effortless gradients in Numpy. In
ICML AutoML Workshop, 2015.

[99] V. Magron, G. A. Constantinides, and A. F. Donaldson. Certified roundoff error bounds using
semidefinite programming. ACM Transactions on Mathematical Software, 43(4):34:1–34:31,
2017.

[100] P. Markstein. IA-64 and elementary functions: Speed and precision. Prentice Hall, 2000.

[101] D. Mazza and M. Pagani. Automatic differentiation in PCF. Proceedings of the ACM on
Programming Languages, 5(POPL):28:1–28:27, 2021.

[102] G. Melquiond. Floating-point arithmetic in the Coq system. Information and Computation,
216:14–23, 2012.

[103] H. Menon, M. O. Lam, D. Osei-Kuffuor, M. Schordan, S. Lloyd, K. Mohror, and J. Hittinger.
ADAPT: Algorithmic differentiation applied to floating-point precision tuning. In International
Conference for High Performance Computing, Networking, Storage and Analysis (SC), pages
48:1–48:13, 2018.

[104] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston,
O. Kuchaiev, G. Venkatesh, and H. Wu. Mixed precision training. In International Conference
on Learning Representations (ICLR), 2018.

[105] P. Micikevicius, D. Stosic, N. Burgess, M. Cornea, P. Dubey, R. Grisenthwaite, S. Ha,
A. Heinecke, P. Judd, J. Kamalu, N. Mellempudi, S. F. Oberman, M. Shoeybi, M. Y. Siu,
and H. Wu. FP8 formats for deep learning. arXiv:2209.05433, 2022.

[106] A. Miné. Abstract domains for bit-level machine integer and floating-point operations. In
Workshops on Automated Theory eXploration and on Invariant Generation (ATx/WInG),
pages 55–70, 2012. URL https://hal.science/hal-00748094.

[107] S. Misailovic, D. M. Roy, and M. C. Rinard. Probabilistically accurate program transformations.
In International Static Analysis Symposium (SAS), pages 316–333, 2011.

[108] J.-M. Muller. Elementary functions: Algorithms and implementation. Springer, 3rd edition,
2016.

https://hal.science/hal-00748094

BIBLIOGRAPHY 182

[109] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefevre, G. Melquiond,
N. Revol, and S. Torres. Handbook of floating-point arithmetic. Springer, 2nd edition, 2018.

[110] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van Baalen, and T. Blankevoort.
A white paper on neural network quantization. arXiv:2106.08295, 2021.

[111] G. C. Necula and S. Gulwani. Randomized algorithms for program analysis and verification.
In International Conference on Computer Aided Verification (CAV), page 1, 2005.

[112] A. Nötzli and F. Brown. Lifejacket: Verifying precise floating-point optimizations in LLVM. In
International Workshop on the State Of the Art in Program Analysis (SOAP), pages 24–29, 2016.

[113] Nvidia. Documentation of apex.amp. https://nvidia.github.io/apex/amp.html, 2019.
Accessed on July 2023.

[114] M. L. Overton. Numerical computing with IEEE floating point arithmetic. SIAM, 2001.

[115] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock. Automatically improving
accuracy for floating point expressions. In ACM Symposium on Programming Language Design
and Implementation (PLDI), pages 1–11, 2015.

[116] S. Park, C. Yun, J. Lee, and J. Shin. Minimum width for universal approximation. In
International Conference on Learning Representations (ICLR), 2021.

[117] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

[118] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative
style, high-performance deep learning library. In Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 8024–8035, 2019.

[119] G. Pathak. https://github.com/gsp-27/pytorch_Squeezenet, 2020.

[120] B. A. Pearlmutter and J. M. Siskind. Reverse-mode AD in a functional framework: Lambda
the ultimate backpropagator. ACM Transactions on Programming Languages and Systems,
30(2):7:1–7:36, 2008.

[121] PyTorch. Documentation of torch.amp. https://pytorch.org/docs/stable/amp.html,
2022. Accessed on July 2023.

[122] PyTorch. https://github.com/pytorch/vision/tree/main/torchvision/models, 2022.

https://nvidia.github.io/apex/amp.html
https://github.com/gsp-27/pytorch_Squeezenet
https://pytorch.org/docs/stable/amp.html
https://github.com/pytorch/vision/tree/main/torchvision/models

BIBLIOGRAPHY 183

[123] PyTorch. https://github.com/pytorch/vision/tree/main/references/classification,
2022.

[124] PyTorch. https://github.com/pytorch/vision/tree/main/references/

classification#resnext, 2022.

[125] H. Qin, Y. Ding, W. Fan, C. Leff, M. Bahri, and E. Shaw. Awesome model quantization.
https://github.com/htqin/awesome-model-quantization, 2022.

[126] A. Radul, A. Paszke, R. Frostig, M. J. Johnson, and D. Maclaurin. You only linearize once:
Tangents transpose to gradients. Proceedings of the ACM on Programming Languages, 7
(POPL):43:1–43:29, 2023.

[127] A. Rajagopal, D. A. Vink, S. I. Venieris, and C.-S. Bouganis. Multi-precision policy enforced
training (MuPPET): A precision-switching strategy for quantised fixed-point training of CNNs.
In International Conference on Machine Learning (ICML), pages 7943–7952, 2020.

[128] T. Ramananandro, P. Mountcastle, B. Meister, and R. Lethin. A unified Coq framework
for verifying C programs with floating-point computations. In International Conference on
Certified Programs and Proofs (CPP), pages 15–26, 2016.

[129] J. Revels, M. Lubin, and T. Papamarkou. Forward-mode automatic differentiation in Julia.
arXiv:1607.07892, 2016.

[130] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. A Series of Comprehensive Studies
in Mathematics: Volume 317. Springer Science & Business Media, 1998.

[131] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H. Bailey,
C. Iancu, and D. Hough. Precimonious: Tuning assistant for floating-point precision. In
International Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pages 27:1–27:12, 2013.

[132] C. Rubio-González, C. Nguyen, B. Mehne, K. Sen, J. Demmel, W. Kahan, C. Iancu,
W. Lavrijsen, D. H. Bailey, and D. Hough. Floating-point precision tuning using blame
analysis. In International Conference on Software Engineering (ICSE), page 1074–1085, 2016.

[133] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[134] C. D. Sa, M. Leszczynski, J. Zhang, A. Marzoev, C. R. Aberger, K. Olukotun, and C. Ré.
High-accuracy low-precision training. arXiv:1803.03383, 2018.

https://github.com/pytorch/vision/tree/main/references/classification
https://github.com/pytorch/vision/tree/main/references/classification#resnext
https://github.com/pytorch/vision/tree/main/references/classification#resnext
https://github.com/htqin/awesome-model-quantization

BIBLIOGRAPHY 184

[135] C. Sakr and N. Shanbhag. Per-tensor fixed-point quantization of the back-propagation
algorithm. In International Conference on Learning Representations (ICLR), 2019.

[136] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. MobileNetV2: Inverted
residuals and linear bottlenecks. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4510–4520, 2018.

[137] E. Schkufza, R. Sharma, and A. Aiken. Stochastic optimization of floating-point programs using
tunable precision. In ACM Symposium on Programming Language Design and Implementation
(PLDI), pages 53–64, 2014.

[138] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117,
2015.

[139] S. Scholtes. Introduction to piecewise differentiable equations. SpringerBriefs in Optimization.
Springer Science & Business Media, 2012.

[140] F. Seide and A. Agarwal. CNTK: Microsoft’s open-source deep-learning toolkit. In ACM
Conference on Knowledge Discovery and Data Mining (KDD), page 2135, 2016.

[141] E. Slusanschi and V. Dumitrel. ADiJaC – automatic differentiation of Java classfiles. ACM
Transactions on Mathematical Software, 43(2):9:1–9:33, 2016.

[142] T. Smeding and M. Vákár. Efficient dual-numbers reverse AD via well-known program trans-
formations. Proceedings of the ACM on Programming Languages, 7(POPL):54:1–54:28, 2023.

[143] A. Solovyev, C. Jacobsen, Z. Rakamaric, and G. Gopalakrishnan. Rigorous estimation of
floating-point round-off errors with symbolic Taylor expansions. In International Symposium
on Formal Methods (FM), pages 532–550, 2015.

[144] A. Solovyev, M. S. Baranowski, I. Briggs, C. Jacobsen, Z. Rakamaric, and G. Gopalakrishnan.
Rigorous estimation of floating-point round-off errors with symbolic Taylor expansions. ACM
Transactions on Programming Languages and Systems, 41(1):2:1–2:39, 2019.

[145] Stanford Vision Lab. https://image-net.org/download.php, 2020. Accessed on July 2023.

[146] P. H. Sterbenz. Floating-point computation. Prentice Hall, Englewood Cliffs, NJ, 1973.

[147] X. Sun, J. Choi, C.-Y. Chen, N. Wang, S. Venkataramani, V. V. Srinivasan, X. Cui, W. Zhang,
and K. Gopalakrishnan. Hybrid 8-bit floating point (HFP8) training and inference for deep
neural networks. In Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 4901–4910, 2019.

https://image-net.org/download.php

BIBLIOGRAPHY 185

[148] X. Sun, N. Wang, C.-Y. Chen, J. Ni, A. Agrawal, X. Cui, S. Venkataramani, K. El Maghraoui,
V. V. Srinivasan, and K. Gopalakrishnan. Ultra-low precision 4-bit training of deep neural
networks. In Annual Conference on Neural Information Processing Systems (NeurIPS), pages
1796–1807, 2020.

[149] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki, K. Uenishi, B. Vogel,
and H. Y. Vincent. Chainer: A deep learning framework for accelerating the research cycle. In
ACM Conference on Knowledge Discovery and Data Mining (KDD), pages 2002–2011, 2019.

[150] A. M. Turing. Rounding-off errors in matrix processes. The Quarterly Journal of Mechanics
and Applied Mathematics, 1(1):287–308, 1948.

[151] M. Vákár. Reverse AD at higher types: Pure, principled and denotationally correct. In
European Symposium on Programming (ESOP), pages 607–634, 2021.

[152] B. van Merrienboer, D. Moldovan, and A. B. Wiltschko. Tangent: Automatic differentiation
using source-code transformation for dynamically typed array programming. In Annual
Conference on Neural Information Processing Systems (NeurIPS), pages 6259–6268, 2018.

[153] J. von Neumann and H. H. Goldstine. Numerical inverting of matrices of high order: I.
Bulletin of the American Mathematical Society, 53(11):1021–1099, 1947.

[154] A. Walther and A. Griewank. Getting started with ADOL-C. In Combinatorial Scientific
Computing, chapter 7, pages 181–202. Chapman & Hall/CRC Computational Science, 2012.

[155] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan. Training deep neural
networks with 8-bit floating point numbers. In Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 7686–7695, 2018.

[156] K. Weihrauch. Computable analysis: An introduction. Springer, 2000.

[157] J. H. Wilkinson. Rounding errors in algebraic processes. Prentice Hall, 1963.

[158] J. H. Wilkinson. The algebraic eigenvalue problem. Oxford University Press, 1988.

[159] S. Wu, G. Li, F. Chen, and L. Shi. Training and inference with integers in deep neural
networks. In International Conference on Learning Representations (ICLR), 2018.

[160] C. Yang, Z. Wu, J. Chee, C. D. Sa, and M. Udell. How low can we go: Trading memory
for error in low-precision training. In International Conference on Learning Representations
(ICLR), 2022.

[161] G. Yang, T. Zhang, P. Kirichenko, J. Bai, A. G. Wilson, and C. De Sa. SWALP: Stochastic
weight averaging in low precision training. In International Conference on Machine Learning
(ICML), pages 7015–7024, 2019.

BIBLIOGRAPHY 186

[162] J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang, and X.-s. Hua. Quantization
networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
7308–7316, 2019.

[163] P. Zamirai, J. Zhang, C. R. Aberger, and C. D. Sa. Revisiting BFloat16 training.
arXiv:2010.06192, 2020.

[164] T. Zhang, Z. Lin, G. Yang, and C. D. Sa. QPyTorch: A low-precision arithmetic simulation
framework. arXiv:1910.04540, 2019.

[165] X. Zhang, S. Liu, R. Zhang, C. Liu, D. Huang, S. Zhou, J. Guo, Q. Guo, Z. Du, T. Zhi, and
Y. Chen. Fixed-point back-propagation training. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2327–2335, 2020.

[166] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou. DoReFa-Net: Training low bitwidth
convolutional neural networks with low bitwidth gradients. arXiv:1606.06160, 2016.

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Publications

	2 Background
	2.1 Floating-Point Formats and Numbers
	2.2 Floating-Point Operations and Rounding Errors

	3 Correctness of Highly Optimized Math Libraries
	3.1 Introduction
	3.2 Motivation
	3.3 Algorithm
	3.3.1 Core Language
	3.3.2 Symbolic Abstractions
	3.3.3 Construction of Symbolic Abstractions
	3.3.4 Computation of Precision Loss

	3.4 Case Studies
	3.4.1 The sin Implementation
	3.4.2 The tan Implementation
	3.4.3 The log Implementation

	3.5 Related Work
	3.6 Discussion
	3.7 Conclusion

	4 Correctness of Highly Accurate Math Libraries
	4.1 Introduction
	4.2 Motivation
	4.3 Abstraction
	4.3.1 Core Language
	4.3.2 Sound Abstractions
	4.3.3 Construction of Sound Abstractions

	4.4 Exploiting Exactness Properties
	4.4.1 Simple Exact Operations
	4.4.2 Sterbenz's Theorem
	4.4.3 Dekker's Theorem
	4.4.4 Nonzero Significand Bits
	4.4.5 Refined (1+)-property
	4.4.6 Ulp Error Bound

	4.5 Implementation
	4.6 Case Studies
	4.6.1 The exp Implementation
	4.6.2 The sin Implementation
	4.6.3 The tan Implementation
	4.6.4 The log Implementation

	4.7 Related Work
	4.8 Conclusion

	5 Correctness of Automatic Differentiation
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Notation and Definitions
	5.2.2 Neural Networks
	5.2.3 Automatic Differentiation
	5.2.4 Incorrect and Non-Differentiable Sets

	5.3 Neural Networks with Bias Parameters
	5.3.1 Characterization of the Incorrect Set
	5.3.2 Characterization of the Non-Differentiable Set
	5.3.3 Connection to Clarke Subderivatives

	5.4 Neural Networks without Bias Parameters
	5.4.1 Bounds for Non-Differentiable and Incorrect Sets
	5.4.2 Bounds for the Incorrect Set
	5.4.3 Conditions for Computing Standard Derivatives and Clarke Subderivatives

	5.5 Related Work
	5.6 Discussion
	5.7 Conclusion

	6 Acceleration of Deep Neural Network Training
	6.1 Introduction
	6.2 Problem
	6.2.1 Low-Precision Floating-Point Training
	6.2.2 Memory-Accuracy Tradeoff Problem
	6.2.3 NP-Hardness of the Problem

	6.3 Algorithm
	6.3.1 Precision Demotion for Saving Memory
	6.3.2 Precision Promotion for Handling Overflows

	6.4 Experiments
	6.4.1 Implementation
	6.4.2 Experiment Setups
	6.4.3 Comparison with Existing Precision Assignments
	6.4.4 Ablation Study: Precision Demotion and Promotion
	6.4.5 Choosing the Value of r

	6.5 Related Work
	6.6 Conclusion

	7 Conclusion
	A Appendix for Chapter 4
	A.1 Complete Definitions and Rules
	A.1.1 Definition of Operations on Abstractions
	A.1.2 Rules for Constructing Abstractions

	B Appendix for Chapter 5
	B.1 Formal Setup
	B.1.1 Piecewise-Analytic Functions
	B.1.2 Neural Networks
	B.1.3 Automatic Differentiation

	B.2 Upper Bounds on | ndf(zL) inc(zL) |
	B.2.1 Lemmas (Basic)
	B.2.2 Lemmas (Technical: Part 1)
	B.2.3 thm:ndf-inc-ubound-bias (Main Lemmas)
	B.2.4 thm:ndf-inc-ubound-bias (Main Proof)
	B.2.5 Lemmas (Technical: Part 2)
	B.2.6 thm:ndf-inc-ubound-nobias (Main Lemmas)
	B.2.7 thm:ndf-inc-ubound-nobias (Main Proof)

	B.3 Upper Bounds on | inc(zL) |
	B.3.1 Lemmas (Basic)
	B.3.2 Lemmas (Technical: Part 1)
	B.3.3 Lemmas (Technical: Part 2)
	B.3.4 thm:inc-zero-bias (Main Lemmas)
	B.3.5 thm:inc-zero-bias (Main Proof)
	B.3.6 Lemmas (Technical: Part 3)
	B.3.7 thm:inc-ubound-nobias (Main Lemma)
	B.3.8 thm:inc-ubound-nobias (Main Proof)

	B.4 Lower Bounds on | ndf(zL) | and | inc(zL) |
	B.4.1 thm:ndf-lbound-bias (Main Proof)
	B.4.2 thm:ndf-lbound-nobias (Main Proof)
	B.4.3 thm:inc-lbound-nobias (Main Proof)

	B.5 Computation of Standard Derivatives
	B.5.1 Lemmas (Basic)
	B.5.2 Lemmas (Technical: Part 1)
	B.5.3 Lemmas (Technical: Part 2)
	B.5.4 thm:cor-deriv-bias,thm:cor-deriv-nobias (Main Lemmas)
	B.5.5 thm:cor-deriv-bias,thm:cor-deriv-nobias (Main Proofs)

	B.6 Computation of Clarke Subderivatives
	B.6.1 Lemmas (Basic)
	B.6.2 Lemmas (Technical)
	B.6.3 thm:clarke-subdiff-bias,thm:clarke-subdiff-nobias (Main Lemmas)
	B.6.4 thm:clarke-subdiff-bias,thm:clarke-subdiff-nobias (Main Proofs)

	C Appendix for Chapter 6
	C.1 Problem: Deferred Proof
	C.2 Experiments: Deferred Details
	C.3 Experiments: Deferred Results
	C.3.1 Comparison with Existing Precision Assignments
	C.3.2 Ablation Study: Precision Demotion and Promotion

	Bibliography

