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ABSTRACT

Forward- or reverse-mode automatic differentiation (AD) is a popular algorithm
for computing the derivative of a function expressed by a program. AD always
outputs the correct derivative if a program does not use any non-differentiable
functions and control flows; however, it may return an arbitrary value otherwise.
In this work, we investigate what AD computes for neural networks that may
contain non-differentiable functions such as ReLU and maxpools. We first prove
that AD always returns a generalized derivative called a Clarke subderivative for
networks with pointwise activation functions, if the minibatch size is one and all
non-differentiable neurons have distinct bias parameters. We show that the same
conclusion does not hold otherwise, but does hold under some mild sufficient con-
ditions. We also prove similar results for more general networks that can use max-
pools and bias parameters shared across different neurons. We empirically check
our sufficient conditions over popular network architectures and observe that AD
almost always computes a Clarke subderivative in practical learning setups.

1 INTRODUCTION

Computing the derivative of a function represented by a program is a fundamental task in machine
learning as well as many other areas such as scientific computing (Baydin et al., 2017; Heath,
2018). Automatic differentiation is a class of algorithms for this computation that are based on
the chain rule, and has two popular “modes” called the forward mode and reverse mode (Griewank
and Walther, 2008). In particular, the reverse mode includes the backpropagation algorithm (Rumel-
hart et al., 1986) as a special case and is implemented in diverse machine learning frameworks such
as TensorFlow (Abadi et al., 2016), PyTorch (Paszke et al., 2017), and JAX (Frostig et al., 2018).
This paper studies these two modes of automatic differentiation, and we write them simply as AD.

The correctness of AD has been extensively studied for decades, especially with respect to the
standard derivative. For a program that consists of differentiable functions and no control flows
(e.g., if-else and while statements), AD is shown to compute the standard derivative of the function
represented by the program for all inputs (Elliott, 2018; Abadi and Plotkin, 2020; Brunel et al., 2020;
Barthe et al., 2020; Huot et al., 2020; Vákár, 2021). If a program starts to use non-differentiable
functions (e.g., ReLU) or control flows, however, AD might not compute the standard derivative for
some inputs (Kakade and Lee, 2018). Fortunately, even in this case, AD is shown to compute the
standard derivative for most inputs under mild conditions which often hold in practice. For instance,
Bolte and Pauwels (2020b); Lee et al. (2020); Mazza and Pagani (2021); Huot et al. (2023) proved
that for all practically-used programs, AD does not compute the standard derivative at most on a
measure-zero (i.e., negligible) subset of all real-valued inputs. In addition, Lee et al. (2023) studied
the density of such inputs over all machine-representable (e.g., floating-point) inputs, proving that
it is close to zero for many neural networks while it can be close to one if a network uses too many
non-differentiable functions.

These correctness results show that AD computes the standard derivative at most inputs, yet often
provide little information about what it computes at the remaining inputs. To better understand AD,
several works have studied its correctness with respect to various notions of generalized derivatives,
including the so-called Clarke subdifferential (Clarke, 1975). The Clarke subdifferential is one of
the most traditional, widely-used generalized derivatives, which extends the subgradients of convex
functions to non-convex functions and has been considered in several areas such as optimization
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Table 1: A summary of correctness results of AD, with respect to the Clarke subdifferential. We
put ✓ in the last column if the output of AD is always in the Clarke subdifferential, and ✗ otherwise.

Reference Distinct
bias params

Shared
bias params

Minibatch
of size one

Choice of
proxy derivatives

Without
maxpools

Always
correct?

Lee et al. (2023) ✓ ✓ ✓∗ ✓ ✓

Ours (Theorem 1) ✓ ✓ ✓† ✓ ✓
Ours (Lemma 2) ✓ ✓† ✓ ✗¶

Ours (Lemma 3) ✓ ✓† ✓ ✗¶

Ours (Theorem 4) ✓ ✓‡ ✓ ✓

Ours (Theorem 6) ✓ ✓‡ ✓ ✓
Ours (Lemma 7) ✓ ✓‡ ✗§

∗AD uses either D−ρ(x) or D+ρ(x) as the proxy derivative of a pointwise activation function ρ at x, where
D−ρ and D+ρ denote the left-hand and right-hand derivatives of ρ.
†AD uses an element of the Clarke subdifferential as the proxy derivative of ρ.
‡AD uses λD−ρ(x) + (1− λ)D+ρ(x) as the proxy derivative of ρ at x; λ ∈ [0, 1] is shared in a layer.
¶A sufficient condition for AD to be correct at the current parameter/input values is given in Theorem 5.
§A sufficient condition for AD to be correct at the current parameter/input values is given in Theorem 8.

and control theory (Clarke, 1990; Clarke et al., 1998). Some classical results such as (Clarke, 1990,
Chapter 2) and (Rockafellar and Wets, 1998, Chapter 10) showed that the Clarke subdifferential
enjoys the (exact) chain rule for certain classes of functions, implying that AD always computes
an element of the Clarke subdifferential when applied to a program consisting of these functions.
More recently, Lee et al. (2023) directly showed that AD always computes an element of the Clarke
subdifferential when applied to a certain class of neural networks.

The previous results on AD and the Clarke subdifferential, however, are not applicable to many
neural networks used in practice, e.g., networks that use non-differentiable functions (e.g., ReLU
and maxpools) together with convolution layers, some normalization layers (e.g., BatchNorm),
residual connections, or minibatches of inputs (Lee et al., 2023; Davis et al., 2020). This limitation
makes it still unclear what AD computes for practical neural networks especially with respect to
the Clarke subdifferential. We remark that some recent works such as (Bolte and Pauwels, 2020a;b;
Lee et al., 2020; Huot et al., 2023) proved the correctness of AD over all inputs, with respect to
fundamentally new notions of generalized derivatives (e.g., conservative or intensional derivatives);
but they did not study how the output of AD is connected to the Clarke subdifferential, an arguably
more popular notion of generalized derivatives.

Contributions. In this paper, we investigate what AD computes for neural networks in various
problem setups. As in practice, we assume that for each non-differentiable function (e.g., ReLU),
AD uses an element of its Clarke subdifferential as its “proxy derivative.” In this setting, our first
set of results is for neural networks with pointwise and piecewise-analytic activation functions (e.g.,
ReLU and HardSigmoid), which can be summarized as follows.

• Theorem 1 shows that AD always computes an element of the Clarke subdifferential, if the
minibatch size is one and all non-differentiable neurons have distinct bias parameters. This
generalizes the prior result in (Lee et al., 2023) which requires AD to use an element of the
Bouligand subdifferential1 for activation functions under a similar setup.

• Given this correctness result of AD with respect to the Clarke subdifferential, a natural question
arises: does the same conclusion hold under non-trivial minibatch sizes or the absence of bias
parameters? We prove this is not true. Lemmas 2 and 3 show that if the minibatch size is at least
two or bias parameters are absent, then AD can return a value not in the Clarke subdifferential
for some network, input, and parameter configuration.

• Then, without distinct bias parameters and the trivial minibatch size, when does AD compute
an element of the Clarke subdifferential? Theorem 4 shows that for networks with distinct bias
parameters, AD is always correct regardless of the minibatch size, as long as we choose proper

1The Bouligand subdifferential is a subset of the Clarke subdifferential. See Section 2.1 for their definitions.
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proxy derivatives. For fully-connected networks that might not have distinct bias parameters,
Theorem 5 provides an easily verifiable sufficient condition for checking the correctness of AD.

We next consider more general networks that can have shared bias parameters (e.g., as in convolu-
tional layers) and maxpools (i.e., non-pointwise activation functions), under general minibatch sizes.

• Theorem 6 shows that for networks with shared bias parameters and no maxpools, AD always
computes an element of the Clarke subdifferential as long as proper proxy derivatives are cho-
sen. Namely, AD is correct with respect to the Clarke subdifferential for modern convolutional
networks without maxpools. We also show that having shared bias parameters, no maxpools,
and proper proxy derivatives are all necessary for this correctness result (Lemmas 2, 3, and 7).

• Theorem 8 provides a sufficient condition for verifying the correctness of AD when networks
can have maxpools. Using our conditions in Theorems 5 and 8, we empirically check what AD
outputs for fully-connected and convolutional networks under practical learning setups. In our
experiments, we observe that AD successfully returns an element of the Clarke subdifferential
although the non-differentiable points of activation functions are often touched during training.

Organization. In Section 2, we introduce notations and problem setup including the formal defini-
tions of neural networks and AD. We present our main results on the correctness of AD for neural
networks in Section 3. In Section 4, we empirically verify our sufficient conditions and check
whether AD is correct under practical learning setups. We lastly conclude the paper in Section 5.

2 PROBLEM SETUP AND NOTATIONS

2.1 NOTATIONS

We first introduce the notations used in this paper. We use N and R to denote the set of positive
integers and that of real numbers. For n ∈ N, we use 1n ≜ (1, . . . , 1),0n ≜ (0, . . . , 0) ∈ Rn,
[n] ≜ {1, . . . , n}, and we treat x ∈ Rn as a column vector. For k,m1, . . . ,mk ∈ N and a tensor
v ∈ Rm1×···×mk , we use vi1,...,ik to denote the (i1, . . . , ik)-th coordinate of v. Under the same setup,
vi1,...,ij for j ∈ [k] denotes the (k − j)-dimensional tensor whose (a1, . . . , ak−j)-th coordinate is
vi1,...,ij ,a1,...,ak−j

. Likewise, for n ∈ N, f : Rn → Rm1×···×mk , and j ∈ [k], we use fi1,...,ij :
Rn → Rmj+1×···×mk to denote the function such that (f(x))i1,...,ij = fi1,...,ij (x) for all x ∈ Rn;
for j = k, we assume mj+1 × · · · ×mk = 1 by following the convention. For u = (u1, . . . , um)
and v = (v1, . . . , vn), u⊕v ≜ (u1, . . . , um, v1, . . . , vn) denotes the concatenation of u and v. For a
matrix A ∈ Rn×m whose i-th column is ai ∈ Rn, vec(A) ≜ a1 ⊕ · · · ⊕ am denotes a vectorization
of A. For k, n1, . . . , nk ∈ N, and given xi1,...,ik ∈ R for all ij ∈ [nj ] and j ∈ [k], we write
[xi1,...,ik ]i1∈[n1],...,ik∈[nk] to denote the k-dimensional tensor whose (i1, . . . , ik)-th coordinate is
xi1,...,ik ; we often use [xi1,...,ik ]i1,...,ik to denote this tensor when the range of i1, . . . , ik is clear
from the context. We write µn to denote the n-dimensional Lebesgue measure. We often use signs
+ and − to denote +1 and −1, respectively; for example, for s = − and x ∈ R, s · x is −x.

For f : Rn → Rm and x ∈ Rn at which f is differentiable, we use Df(x) ∈ Rm×n to denote
the Jacobian matrix of f at x, and use ndf(f) ⊂ Rn to denote the set of inputs at which f is not
differentiable. For f : R → R and s ∈ {−,+}, we use Dsf(x) ≜ limv→xs Df(v). Given locally
Lipschitz f : Rn → R, the Bouligand subdifferential of f at x ∈ Rn (Cui and Pang, 2021) is

∂Bf(x) ≜
{
s ∈ Rn : ∃v1, v2, . . . ∈ Rn \ ndf(f) such that vt → x and ∇f(vt)→ s

}
.

The Clarke subdifferential of locally Lipschitz f at x ∈ Rn (Clarke, 1990) is defined as the convex
hull of ∂Bf(x), which we denote by ∂Cf(x). By definition, we always have ∂Bf(x) ⊂ ∂Cf(x).

2.2 NEURAL NETWORKS

We define a neural network as follows. Given the number of layers L ∈ N, let N0 ∈ N be the
dimension of input data, Ml, Nl ∈ N be the dimensions of intermediate vectors at layer l ∈ [L],
Wl ∈ N be the number of parameters at layer l ∈ [L], and W ≜ W1 + · · ·+WL. Further, given the
minibatch size B ∈ N, and for each l ∈ [L], let τl : RN0×B × · · · ×RNl−1×B ×RWl → RMl×B be
an analytic pre-activation function and σl : RMl×B → RNl×B be a continuous activation function.
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We also use ℓ : RNL×B → R to denote an analytic loss function that maps the last layer’s output to
a scalar-valued loss. In this setup, we consider a neural network as a function of model parameters.
Specifically, given an input minibatch X ∈ RN0×B of size B, a neural network Ψ( · ;X) : RW → R
is defined recursively as follows: z0(w;X) ≜ X , and for all l ∈ [L],

Ψ(w;X) ≜ ℓ(zL(w;X)), zl(w;X) ≜ σl(yl(w;X)), yl(w;X) ≜ τl(z0:l−1(w;X), wl), (1)

where zi:j(w;X) ≜ (zi(w;X), . . . , zj(w;X)), w ≜ w1 ⊕ · · · ⊕wL, and wl ≜ (wl,1, . . . , wl,Wl
) ∈

RWl . Since the input minibatch X is fixed while we compute the derivative of Ψ with respect to w,
we often omit X and use Ψ(w), zl(w), and yl(w) to denote Ψ(w;X), zl(w;X), and yl(w;X).

We mainly focus on two classes of neural networks, where the first class is characterized as follows.
Definition 1. A function f : R → R is “piecewise-analytic” if f is continuous and there exist
n ∈ N, a partition {Ai}i∈[n] of R consisting of intervals with µ1(Ai) > 0 for all i, and analytic
functions {fi : R→ R}i∈[n] such that f = fi on Ai for all i ∈ [n].
Condition 1. A neural network Ψ satisfies Ml = Nl for all l ∈ [L], and

τl(x,wl) = fl(x, ul) or fl(x, ul) + bl1
⊤
B , σl

(
[xi,j ]i,j

)
= [ρl(xi,j)]i,j ,

where wl = ul or wl = ul ⊕ bl for some bl ∈ RNl , fl is an analytic function, and ρl : R → R is a
piecewise-analytic function for all l ∈ [L]. We say the network Ψ has “distinct bias parameters” if
τl(x,wl) = fl(x, ul) + bl1

⊤
B for all l ∈ [L] with non-differentiable ρl.

Here, bl denotes a vector of Nl bias parameters, where each bl,i is used in computing the i-th row of
τl’s output (i.e., the i-th neuron). The neural networks satisfying Condition 1 cover a wide range of
practical network architectures. For example, if fl(z0:l−1, ul) = Alzl−1 where ul is a vectorization
of some Al ∈ RNl×Nl−1 , then it represents a fully-connected layer. Likewise, fl in Condition 1
can represent attention layers (Vaswani et al., 2017), normalization layers (e.g., one-dimensional
BatchNorm, and LayerNorm) (Ioffe and Szegedy, 2015; Ba et al., 2016), and their compositions.
It can also express residual connections (He et al., 2016) as fl takes all previous activation tensors
z1:l−1. In addition, Condition 1 allows any pointwise and piecewise-analytic activation functions
such as ReLU and HardSigmoid. Thus, Condition 1 covers not only simple neural networks such
as fully-connected ones but also complex network architectures such as transformer-based ones.

Although Condition 1 can express a large class of practical networks, it cannot represent modern
convolutional neural networks. For example, convolutional networks often have a single bias pa-
rameter that is shared across multiple neurons in the same channel, whereas Condition 1 does not
allow such “shared” bias parameters. In addition, Condition 1 does not allow non-pointwise activa-
tion functions such as MaxPool2d. To cover these exceptional cases, we introduce Condition 2.
Definition 2. A function f : Rn → Rm is a “maxpool” if there exist I1, . . . , Im ⊂ [n] such that

f(x1, . . . , xn) =

(
max
i∈I1

xi, . . . ,max
i∈Im

xi

)
.

Condition 2. A neural network Ψ satisfies

τl(x,wl) = fl(x, ul) or fl(x, ul) +

Cl∑
c=1

bl,cAl,c, σl

(
[xi,j ]i,j

)
= ϕl

(
[ρl(xi,j)]i,j

)
,

where Cl ∈ N, wl = ul or wl = ul ⊕ bl for some bl = (bl,1, . . . , bl,Cl
) ∈ RCl , Al,c ∈ {0, 1}Ml×B

for all c ∈ [Cl], fl is an analytic function, ρl : R → R is a piecewise-analytic function, and
ϕl : RMl×B → RNl×B is a maxpool for all l ∈ [L]. We say the network Ψ has “shared bias
parameters” if

∑Cl

c=1 Al,c = 1Ml
1⊤
B for all l ∈ [L] with non-differentiable ρl. We say the network

Ψ “has only trivial maxpools” if ϕl is an identity map for all l ∈ [L].

Condition 2 allows shared bias parameters (which are used in, e.g., convolutional layers and two-
dimensional BatchNorm): bl denotes a vector of Cl bias parameters, where each bl,c is used in
computing the (i, k)-th output of τl (i.e., the i-th neuron for the k-th input) whenever (Al,c)i,k = 1.
Further, Condition 2 also allows non-pointwise activation functions (e.g., a composition of ReLU
and MaxPool2d). Hence, it covers modern convolutional neural networks which often use nor-
malization layers, maxpools, and residual connections. We note that Condition 2 with only trivial
maxpools is a generalization of Condition 1: consider the case that Ml = Nl = Cl, Al,c = ec1

⊤
B ,

and ϕl is an identity map for all l ∈ [L] and c ∈ [Cl], where ec denotes the c-th standard basis of
RCl . Also, having shared bias parameters is a generalization of having distinct bias parameters.
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2.3 AUTOMATIC DIFFERENTIATION

Automatic differentiation is a class of algorithms for computing the derivative of a function (rep-
resented by a program) based on the chain rule, and it has two popular modes: forward mode and
reverse mode. In this paper, AD refers to these two modes of automatic differentiation. Given a
neural network Ψ defined by Eq. (1) and an input minibatch X ∈ RN0×B , AD essentially computes

DADΨ( · ;X) : RW → RW

by applying the chain rule of differentiation to Eq. (1). In other words, for neural networks satisfying
Condition 1 (or Condition 2), DADΨ is defined as the product of Dτl and DADρl (and DADmaxn),
where maxn denotes the max function over Rn, and DADρl and DADmaxn denote the “proxy gradi-
ents” of ρl and maxn that AD uses in its computation. Here, the proxy gradients are necessary since
ρl and maxn are not differentiable in general, i.e., their (standard) derivatives might not exist at
some points. We assume DADρl(x) ∈ ∂Cρl(x) for all x ∈ R, which implies DADρl(x) = Dρl(x) for
all x /∈ ndf(ρl) since ρl is piecewise-analytic (see Lemma 9). We also assume DADmaxn(x) ≜ ei
for all x ∈ Rn, where i depends on x such that maxn(x) = xi, and ei denotes the i-th standard basis
of Rn.2 Many AD systems, including TensorFlow and PyTorch, fulfill these two assumptions for
all one-dimensional piecewise-analytic functions and all maxpool functions that are implemented in
the systems. The formal expression of DADΨ for neural networks Ψ can be found in Appendix B.

Throughout the paper, we say AD is “correct with respect to the Clarke subdifferential” (or simply,
“correct”) for a network Ψ, an input X , and parameters w if DADΨ(w;X) ∈ ∂CΨ(w;X). For a
fixed Ψ, we say AD is “always correct” if it is correct for all X and w.

3 MAIN RESULTS

We are now ready to present our main results on the correctness of AD for neural networks, which
consider various setups: the presence of bias parameters, the choice of the minibatch size, the choice
of the proxy gradients used by AD, and the presence of maxpools. We first introduce our analyses on
neural networks satisfying Condition 1 in Section 3.1. We then move to neural networks satisfying
Condition 2 in Section 3.2. The proofs of all results in this section are given in Appendices D and
E, and discussions on our theoretical results are provided in Sections H–J.

3.1 CORRECTNESS OF AD FOR NEURAL NETWORKS SATISFYING CONDITION 1

Our first result is about the correctness of AD for neural networks satisfying Condition 1, especially
when there are distinct bias parameters and the minibatch size is one.

Theorem 1. Let γ ∈ {B, C} and Ψ be a network satisfying Condition 1 with distinct bias param-
eters. Suppose that DADρl(x) ∈ ∂γρl(x) for all l ∈ [L] and x ∈ ndf(ρl). Then, DADΨ(w;X) ∈
∂γΨ(w;X) for all w ∈ RW and X ∈ RN0×B with B = 1.

Theorem 1 states that if a network Ψ has distinct bias parameters and the minibatch size is one, then
AD computes an element of the Clarke (or Bouligand) subdifferential of Ψ as long as the proxy
gradient DADρl(x) is an element of the Clarke (or Bouligand) subdifferential for all l and x. In
other words, AD is always correct in this case. This result extends the previous correctness result in
(Lee et al., 2023), which states that AD computes an element of the Clarke subdifferential under a
stronger setup: DADρl(x) ∈ ∂Bρl(x) and Ψ has no residual connections; our result considers more
general proxy gradients DADρl(x) ∈ ∂Cρl(x) and allows residual connections.

To prove Theorem 1 when γ = B, we explicitly find a sequence η1, η2, . . . of parameters that
converges to w such that Ψ is differentiable on the sequence and DΨ(η1), DΨ(η2), . . . converges
to DADΨ(w), i.e., DADΨ(w) ∈ ∂BΨ(w). To construct such a sequence, we utilize bias parameters.
First, observe that DADρl(x) ∈ ∂Bρl(x) implies DADρl(yl,i(w)) = Dsl,iρl(yl,i(w)) for some sl,i ∈
{−,+} for all l ∈ [L] and i ∈ [Nl] since B = 1; here, we choose sl,i = sl,i′ if yl,i(w) =
yl,i′(w). Then, we can find a sequence of bias parameters that converges to bl,i from the left/right
side depending on sl,i, while fixing non-bias parameters (i.e., ul); this leads us to the statement
of Theorem 1. Using the result for γ = B, we can also prove the case for γ = C. We note that

2This assumption implies DAD maxn(x) ∈ ∂Bmaxn(x) for all x ∈ Rn.
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similar strategies are used to prove other correctness results in this paper that consider networks
with (distinct/shared) bias parameters (Theorems 4 and 6). See Section D.1 for the detailed proof.

Given the correctness of AD under the presence of distinct bias parameters and B = 1, a natural
question arises: are both conditions necessary? The following lemmas answer this by showing that
both are indeed necessary for AD to be always correct; these lemmas are based on the incompatibil-
ity of the Clarke subdifferential with addition (Clarke et al., 1998; Kakade and Lee, 2018).
Lemma 2. There exists a network Ψ satisfying Condition 1 without distinct bias parameters such
that DADρl(x) ∈ ∂Bρl(x) for all l ∈ [L] and x ∈ ndf(ρl), but DADΨ(w;X) /∈ ∂CΨ(w;X) for some
w ∈ RW and X ∈ RN0×B with B = 1.
Lemma 3. There exists a network Ψ satisfying Condition 1 with distinct bias parameters such that
DADρl(x) ∈ ∂Bρl(x) for all l ∈ [L] and x ∈ ndf(ρl), but DADΨ(w;X) /∈ ∂CΨ(w;X) for some
w ∈ RW and X ∈ RN0×B with B ≥ 2.

Lemmas 2 and 3 show the existence of (i) a network Ψ satisfying Condition 1 without distinct bias
parameters (respectively, with distinct bias parameters), (ii) an input minibatch X of size B = 1
(respectively, of size B ≥ 2), and (iii) a parameter configuration w, for which AD does not return
an element of the Clarke subdifferential. In other words, AD can be incorrect in general if B ≥ 2 or
distinct bias parameters are absent.

Given these negative results, we may ask the following: is it impossible to have correct AD under
more general setups? Our next result shows that if a network has distinct bias parameters, a proper
choice of proxy gradients is sufficient for AD to be always correct, regardless of the minibatch size.
Theorem 4. Let Ψ be a network satisfying Condition 1 with distinct bias parameters. Suppose that
there exist λ1, . . . , λL ∈ [0, 1] such that DADρl(x) = λlD

−ρl(x) + (1− λl)D
+ρl(x) for all l ∈ [L]

and x ∈ ndf(ρl). Then, DADΨ(w;X) ∈ ∂CΨ(w;X) for all w ∈ RW , B ∈ N, and X ∈ RN0×B .
Further, if λ1, . . . , λL ∈ {0, 1}, then DADΨ(w;X) ∈ ∂BΨ(w;X) for all w, B, and X .

Here, D− and D+ denote the left- and right-hand derivatives (see Section 2.1 for formal definitions).
Theorem 4 states that if the proxy gradient DADρl(x) is a convex combination of the left- and right-
hand derivatives of ρl with the same weight λl for all x ∈ ndf(ρl), then AD is always correct for
networks satisfying Condition 1 with distinct bias parameters, regardless of the minibatch size. For
example, if ρl has a single non-differentiable point z ∈ R (e.g., z = 0 for ReLU and LeakyReLU),
then choosing DADρl(z) ∈ ∂Cρl(z) is sufficient for satisfying this condition. If |ndf(ρl)| ≥ 2 as
in ReLU6 and HardSigmoid,3 then choosing DADρl(x) = D−ρl(x) for all x ∈ ndf(ρl) (simi-
larly, DADρl(x) = D+ρl(x) for all x ∈ ndf(ρl)) is sufficient to ensure the condition; we note that
our counterexample in Lemma 3 does not satisfy this condition (see Section D.3). Therefore, the
condition in Theorem 4 can be easily fulfilled by choosing proper proxy gradients of AD.

We next provide a sufficient condition for the correctness of AD under a general minibatch size and
the (possible) absence of distinct bias parameters. For now, we focus on fully-connected networks;
a result for general networks can be found in Theorem 8 in Section 3.2.
Theorem 5. Let γ ∈ {B, C} and Ψ be a neural network satisfying Condition 1. Suppose that
τl(z0:l−1, wl) = Alzl−1 or Alzl−1 + bl1

⊤
B for some Al ∈ RNl×Nl−1 with wl = vec(Al) or wl =

vec(Al) ⊕ bl, and DADρl(x) ∈ ∂γρl(x) for all l ∈ [L] and x ∈ ndf(ρl). Then, for any w ∈ RW ,
B ∈ N, and X ∈ RN0×B , we have DADΨ(w;X) ∈ ∂γΨ(w;X) if the columns of zl−1(w;X) are
linearly independent whenever yl,i,b(w;X) ∈ ndf(ρl) for some l ∈ [L], i ∈ [Nl], and b ∈ [B].

For fully-connected networks, Theorem 5 shows that the correctness of AD is guaranteed if the
column vectors of zl−1(w;X) are linearly independent whenever yl(w;X) touches any non-
differentiable point of the activation function ρl. If the input and hidden dimensions N0, . . . , NL−1

are larger than the minibatch size B (which often occurs in practical learning setups), this condition
can be easily satisfied; we empirically demonstrate this in Section 4.

Unlike Theorems 1 and 4, a fully-connected network considered in Theorem 5 might not have dis-
tinct bias parameters. Hence, to prove the theorem for γ = B, we construct a sequence η1, η2, . . .
of parameters that converges to w, by varying only the non-bias parameters (i.e., Al) so that
DΨ(η1), DΨ(η2), . . . converges to DADΨ(w). Here, the linear independence of the columns in
zl−1(w;X) guarantees the existence of such a sequence. See Section D.5 for more details.

3ReLU6(x) ≜ min{max{0, x}, 6} and HardSigmoid ≜ min{max{0, x/6 + 1/2}, 1}.
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Algorithm 1 Construction of Pl

1: Input: l: the index of the target layer, z0:l−1: the outputs of the 0, . . . , (l − 1)-th layers, w1:l:
the parameters of the 1, . . . , l-th layers, {Ij}j∈[Nl]×[B]: the index sets used by the maxpool
function ϕl at the l-th layer.

2: Initialize: Pl ← RWl

3: for i ∈ [Ml]× [B] do
4: yi ← τl,i(z0:l−1, wl), αi ← ρl(yi), πi ← ∂yi/∂wl

5: if yi ∈ ndf(ρl) then
6: Choose si ∈ {−,+} such that DADρl(yi) = Dsiρl(yi)
7: Pl ← Pl ∩ {x ∈ RWl : si · ⟨πi, x⟩ > 0}
8: end if
9: end for

10: for j ∈ [Nl]× [B] do
11: Sj ← argmaxi∈Ij

αi

12: if |Sj | ≥ 2 then
13: i∗ ← the index in Sj that AD uses when computing DADmax({αi}i∈Ij

)
14: Tj ← {i ∈ Sj : ∂ADαi∗/∂w1:l = ∂ADαi/∂w1:l}4

15: Pl ← Pl ∩
{
x ∈ RWl : ⟨DADρl(yi∗) · πi∗ , x⟩ > ⟨DADρl(yi) · πi, x⟩ for all i ∈ Sj \ Tj

}
16: end if
17: end for
18: return Pl

3.2 CORRECTNESS OF AD FOR NEURAL NETWORKS SATISFYING CONDITION 2

In the previous subsection, we focused on networks satisfying Condition 1, and studied when AD is
(always) correct or not by varying various setups such as the presence of bias parameters, the size
of a minibatch, and the choice of the proxy gradients used by AD. In this subsection, we analyze the
correctness of AD for neural networks satisfying Condition 2 (e.g., convolutional neural networks),
which is a generalization of Condition 1, under a general minibatch size B ∈ N. To this end, we first
introduce the following theorem for networks with shared bias parameters and trivial maxpools.
Theorem 6. Let Ψ be a network satisfying Condition 2 with shared bias parameters and only trivial
maxpools. Suppose that there exist λ1, . . . , λL ∈ [0, 1] such that DADρl(x) = λlD

−ρl(x) + (1 −
λl)D

+ρl(x) for all l ∈ [L] and x ∈ ndf(ρl). Then, DADΨ(w;X) ∈ ∂CΨ(w;X) for all w ∈ RW ,
B ∈ N, and X ∈ RN0×B . Further, if λ1, . . . , λL ∈ {0, 1}, then DADΨ(w;X) ∈ ∂BΨ(w;X) for all
w ∈ RW , B ∈ N, and X ∈ RN0×B .

Theorem 6 is a generalization of Theorem 4: it ensures the correctness of AD over all inputs and
parameters (under a proper choice of DADρl), as long as a network satisfying Condition 2 has shared
bias parameters and only trivial maxpools at all layers. Many modern convolutional neural networks
without maxpools satisfy the conditions in Theorem 6: e.g., MobileNet V3 (Howard et al., 2019),
RexNet (Han et al., 2021), and ConvNext (Liu et al., 2022). Namely, AD is always correct for those
networks although they contain non-differentiable activation functions.

Since Condition 2 is a generalization of Condition 1, choosing a proper DADρl and having bias
parameters are necessary for Theorem 6 as we observed in Section 3.1 (see Lemmas 2 and 3).
Given the necessity of these conditions, our next result examines the only remaining condition in
Theorem 6, which is about having only trivial maxpools.
Lemma 7. There exists a network Ψ satisfying Condition 2 with shared bias parameters and non-
trivial maxpools such that DADρl(x) = D−ρl(x) for all l ∈ [L] and x ∈ ndf(ρl), but DADΨ(w;X) /∈
∂CΨ(w;X) for some w ∈ RW , B ∈ N, and X ∈ RN0×B .

Lemma 7 shows that AD can be incorrect with non-trivial maxpools. However, practical networks,
especially convolutional networks, often include them. To examine the correctness of AD for such
networks in practice, we provide a generic sufficient condition that guarantees correct AD.
Theorem 8. Let Ψ be a network satisfying Condition 2. Suppose that DADρl(x) ∈ ∂Bρl(x) for
all l ∈ [L] and x ∈ ndf(ρl). Then, for any w ∈ RW , B ∈ N, and X ∈ RN0×B , it holds that
DADΨ(w;X) ∈ ∂BΨ(w;X) if Pl ̸= ∅ for all l ∈ [L] where Pl denotes the output of Algorithm 1.

4∂ADαi/∂w1:l denotes the partial derivative of αi with respect to w1:l that reverse-mode AD computes.
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To describe the main intuition behind Pl, we first consider the case when each Tj in Algorithm 1
has only a single element i∗. In this case, Pl satisfies the following property: for any ζl ∈ Pl and
small enough ε > 0, the activation function σl is differentiable at τl(z0:l−1(w), wl + εζl) and

Dσl

(
τl(z0:l−1(w), wl + εζl)

)
→ DADσl

(
τl(z0:l−1(w), wl)

)
as ε→ 0, (2)

where DADσl denotes the proxy derivative of σl used by AD (see Appendix B for its formal defini-
tion). Due to this property, whenever Pl is not empty for all l ∈ [L], we can construct a sequence
of parameters for showing DADΨ(w) ∈ ∂BΨ(w) as in the proof of Theorem 1. To construct Pl

satisfying Eq. (2), Algorithm 1 adds constraints to Pl in Lines 3–9 and 10–17, which ensure

Dρl

(
τl,i,b(z0:l−1(w), wl + εζl)

)
→ DADρl

(
τl,i,b(z0:l−1(w), wl)

)
as ε→ 0 and (3)

Dϕl

(
ρl(τl(z0:l−1(w), wl + εζl))

)
→ DADϕl

(
ρl(τl(z0:l−1(w), wl))

)
as ε→ 0 (4)

for all i ∈ [Nl] and b ∈ [B]; and Eqs. (3) and (4) immediately imply Eq. (2). Here, DADϕl denotes
the proxy derivative of ϕl used by AD, which is induced by DADmaxn (defined in Section 2.3).
Now, we consider the remaining case when Tj has at least two elements. In this case, Eq. (4) might
not hold. Yet, even without Eq. (4), we can still find a sequence of parameters η1, η2, . . . ∈ RW

such that ηn → w and DΨ(ηn) → DADΨ(w) as n → ∞, using the definition of Tj (Line 14):
∂ADαi∗/∂w1:l = ∂ADαi/∂w1:l for all i ∈ Tj . See Section E.3 for detailed arguments.

To verify the sufficient condition in Theorem 8, one needs to check whether Pl is empty or not,
where Pl = {x ∈ RWl : ⟨al,i, x⟩ > 0 for all i ∈ [kl]} for some al,1, . . . , al,kl

∈ RWl (which are
described in Algorithm 1). To check this, one can solve the following linear programming: find
(c, x) ∈ R× RWl such that it maximizes c subject to ⟨al,i, x⟩ ≥ c for all i ∈ [kl]. Then, the solution
c of this problem is strictly positive if and only if Pl is not empty.

4 EXPERIMENTS

We use the sufficient conditions in Theorems 5 and 8 to verify whether AD is correct in two practical
learning scenarios. In the first scenario, we consider fully-connected networks with distinct bias
parameters that do not satisfy the conditions in Theorems 1 and 4. In the second one, we use
convolutional networks with shared bias parameters that do not satisfy the conditions in Theorem 6.

Scenario 1: Fully-connected networks. We consider three fully-connected networks with two
hidden layers and hidden dimensions of N1 = 256 and N2 = 64, where each network uses one
of ReLU6, HardTanh, and HardSigmoid as its non-differentiable activation function. We trained
these networks on the MNIST dataset (LeCun et al., 2010) using stochastic gradient descent (SGD)
with the minibatch size B = 128, where each gradient was computed via (reverse-mode) AD im-
plemented in PyTorch. All networks were trained for 20 epochs with the initial learning rate 0.05
and the weight decay 0.0001, where the learning rate was decayed by the cosine annealing schedul-
ing (Loshchilov and Hutter, 2017). We note that all the activation functions in these networks (i.e.,
ρl ∈ {ReLU6, HardTanh, HardSigmoid}) have exactly two non-differentiable points, and Py-
Torch uses the following as their proxy gradients: DADρl(x) = 0 for all x ∈ ndf(ρl). Due to this,
there is no λl ∈ [0, 1] satisfying DADρl(x) = λlD

−ρl(x) + (1 − λl)D
+ρl(x) for all x ∈ ndf(ρl),

i.e., these networks do not satisfy the conditions in Theorems 1 and 4.

During the training, we checked if AD is correct by verifying the sufficient condition in Theo-
rem 5, i.e., whether the activation matrix zl−1(w) ∈ RNl×B has full column rank whenever any
non-differentiable point of ρl is touched. We ran five experiments for each network, and observed
that all the parameter values w ∈ RW taken over all training steps (469 steps/epoch × 20 epoch)
satisfied the sufficient condition. This observation and Theorem 5 imply that in our experiments,
AD returned an element of the Clarke subdifferential at all training steps, even though the non-
differentiable points of activation functions were touched for the following number of times in each
training (averaged over five runs): 0, 9.8, and 13.8 times for networks using ReLU6, HardTanh,
and HardSigmoid, respectively.

Scenario 2: Convolutional networks with maxpools. We next evaluate the correctness of AD
for three convolutional networks with non-trivial maxpools: VGG11 (Simonyan and Zisserman,
2015); VGG11 with BatchNorm (VGG11-BN), which adds the BatchNorm operation after each
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Table 2: Statistics related to Sj and Sj \ Tj . The total number of maxn operations in VGG11 and
VGG11-BN per each layer (with a non-trivial maxpool) is 1,048,576 / 524,288 / 262,144 / 131,072 /
32,768. ResNet has 2,095,140 maxn operations in the first layer. The total number of training steps
is 7,820 for all networks. All the below values are averaged over five independent runs.

Network Ratio of maxn

with |Sj | ≥ 2 (%)
# training steps
with Sj \ Tj ̸= ∅

Average |Sj \ Tj |
when Sj \ Tj ̸= ∅ Correct?

VGG11 3.2 / 0.04 / 2.1×10−6 / 1435.8 / 166.3 / 44.0 / 1.18 / 1.04 / 1.00 /
✓1.7×10−6 / 0 18.0 / 0 1.00 / NA

VGG11-BN 4.1 / 0.07 / 4.5×10−6 / 3668.5 / 453.0 / 91.0 / 1.46 / 1.09 / 1.01 /
✓4.2×10−6 / 3.5×10−6 42.0 / 9.0 1.02 / 1.00

ResNet18 4.2 3904.8 1.78 ✓

convolution operation in VGG11; and ResNet18 (He et al., 2016). In VGG11 and VGG11-BN, five
layers have non-trivial maxpools, and in ResNet18, only the first layer has a non-trivial maxpool. In
these networks, ReLU is the only pointwise non-differentiable activation function, and PyTorch uses
DADReLU(0) = 0 as its proxy gradient at zero. To reduce the computational overhead, we halved
the channel dimensions of VGG11 and VGG11-BN. We trained these networks on the CIFAR-10
dataset (Krizhevsky et al., 2009) using AD-based SGD with the same settings described above.

During the training, we checked if the parameter values w at each training step satisfy the sufficient
condition in Theorem 8. To construct the set Pl in Theorem 8, we used Algorithm 2 in Section F,
which is identical to Algorithm 1 for networks that have shared bias parameters and use ReLU (with
DADReLU(0) = 0) as the only non-differentiable ρl. The major difference between Algorithms 1
and 2 is that Algorithm 2 adds constraints to Pl only when a tie occurs at some maxn operation in
maxpools, and it does not care whether any input to ReLU touches zero or not. In these experiments,
we observed that the sufficient condition in Theorem 8 was always satisfied, implying that AD
always returned an element of the Clarke subdifferential.

To better understand the results, we measured three additional quantities. The first one is the number
of events that a tie occurs at some maxn, i.e., |Sj | ≥ 2 in Algorithm 2. We counted the number
of such events over all maxn operations in each layer (with a non-trivial maxpool), and divided
it by the total number of maxn operations in that layer, which we denote by “ratio of maxn with
|Sj | ≥ 2.” As summarized in Table 2, we observed that this ratio is not negligible (e.g., ≥ 3% for
the first layer). This is because, for some maxn operation, the image patches corresponding to the
receptive fields of its inputs are often identical (see Section G for concrete examples); for such a
maxn operation, a tie always occurs regardless of the parameter values w.

To exclude such trivial cases and examine non-trivial ties in maxn operations, we also measured the
number of training steps where |Sj \Tj | ≥ 1, and the average size of Sj \Tj when |Sj \Tj | ≥ 1, both
per each layer with a non-trivial maxpool. As shown in Table 2, the event that |Sj \ Tj | ≥ 1 (i.e.,
non-trivial ties exist) occurred frequently during training: e.g., in VGG11, this event happened in
the first layer at 1435.8 steps (on average) among the total of 7,820 training steps. We also observed
that the size of Sj \ Tj was typically one or two, implying that Pl was non-empty very easily.

5 CONCLUSION

In this paper, we study the correctness of AD for neural networks. We first show that AD is always
correct for networks satisfying Condition 1 if they have distinct bias parameters and the minibatch
size is one (Theorem 1). While AD may not be always correct if one of the conditions in Theorem 1
is violated (Lemmas 2 and 3), we prove that having proper proxy derivatives ensures AD to be correct
again for general minibatch sizes (Theorem 4), under the presence of distinct bias parameters. For
general fully-connected networks that may not have distinct bias parameters, we provide a sufficient
condition for checking the correctness of AD (Theorem 5), which often holds in practical learning
setups. We also prove similar results for a more general class of networks that can have shared bias
parameters and maxpools (Theorem 6 and Lemma 7), and provide a generic sufficient condition as
well (Theorem 8), which often holds in the training of practical convolutional networks (Section 4).
We believe our results and analyses would contribute to a better understanding of AD.
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Gilles Barthe, Raphaëlle Crubillé, Ugo Dal Lago, and Francesco Gavazzo. On the versatility of open
logical relations - continuity, automatic differentiation, and a containment theorem. In European
Symposium on Programming (ESOP), pages 56–83, 2020.
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A ADDITIONAL NOTATIONS AND DEFINITIONS

For n,m ∈ N, we use 0n×m (respectively, 1n×m) to denote the matrix consisting of zeros (respec-
tively, ones) of size n×m. For x ∈ R, we define

sign(x) ≜


+1 (or +) if x > 0

0 if x = 0

−1 (or −) if x < 0.

For S ⊂ R, we use int(S) to denote the interior of S. For S ⊂ Rn (or a set S of functions from
Rn to Rm), we use conv(S) to denote the convex hull of S: conv(S) ≜ {

∑
i∈[K] cixi : K ∈

N, ci ≥ 0, xi ∈ S with
∑

i∈[K] ci = 1}.

For a piecewise-analytic function f : R → R with a partition {Ai}i∈[n] and x ∈ R, we use
P(f, x,+) to denote Ai for some i ∈ [n] such that (x, x + ε) ⊂ Ai for some ε > 0. Likewise,
we use P(f, x,−) to denote Ai for some i ∈ [n] such that (x − ε, x) ⊂ Ai for some ε > 0.
For a differentiable function f : Rn1 × · · · × Rnk → R and xi ∈ Rni for all i ∈ [k], we use
Dif(x1, . . . , xk) to denote the derivative of f with respect to the i-th argument in (x1, . . . , xk), i.e.,
∂f(x1, . . . , xk)/∂xi ∈ Rni .

We say that a function f : Rn → Rm is a “differentiable maxpool” if it is a maxpool with |I1| =
· · · = |Im| = 1 in Definition 2, that is, f(x1, . . . , xn) = (xi1 , . . . , xim) for some i1, . . . , im ∈ [n].
We note that a trivial maxpool is always a differentiable maxpool.

B AUTOMATIC DIFFERENTIATION FOR NEURAL NETWORKS

Given a neural network Ψ, its parameters w ∈ RW , and an input minibatch X ∈ RN0×B , the
output of AD DADΨ(w;X) can be written by the following recursive relationship that involves
DADzl(w;X) ∈ RNl×B×W and DADyl(w;X) ∈ RMl×B×W : for l ∈ [L], i ∈ [Nl], j ∈ [Ml],
and b ∈ [B],

DADΨ(w;X) ≜
∑

(i′,b′)∈[NL]×[B]

(
Dℓ

(
zL(w;X)

))
i′,b′
·
(
DADzL(w;X)

)
i′,b′
∈ RW ,

(
DADzl(w;X)

)
i,b

≜
∑

(j′,b′)∈[Ml]×[B]

(
DADσl

(
yl(w;X)

))
i,b,j′,b′

·
(
DADyl(w;X)

)
j′,b′
∈ RW ,

(
DADyl(w;X)

)
j,b

≜
∑

k∈[l−1]

∑
(i′,b′)∈[Nk]×[B]

(
Dkτl,j,b

(
z0(w;X), . . . , zl−1(w;X), wl

))
i′,b′
·
(
DADzk(w;X)

)
i′,b′

+
∑

i′∈[Wl]

(
Dlτl,j,b

(
z0(w;X), . . . , zl−1(w;X), wl

))
i′
· eW1+···+Wl−1+i′ ∈ RW ,

where ei denotes the i-th standard basis of RW . Here, DADσl(x) ∈ RNl×B×Ml×B is defined as
follows for all x ∈ RMl×B : when the network Ψ satisfies Condition 1, we use(

DADσl(x)
)
i,b,j,c

≜

{
DADρl(xi,b) if (j, c) = (i, b)

0 if (j, c) ̸= (i, b),

and when Ψ satisfies Condition 2, we use(
DADσl(x)

)
i,b,j,c

≜

{
DADρl(xi,b) if (j, c) = (j∗i,b, c

∗
i,b)

0 if (j, c) ̸= (j∗i,b, c
∗
i,b),

where (j∗i,b, c
∗
i,b) ∈ argmax(j′,c′)∈Ii,b

xj′,c′ denotes the index that AD uses for the proxy gradient of
(ϕl)i,b : RMl×B → R (i.e., the maxpool in the l-th layer restricted to its (i, b)-th output) and Ii,b ⊂
[Ml]×[B] denotes the set of indices that (ϕl)i,b uses (i.e., ϕl uses to compute its (i, b)-th output). We
note that the above definition of DADΨ(w;X) depends on the choice of proxy gradients DADρl : R→
R. Whenever we want to make this dependency explicit, we will write DADΨ(DADρ1,...,DADρL)(w;X)
to denote DADΨ(w;X).

13
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C TECHNICAL LEMMAS FOR MAIN PROOFS

Lemma 9. Let f : R→ R be a piecewise-analytic function and x ∈ R. Then, f is differentiable at
x if and only if f is continuously differentiable at f .

Proof of Lemma 9. We only prove that if f is differentiable at x, then f is continuously differen-
tiable at x, since the converse is trivial. Suppose that f is differentiable at x. Then, by the defi-
nition of piecewise-analyticity (Definition 1), there exist analytic functions f−, f+ : R → R and
a < x < b such that f = f− on (a, x) and f = f+ on (x, b). Since f is differentiable at x and
f−, f+ are analytic over R, we have

lim
z→x−

Df(z) = lim
z→x−

Df−(z) = Df−(x), lim
z→x+

Df(z) = lim
z→x+

Df+(z) = Df+(x),

Df−(x) = lim
z→x−

f−(z)− f−(x)

z − x
= Df(x) = lim

z→x+

f+(z)− f+(x)

z − x
= Df+(x).

Here, the second and third equalities in the second line above follow from f being differentiable at
x. This implies that f is continuously differentiable at x.

Lemma 10. For any open O ⊂ R, analytic and non-constant f : O → R, and x ∈ O, there exists
ε > 0 such that

f(x) /∈ f([x− ε, x+ ε] \ {x}).
Furthermore, f is strictly monotone on [x, x+ ε] and strictly monotone on [x− ε, x]. In particular,
if Df(x) > 0 (or Df(x) < 0), then f is strictly increasing (or strictly decreasing) on [x− ε, x+ ε].

Proof of Lemma 10. Without loss of generality, suppose that f(x) = 0. Since f is analytic, f is
infinitely differentiable and can be represented by the Taylor series on (x− δ, x+ δ) for some δ > 0
as follows:

f(z) =

∞∑
i=0

f (i)(x)

i!
(z − x)i on (x− δ, x+ δ)

where f (i) denotes the i-th derivative of f . Since f is non-constant, there exists i ∈ N such that
f (i)(x) ̸= 0. Let i∗ be the minimum such i. Then, by the Taylor’s theorem,

f(z) =
f (i∗)(x)

i∗!
(z − x)i

∗
+ o(|z − x|i

∗
) on (x− δ, x+ δ). (5)

We now consider the case that f (i∗)(x) > 0 and i∗ is odd. By Eq. (5) and the analyticity of f , we
can choose ε ∈ (0, δ) so that

(i) f(z) < 0 on [x− ε, x) and f(z) > 0 on (x, x+ ε], and

(ii) f (i∗)(z) > 0 on [x− ε, x+ ε].

Then, by (i), f(x) /∈ f([x− ε, x+ ε] \ {x}). Furthermore, we claim that f is strictly monotone on
[x−ε, x] and [x, x+ε]. By (ii), the analyticity of f , the mean value theorem, and by our assumption
that f (i)(x) = 0 for all i < i∗, it holds that

f (i∗−1)(z) < 0 on (x− ε, x) and f (i∗−1)(z) > 0 on (x, x+ ε).

Again, by the same reasoning, we have

f (i∗−2)(z) > 0 on (x− ε, x) and f (i∗−2)(z) > 0 on (x, x+ ε).

By repeating this process, one can show that f (1)(z) > 0 on (x−ε, x) and f (1)(z) > 0 on (x, x+ε),
implying that f is strictly monotone on [x− ε, x] and [x, x+ ε].

By applying similar arguments, one can also show that the above claim (i.e., f(x) /∈ f([x − ε, x +
ε]\{x}) and f is strictly monotone on [x−ε, x] and [x, x+ε] for some ε > 0) holds in the remaining
cases: f (i∗)(x) < 0 and i∗ is odd; f (i∗)(x) > 0 and i∗ is even; and f (i∗)(x) < 0 and i∗ is even.
This completes the proof of Lemma 10.

14



Published as a conference paper at ICLR 2024

Lemma 11. Let f1, f2 : R→ R be analytic functions, ρ : R→ R be a piecewise-analytic function,
and z ∈ R. Let DADρ(x) ∈ ∂Bρ(x) for all x ∈ ndf(ρ). Suppose that

(i) for each i ∈ {1, 2}, if fi(z) ∈ ndf(ρ), then DADρ(fi(z)) = Dsiρ(fi(z)) for some si ∈ {−,+}
and si ·Df i(z) > 0 holds; and

(ii) ρ(f1(z)) ≥ ρ(f2(z)) and DADρ(f1(z)) ·Df1(z) > DADρ(f2(z)) ·Df2(z).

Then, it holds that
lim

ε→0+
sign

(
ρ(f1(z + ε))− ρ(f2(z + ε))

)
= +.

Proof of Lemma 11. If fi(z) ∈ ndf(ρ), then sign(Dfi(z)) = si ∈ {−,+} by (i), so fi is non-
constant. Therefore, by Lemma 10, we have

lim
ε→0+

sign
(
fi(z + ε)− fi(z)

)
= si, (6)

and this implies that

DADρ(fi(z)) ·Df i(z) = Dsiρ(fi(z)) ·Df i(z) = D+(ρ ◦ fi)(z),
where the first equality is by (i) and the second equality is by the piecewise-analyticity of ρ, the
chain rule, and Eq. (6). If fi(z) /∈ ndf(ρ), then it is easy to observe that

DADρ(fi(z)) ·Df i(z) = Dρ(fi(z)) ·Df i(z) = D(ρ ◦ fi)(z) = D+(ρ ◦ fi)(z),
where the first equality is by the assumption that DADρ(x) ∈ ∂Bρ(x), and the second equality is by
the chain rule. Hence, by (ii), we have

DADρ(f1(z)) ·Df1(z)−DADρ(f2(z)) ·Df2(z) = D+(ρ ◦ f1 − ρ ◦ f2)(z) > 0.

This implies that for any small enough ε > 0,

+ = sign

(
ρ(f1(z + ε))− ρ(f1(z))

ε
− ρ(f2(z + ε))− ρ(f2(z))

ε

)
= sign

(
ρ(f1(z + ε))− ρ(f1(z))− ρ(f2(z + ε)) + ρ(f2(z))

)
= sign

(
ρ(f1(z + ε))− ρ(f2(z + ε))

)
,

where the last equality uses the assumption ρ(f1(z)) ≥ ρ(f2(z)) in (ii). Therefore, we have

lim
ε→0+

sign
(
ρ(f1(z + ε))− ρ(f2(z + ε))

)
= +

and this completes the proof.

Lemma 12. Let Ψ be a network satisfying Condition 2, and consider w ∈ RW , B ∈ N, X ∈
RN0×B . For each l ∈ [L], let sl,j′,b′ ∈ {−,+} for all (j′, b′) ∈ [Ml] × [B]. For each l ∈ [L] and
(i, b) ∈ [Nl]× [B],

• let Il,i,b ⊂ [Ml] × [B] be the set of indices that (ϕl)i,b uses (i.e., zl,i,b(w
′) =

max{ρl(yl,j′,b′(w′)) : (j′, b′) ∈ Il,i,b} for all w′ ∈ RW );
• let (µl,i,b, νl,i,b) ∈ Il,i,b be the index that AD uses when computing DADσl,i,b(yl(w)) (see Ap-

pendix B for details); and let Jl,i,b ⊂ Il,i,b \ {(µl,i,b, νl,i,b)}.

Here, (µl,i,b, νl,i,b) and Jl,i,b depend on w which is fixed in this lemma. For each l ∈ [L], let Nl =
{(j′, b′) ∈ [Ml]×[B] : yl,j′,b′(w) ∈ ndf(ρl)}. Suppose that we are given ζ1 ∈ RW1 , . . . , ζL ∈ RWL

such that for all l ∈ [L] and (i, b) ∈ [Nl]× [B],

lim
ε→0+

sign
(
τl,j′,b′(z0:l−1(w), wl + εζl)− τl,j′,b′(z0:l−1(w), wl)

)
= sl,j′,b′

for all (j′, b′) ∈ Nl, (7)

lim
ε→0+

sign
(
ρl
(
τl,µl,i,b,νl,i,b

(z0:l−1(w), wl + εζl)
)
− ρl

(
τl,j′′,b′′(z0:l−1(w), wl + εζl)

))
= +

for all (j′′, b′′) ∈ Jl,i,b. (8)

Then, there exists a sequence {ηn}n∈N ⊂ RW such that for each l ∈ [L] and (i, b) ∈ [Nl]× [B],
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• limn→∞ ηn = 0W ,
• yl,j′,b′(w + ηn) ∈ int(P(ρl, yl,j′,b′(w), sl,j′,b′)) for all (j′, b′) ∈ [Ml]× [B] and n ∈ N, and
• ρl(yl,µl,i,b,νl,i,b

(w + ηn)) > ρl(yl,j′′,b′′(w + ηn)) for all (j′′, b′′) ∈ Jl,i,b and n ∈ N.

Here, P(f, x,+) and P(f, x,−) were defined in Appendix A.

Proof of Lemma 12. Without loss of generality, suppose that ∥ζl∥2 = 1 for all l ∈ [L]. By Eqs. (7)
and (8), we can choose δ1, . . . , δL > 0 such that for all l ∈ [L], (i, b) ∈ [Nl] × [B], (j′, b′) ∈ Nl,
and (j′′, b′′) ∈ Jl,i,b,

sign
(
τl,j′,b′(z0:l−1(w), wl + εζl)− τl,j′,b′(z0:l−1(w), wl)

)
= sl,j′,b′ , (9)

ρl

(
τl,µl,i,b,νl,i,b

(z0:l−1(w), wl + εζl)
)
> ρl

(
τl,j′′,b′′(z0:l−1(w), wl + εζl)

)
(10)

for all ε ∈ (0, δl). Without loss of generality, we assume δ1, . . . , δL also satisfy the following: for
all l ∈ [L] and (j′, b′) ∈ [Ml]× [B],

τl,j′,b′(z0:l−1(w), wl + εζl) ∈ int
(
P(ρl, yl,j′,b′(w), sl,j′,b′)

)
(11)

for all ε ∈ (0, δl). We can always find such small enough δ1, . . . , δL from Eq. (9), the continuity
of τl, and µ1(P(ρl, yl,j′,b′(w), sl,j′,b′)) > 0 (which holds by the piecewise-analyticity of ρl and
Definition 1).

We now claim that there exists {ηn}n∈N ⊂ RW such that for any n ∈ N, l ∈ [L], and (i, b) ∈
[Nl]× [B],

(i) ∥ηn∥2 ≤
√
1/n,

(ii) yl,j′,b′(w + ηn) ∈ int(P(ρl, yl,j′,b′(w), sl,j′,b′)) for all (j′, b′) ∈ [Ml]× [B],
(iii) ρl(yl,µl,i,b,νl,i,b

(w + ηn)) > ρl(yl,j′′,b′′(w + ηn)) for all (j′′, b′′) ∈ Jl,i,b.

Then, {ηn}n is a desired sequence. To show the existence of such {ηn}n, we construct {ηn,k}n∈N ⊂
RW for each k ∈ [L] such that for any n ∈ N, l ∈ [L] \ [L− k], and (i, b) ∈ [Nl]× [B],

k-(i) (ηn,k)t = 0 for all t ∈ [W1 + · · ·+WL−k],
k-(ii) ∥ηn,k∥2 ≤

√
k/(nL),

k-(iii) yl,j′,b′(w + ηn,k) ∈ int(P(ρl, yl,j′,b′(w), sl,j′,b′)) for all (j′, b′) ∈ [Ml]× [B],
k-(iv) ρl(yl,µl,i,b,νl,i,b

(w + ηn,k))) > ρl(yl,j′′,b′′(w + ηn,k)) for all (j′′, b′′) ∈ Jl,i,b.

Then, choosing ηn = ηn,L completes the proof.

We construct such {ηn,k}n by induction on k. Consider the base case: k = 1. For each n, we
choose ηn,1 = 0W1+···+WL−1

⊕ (εnζL) for εn = min{δL/2,
√
1/(nL)}. Then, ηn,1 satisfies

1-{(i), . . . , (iv)} by Eqs. (10) and (11) and by our choice of ηn,1 and εn. Now, consider a general k >
1. By the induction hypothesis on k − 1, there exists {ηn,k−1}n satisfying (k − 1)-{(i), . . . , (iv)}.
For each n, we choose ηn,k = ηn,k−1 + 0W1+···+WL−k

⊕ (ε′nζL−k+1) ⊕ 0WL−k+2+···+WL
for

some ε′n > 0 so that ηn,k satisfies k-{(i), . . . , (iv)}. Such ε′n always exists as follows: for any
0 < ε′n ≤ min{δL−k+1/2,

√
1/(nL))}, ηn,k satisfies

• k-{(i), (ii)} and
• k-{(iii), (iv)} for l = L− k + 1.

This is because ηn,k−1 satisfies (k − 1)-{(i), (ii)} and Eqs. (10) and (11) hold. Furthermore, for
a small enough ε′n > 0, ηn,k satisfies k-{(iii), (iv)} for all l > L − k + 1, since ηn,k−1 satisfies
(k− 1)-{(iii), (iv)} and τl′ , σl′ are continuous for all l′. This completes the proof of Lemma 12.
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Lemma 13. Let Ψ be a neural network satisfying Condition 2 with only trivial (or differentiable)
maxpools, w ∈ RW , B ∈ N, and X ∈ RN0×B . For every l ∈ [L], let {Al,i}i∈[nl] be a partition
of ρl described in Definition 1. Suppose that for each l ∈ [L], j ∈ [Ml], and b ∈ [B], there exists
k ∈ [nl] such that yl,j,b(w;X) ∈ int(Al,k). Then, Ψ( · ;X) is differentiable at w (i.e., DΨ(w;X)
exists) and DΨ(w;X) = DADΨ(w;X).

Proof of Lemma 13. By Definition 1, the condition yl,j,b(w;X) ∈ int(Al,k) implies that ρl is dif-
ferentiable at yl,j,b(w;X) for all l, j, b. Since σl uses a trivial (or differentiable) maxpool, σl is dif-
ferentiable at yl(w;X) for all l. Moreover, τl is differentiable on its domain for all l by Condition 2.
Hence, Ψ( · ;X) is differentiable at w by the definition of Ψ and the chain rule for differentiation.
Further, we have DΨ(w;X) = DADΨ(w;X) by the definition of DADΨ (Appendix B) and by the
chain rule with Dρl(yl,j,b(w)) = DADρl(yl,j,b(w)) for all l, j, b.

Lemma 14. Let Ψ be a neural network satisfying Condition 2. Consider any l ∈ [L], w ∈ RW ,
and X ∈ RN0×B . Then, for any f1, . . . , fl−1, fl+1, . . . , fL : R → R, and for any K ∈ N,
fl,1, . . . , fl,K : R→ R, and c1, . . . , cK ∈ R with c1 + · · ·+ cK = 1, we have

DAD
(f1,...,fl−1,

∑
i∈[K] cifl,i,fl+1,...,fL)Ψ(w;X) =

∑
i∈[K]

ciD
AD
(f1,...,fl−1,fl,i,fl+1,...,fL)Ψ(w;X).

Proof of Lemma 14. This follows from the definition of AD (Appendix B). We omit the proof as it
uses a simple induction over the definition of DADΨ(w;X). We remark that the condition c1+ · · ·+
cK = 1 is essential: this lemma no longer holds without the condition.

Lemma 15. Let Ψ be a neural network satisfying Condition 2, K1, . . . ,KL ∈ N, and fl,k : R→ R
for all l ∈ [L] and k ∈ [Kl]. Let G = {(g1, . . . , gL) : gl ∈ {fl,1, . . . , fl,Kl

} for all l ∈ [L]}. Then,
for any h = (h1, . . . , hL) such that hl ∈ conv({fl,1, . . . , fl,Kl

}) for all l ∈ [L], it holds that

DAD
h Ψ(w;X) ∈ conv({DAD

g Ψ(w;X) : g ∈ G}).

Proof of Lemma 15. We show the following claim using induction on n: for all n ∈ [L], if h =
(h1, . . . , hL) satisfies that hl ∈ conv({fl,1, . . . , fl,Kl

}) for all l ≤ n and hl ∈ {fl,1, . . . , fl,Kl
} for

all l > n, then
DAD

h Ψ(w;X) ∈ conv({DAD
g Ψ(w;X) : g ∈ G}).

Then, the desired statement follows from the case for n = L.

The base case (i.e., when n = 1) follows directly from Lemma 14 with l = 1. Consider a general
case (i.e., when n ≥ 2) and let h = (h1, . . . , hL) such that hl ∈ conv({fl,1, . . . , fl,Kl

}) for all
l ≤ n and hl ∈ {fl,1, . . . , fl,Kl

} for all l > n. Let ℓk = (h1, . . . , hn−1, fn,k, hn+1, . . . , hL) for all
k ∈ [Kn]. Then, by the induction hypothesis on n− 1, we have

DAD
ℓk
Ψ(w;X) ∈ conv({DAD

g Ψ(w;X) : g ∈ G})

for all k ∈ [Kn]. Since hn ∈ conv({fn,1, . . . , fn,Kn}), the definition of h and Lemma 14 imply

DAD
h Ψ(w;X) ∈ conv({DAD

ℓk
Ψ(w;X) : k ∈ [Kn]}) ⊂ conv({DAD

g Ψ(w;X) : g ∈ G}).

This completes the proof of Lemma 15.
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D PROOFS OF RESULTS IN SECTION 3.1

D.1 PROOF OF THEOREM 1

Fix w ∈ RW , B = 1, and X ∈ RN0×B .

Case γ = B. First, choose sl,i ∈ {−,+} for each l ∈ [L] and i ∈ [Nl] so that

DADρl(yl,i(w)) = Dsl,iρl(yl,i(w)). (12)

Such sl,i always exists as we assumed DADρl(x) ∈ ∂Bρl(x) for all x ∈ ndf(ρl) and ρl is piecewise-
analytic. Let sl = (sl,1, . . . , sl,Nl

), and let ζl = 0Wl−Nl
⊕ (sl,1, . . . , sl,Nl

) ∈ RWl for all l ∈ [L],
i.e., the coordinates corresponding to the bias parameters in ζl have non-zero values sl,1, . . . , sl,Nl

.
Then, one can observe that

lim
ε→0+

sign
(
τl(z0:l−1(w), wl + εζl)− τl(z0:l−1(w), wl)

)
= sl

for all l ∈ [L]. Then, by Lemma 12, there exists {ηn}n ⊂ RW such that for all l ∈ [L] and i ∈ [Nl],

(i) ηn → 0W as n→∞ and
(ii) yl,i(w + ηn) ∈ int(P(ρl, yl,i(w), sl,i)) for all n ∈ N.

From these, it holds that

DΨ(w + ηn) = DADΨ(w + ηn)→ DADΨ(w) as n→∞. (13)

Here, the existence of the first term (i.e., Ψ is differentiable at w+ ηn) and the first equality are both
by Lemma 13 and (ii), and the convergence is by the definition of DADΨ (Appendix B), Eq. (12),
and (i). By combining Eq. (13) and (i), we have DADΨ(w) ∈ ∂BΨ(w) as desired.

Case γ = C. Let ndf(ρl) = {xl,1, . . . , xl,kl
} for all l ∈ [L], and let T =

∏
l∈[L]{−,+}kl . For

each l ∈ [L] and t ∈ T with t = (t1, . . . , tL) and tl ∈ {−,+}kl , we define hl, fl,t : R→ R as

hl(x) = DADρl(x), fl,t(x) =

{
Dρl(x) if x /∈ ndf(ρl)

Dtl,iρl(x) if x = xl,i.

Then, the assumption DADρl(x) ∈ ∂Cρl(x) implies that for all l ∈ [L] and x ∈ R,

hl(x) =

{
Dρl(x) if x /∈ ndf(ρl)

λl,iD
−ρl(x) + (1− λl,i)D

+ρl(x) if x = xl,i

for some λl,i ∈ [0, 1]. From this, one can observe that

hl ∈ conv({fl,t : t ∈ T }) for all l ∈ [L].

Using this observation, we can derive the desired conclusion:

DADΨ(w) = DAD
(h1,...,hL)Ψ(w)

∈ conv
({

DAD
(g1,...,gL)Ψ(w) : gl ∈ {fl,t : t ∈ T } for all l ∈ [L]

})
⊆ conv

(
∂BΨ(w)

)
= ∂CΨ(w),

where the first inclusion is by Lemma 15, and the second inclusion follows from the fact that
DAD

(g1,...,gL)Ψ(w) ∈ ∂BΨ(w) for any gl ∈ {fl,t : t ∈ T } (which holds by fl,t(x) ∈ ∂Bρl(x)

and our proof for the previous case γ = B). This completes the proof of Theorem 1.

D.2 PROOF OF LEMMA 2

Consider a neural network Ψ defined as follows:

• B = 1, L = 1, N0 = 1, N1 = 2, and W1 = 1.
• τ1 : RN0×B × RW1 → RN1×B is defined as τ1(X,w1) = (Xw1,−Xw1).
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• ρ1 : R→ R is defined as ρ1 = ReLU with DADρ1(0) = 0.
• ℓ : RN1×B → R is defined as ℓ(x1, x2) = x1 − x2.

Then, Ψ is expressed as Ψ(w;X) = ℓ(σ1(τ1(X,w1))), where w = w1 ∈ R, X ∈ R, and
σ1 = (ρ1, ρ1). Moreover, Ψ satisfies Condition 1 without distinct bias parameters, and DADρ1(x) ∈
∂Bρ1(x) for all x ∈ ndf(ρ1) = {0}. We now consider X∗ = 1. Then, for all w = w1 ∈ R,

Ψ(w;X∗) = ReLU(w1)− ReLU(−w1) = w1,

so ∂CΨ(0;X∗) = {1}. However, DADΨ(0;X∗) = 0 /∈ ∂CΨ(0;X∗). This completes the proof of
Lemma 2.

D.3 PROOF OF LEMMA 3

Consider a neural network Ψ defined as follows:

• B = 2, L = 1, N0 = N1 = 1, and W1 = 1.
• τ1 : RN0×B × RW1 → RN1×B is defined as τ1(X,w1) = X + w1.
• ρ1 : R→ R is defined as ρ1 = HardSigmoid with DADρ1(−3) = DADρ1(3) = 0 (see Footnote 3

for the definition of HardSigmoid).
• ℓ : RN1×B → R is defined as ℓ(x1, x2) = x1 + x2.

Then, Ψ is expressed as Ψ(w;X) = ℓ(σ1(τ1(X,w1))), where w = w1 ∈ R, X ∈ R2, and σ1 =
(ρ1, ρ1). Moreover, Ψ satisfies Condition 1 with distinct bias parameters, and DADρ1(x) ∈ ∂Bρ1(x)
for all x ∈ ndf(ρ1) = {−3, 3}. We now consider X∗ = (3,−3). Then, for all w = w1 ∈ R,

Ψ(w;X∗) = HardSigmoid(3 + w1) + HardSigmoid(−3 + w1) = 1 + w1/6,

so ∂CΨ(0;X∗) = {1/6}. However, DADΨ(0;X∗) = 0 /∈ ∂CΨ(0;X∗). This completes the proof of
Lemma 3.

D.4 PROOF OF THEOREM 4

Theorem 4 is a special case of Theorem 6, and the proofs of the two theorems are almost identical.
Hence, we omit the proof of Theorem 4; the proof of Theorem 6 can be found in Section E.1.

D.5 PROOF OF THEOREM 5

Fix w ∈ RW , B ∈ N, and X ∈ RN0×B . For each l ∈ [L], letNl = {(i, b) ∈ [Nl]× [B] : yl,i,b(w) ∈
ndf(ρl)}. We note that by the assumption, Nl ̸= ∅ implies rank(zl−1(w)) = B for any l.

Case γ = B. First, we choose sl,i,b ∈ {−,+} for each l ∈ [L] and (i, b) ∈ [Nl]× [B] such that

DADρl(yl,i,b(w)) = Dsl,i,bρl(yl,i,b(w)) if (i, b) ∈ Nl; (14)

we can choose an arbitrary sl,i,b ∈ {−,+} (e.g., sl,i,b = +) if (i, b) /∈ Nl. Such sl,i,b always
exists since DADρl(x) ∈ ∂γρl(x) = ∂Bρl(x) for all x ∈ ndf(ρl) (by the assumption) and since ρl is
piecewise-analytic. We then choose φl,i ∈ R1×Nl−1 for each l ∈ [L] and i ∈ [Nl] such that

φl,izl−1(w) = [sl,i,b]b if Nl ̸= ∅; (15)

we can choose an arbitrary φl,i if Nl = ∅. Such φl,i always exists since Nl ̸= ∅ implies
rank(zl−1(w)) = B as noted above.

Next, let Φl ∈ RNl×Nl−1 be a matrix whose i-th row is φl,i. Also, let ζl = vec(Φl) if the l-th layer
does not have bias parameters, and ζl = vec(Φl)⊕ 0Nl

otherwise. Then, by Eq. (15),

Φlzl−1(w) = [sl,i,b]i,b for all l ∈ [L] with Nl ̸= ∅. (16)

Under this setup, we claim that for all l ∈ [L] and (i, b) ∈ Nl,

lim
ε→0+

sign
(
τl,i,b(z0:l−1(w), wl + εζl)− τl,i,b(z0:l−1(w), wl)

)
= sl,i,b. (17)
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This claim holds as follows: for any l ∈ [L] with Nl ̸= ∅, if the l-th layer has bias parameters, then

τl,i,b

(
z0:l−1(w), wl + εζl

)
− τl,i,b

(
z0:l−1(w), wl

)
= τl,i,b

(
z0:l−1(w), (vec(Al)⊕ bl) + ε(vec(Φl)⊕ 0Nl

)
)
− τl,i,b

(
z0:l−1(w), vec(Al)⊕ bl

)
= τl,i,b

(
z0:l−1(w), vec(Al + εΦl)⊕ bl

)
− τl,i,b

(
z0:l−1(w), vec(Al)⊕ bl

)
=

(
(Al + εΦl)zl−1(w) + bl

)
−
(
Alzl−1(w) + bl

)
= ε · Φlzl−1(w) = ε · [sl,i,b]i,b,

where the first and third equalities are by the assumption, and the last equality is by Eq. (16). We
can use a similar argument to prove the case when the l-th layer does not have bias parameters.

Finally, by Lemma 12 applied to Eq. (17), there exists {ηn}n ⊂ RW such that for each l ∈ [L],
i ∈ [Nl], and b ∈ [B],

(i) ηn → 0W as n→∞ and
(ii) yl,i,b(w + ηn) ∈ int(P(ρl, yl,i,b(w), sl,i,b)) for all n ∈ N.

From these, it holds that

DΨ(w + ηn) = DADΨ(w + ηn)→ DADΨ(w) as n→∞. (18)

Here, the existence of the first term (i.e., Ψ is differentiable at w+ ηn) and the first equality are both
by Lemma 13 and (ii), and the convergence is by the definition of DADΨ (Appendix B), Eq. (14),
and (i). By combining Eq. (18) and (i), we have DADΨ(w) ∈ ∂BΨ(w) as desired.

Case γ = C. The proof for this case is identical to the proof of Theorem 1 for the same case,
except that we now rely on the proof for the case γ = B in this theorem (not in Theorem 1). This
completes the proof of Theorem 5.
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E PROOFS OF RESULTS IN SECTION 3.2

E.1 PROOF OF THEOREM 6

Since all maxpools are trivial, we have Nl = Ml for all l.

Case λ1, . . . , λL ∈ {0, 1}. Let sl = − if λl = 1 and sl = + if λl = 0 for all l ∈ [L]. Let
ζl = 0Wl−Cl

⊕ (sl1Cl
) for all l ∈ [L]. Then, one can observe that

lim
ε→0+

sign
(
τl(z0:l−1(w), wl + εζl)− τl(z0:l−1(w), wl)

)
= sl1Nl×B

for all l ∈ [L]. Then, by Lemma 12, there exists {ηn}n ⊂ RW such that for each l ∈ [L], i ∈ [Nl],
and b ∈ [B],

(i) ηn → 0W as n→∞ and
(ii) yl,i,b(w + ηn) ∈ int(P(ρl, yl,i,b(w), sl)) for all n ∈ N.

By Lemma 13, (i)–(ii), the definition of DADΨ(w), and by DADρl = Dslρl, we have DΨ(w+ ηn) =
DADΨ(w+ηn)→ DADΨ(w) as n→∞ (for a more detailed argument, refer to Eq. (13) and the text
below that). From this and (i), it holds that DADΨ(w) ∈ ∂BΨ(w).

Case λ1, . . . , λL ∈ [0, 1]. For t = (t1, . . . , tL) ∈ {−,+}L, let ft = (f1,t, . . . , fL,t) where

fl,t(x) =

{
Dρl(x) if x /∈ ndf(ρl)

Dtlρl(x) if x ∈ ndf(ρl)

for all l ∈ [L]. Also, let h = (h1, . . . , hL) with hl = DADρl. By the assumption, we know that

DADρl(x) =

{
Dρl(x) if x /∈ ndf(ρl)

λlD
−ρl(x) + (1− λl)D

+ρl(x) if x ∈ ndf(ρl)

for some λl ∈ [0, 1]. From this, we can observe that hl ∈ conv({fl,t : t ∈ {−,+}L
}
) for all

l ∈ [L]. From this, we obtain the desired conclusion:

DADΨ(w) = DAD
h Ψ(w) ∈ conv

({
DAD

(g1,...,gL)Ψ(w) : gl ∈ {fl,t : t ∈ {−,+}L} for all l ∈ [L]
})

⊆ conv
(
∂BΨ(w)

)
= ∂CΨ(w),

where the first inclusion is by Lemma 15 and the second inclusion is by the observation that
DAD

(g1,...,gL)Ψ(w) ∈ ∂BΨ(w) for any gl ∈ {fl,t : t ∈ {−,+}L} (which follows from fl,t ∈
{D−ρl, D

+ρl} and our proof for the previous case). This completes the proof of Theorem 6.

E.2 PROOF OF LEMMA 7

Consider a neural network Ψ defined as follows:

• B = 1, L = 1, N0 = 1, M1 = 4, N1 = 2, and W1 = 2.
• τ1 : RN0×B ×RW1 → RM1×B is defined as τ1(X, (u1, b1)) = (Xu1 + b1, b1,−Xu1 + b1, b1).
• ρ1 : R→ R is the identity function.
• ϕ1 : RM1×B → RN1×B is defined as ϕ1(x1, x2, x3, x4) = (max2(x1, x2),max2(x3, x4)),

where AD uses DADmax2(x1, x2) = (1, 0) for all x1 = x2 (i.e., AD uses the first index of
max2 if the two inputs are identical).

• ℓ : RN1×B → R is defined as ℓ(x1, x2) = x1 − x2.

Then, Ψ is expressed as Ψ(w;X) = ℓ(ϕ1(τ1(X, (u1, b1)))), where w = (u1, b1) ∈ R2 and X ∈
R. Moreover, Ψ satisfies Condition 2 with shared bias parameters and non-trivial maxpools, and
DADρ1(x) ∈ D−ρ1(x) for all x ∈ ndf(ρ1) = ∅. We now consider X∗ = 1. Then, for all w =
(u1, b1) ∈ R2,

Ψ(w;X∗) = max{u1 + b1, b1} −max{−u1 + b1, b1} = u1,

so ∂CΨ((0, 0);X∗) = {(1, 0)}. However, DADΨ((0, 0);X∗) = (2, 0) /∈ ∂CΨ((0, 0);X∗). This
completes the proof of Lemma 7.
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E.3 PROOF OF THEOREM 8

In this proof, we write πi, Tj , and Sj appearing in Algorithm 1 as πl,i, Tl,j , and Sl,j to make their
dependency on l ∈ [L] explicit. Consider any w ∈ RW , B ∈ N, and X ∈ RN0×B . Suppose that
Pl ̸= ∅ for all l ∈ [L]. Let

Nl = {(j′, b′) ∈ [Ml]× [B] : yl,j′,b′(w) ∈ ndf(ρl)}

for each l ∈ [L] as in the statement of Lemma 12.

Step 1. We choose ζl ∈ Pl for each l ∈ [L], and choose sl,j′,b′ ∈ {−,+} for each l ∈ [L] and
(j′, b′) ∈ [Ml]× [B] such that

DADρl(yl,j′,b′(w)) = Dsl,j′,b′ρl(yl,j′,b′(w)). (19)

First, we claim that for each l ∈ [L] and (j′, b′) ∈ Nl,

lim
ε→0+

sign
(
τl,j′,b′(z0:l−1(w), wl + εζl)− τl,j′,b′(z0:l−1(w), wl)

)
= sl,j′,b′ . (20)

To prove this, fix l ∈ [L] and (j′, b′) ∈ Nl, and define a function fl,j′,b′ : R → R as fl,j′,b′(ε) =
τl,j′,b′(z0:l−1(w), wl + εζl). Then,

sign(Dfl,j′,b′(0)) = sign

(〈
∂τl,j′,b′

∂wl
(z0:l−1(w), wl), ζl

〉)
= sign(⟨πl,j′,b′ , ζl⟩) = sl,j′,b′ , (21)

where πl,j′,b′ corresponds to πj′,b′ in Algorithm 1 (as noted above), the second equality is by Line 4
in Algorithm 1, and the last equality is by Lines 6–7 in Algorithm 1, ζl ∈ Pl, and Eq. (19). This
implies that fl,j′,b′ is a non-constant analytic function (since Dfl,j′,b′(0) ̸= 0). Hence, we can apply
Lemma 10 to fl,j′,b′ and this yields Eq. (20).

Next, we claim that for all l ∈ [L], (i, b) ∈ [Nl]× [B], and (j′, b′) ∈ Il,i,b \ Tl,i,b,

lim
ε→0+

sign
(
ρl
(
τl,µl,i,b,νl,i,b

(z0:l−1(w), wl + εζl)
)
− ρl

(
τl,j′,b′(z0:l−1(w), wl + εζl)

))
= + (22)

where µl,i,b, νl,i,b, Il,i,b are defined as in Lemma 12 and Tl,i,b corresponds to Ti,b in Algorithm 1
(as noted above). To show this, fix l ∈ [L] and (i, b) ∈ [Nl] × [B]. Then, Eq. (22) clearly holds
for all (j′, b′) ∈ Il,i,b \ Sl,i,b by Line 11 in Algorithm 1 and the continuity of ρl and τl, where
Sl,i,b corresponds to Si,b in the algorithm (as noted above). Also, we immediately obtain Eq. (22)
for the remaining (j′, b′) (i.e., (j′, b′) ∈ Sl,i,b \ Tl,i,b) by applying Lemma 11 to ρl, fl,µl,i,b,νl,i,b

,
and fl,j′,b′ . Here, Lemma 11 is applicable because: the condition (i) of the lemma follows from
Eqs. (19) and (21), and the condition (ii) of the lemma follows from the definition of µl,i,b, νl,i,b,
Eq. (21), and Line 15 in Algorithm 1.

Finally, by applying Lemma 12 to Eqs. (20) and (22), we obtain the following: there exists a se-
quence {ηn}n∈N ⊂ RW such that for each l ∈ [L] and (i, b) ∈ [Nl]× [B],

(i) limn→∞ ηn = 0W ,
(ii) yl,j′,b′(w + ηn) ∈ int(P(ρl, yl,j′,b′(w), sl,j′,b′)) for all (j′, b′) ∈ [Ml]× [B] and n ∈ N, and

(iii) ρl(yl,µl,i,b,νl,i,b
(w + ηn)) > ρl(yl,j′,b′(w + ηn)) for all (j′, b′) ∈ Il,i,b \ Tl,i,b and n ∈ N.

Let E ′ be a collection of all sequences {η′n}n ⊆ RW that satisfy (i)–(iii). Then, E ′ is not empty
since {ηn}n ∈ E ′.

Step 2. We first consider an easy case. That is, suppose that there is a sequence {η′n}n ∈ E ′
satisfying the following: for each l, i, b, there exists an index (µ∗

l,i,b, ν
∗
l,i,b) ∈ Tl,i,b such that

argmax
(j′,b′)∈Il,i,b

ρl(yl,j′,b′(w + η′n)) = {(µ∗
l,i,b, ν

∗
l,i,b)} for all n ∈ N. (23)

We remark that (µ∗
l,i,b, ν

∗
l,i,b) can be different from (µl,i,b, νl,i,b). Then, it holds that

DΨ(w + η′n) = DADΨ(w + η′n)→ DADΨ(w) as n→∞. (24)
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The equality is by (ii) and Lemma 13. Here, the lemma is applicable because for each n, Ψ is
identical to a network with only differentiable maxpools, on some open neighborhood of w + η′n;
this follows from the existence of (µ∗

l,i,b, ν
∗
l,i,b). The convergence in the above equation follows

from the definition of DADΨ (see Appendix B), (i)–(ii), Eq. (23), and two observations: for all l, i, b,

Dsl,j′,b′ρl(yl,j′,b′(w)) = DADρl(yl,j′,b′(w)) for all (j′, b′) ∈ [Ml]× [B],

∂ADρl(yl,j′,b′(w))

∂w1:l
=

∂ADρl(yl,j′′,b′′(w))

∂w1:l

for (j′, b′) = (µ∗
l,i,b, ν

∗
l,i,b) and

(j′′, b′′) = (µl,i,b, νl,i,b),

where the first equality is by the definition of sl,j′,b′ (see Eq. (19)) and the second equality is by
(µ∗

l,i,b, ν
∗
l,i,b), (µl,i,b, νl,i,b) ∈ Tl,i,b and the definition of Tl,i,b (see Line 14 of Algorithm 1). From

Eq. (24) and (i), we obtain the desired conclusion: DADΨ(w) ∈ ∂BΨ(w).

Step 3. We now consider a general case. That is, we no longer make the assumption considered in
Step 2. For any l ∈ [L] and (i, b) ∈ [Nl]× [B], we define the function Gl,i,b : RW → 2Il,i,b as

Gl,i,b(δ) ≜ argmax
(j′,b′)∈Il,i,b

ρl(yl,j′,b′(w + δ)),

where 2A denotes the powerset of a set A.

Step 3-1. First, we claim that there is a sequence {η′n}n ∈ E ′ such that for any l, i, b,

Gl,i,b(η′n) = Gl,i,b(η′m) for all n,m ∈ N. (25)

Such a sequence always exists as follows: take any {η̂n} ∈ E ′ and let Hn = (Gl,i,b(η̂n))l,i,b ∈∏
l,i,b 2

Il,i,b ; then some element in {Hn}n must appear infinitely many times in H, because∏
l,i,b 2

Il,i,b is a finite set while H is indexed over an infinite set; hence, we can choose a de-
sired {η′n}n as a subsequence of {η̂n}n. Without loss of generality, we assume that {η′n}n has the
minimum value of

∑
l,i,b |Gl,i,b(η′1)| over all sequences in E ′ satisfying Eq. (25).

Step 3-2. Next, we claim that there is a subsequence {η′′n}n of {η′n}n satisfying the following: for
each n ∈ N, there exists an open neighborhood O′′

n of w + η′′n such that

ρl(yl,j′,b′(·)) = ρl(yl,j′′,b′′(·)) on O′′
n (26)

for any l, i, b, and (j′, b′), (j′′, b′′) ∈ Gl,i,b(η′′n) = Gl,i,b(η′1). We prove this claim by contradiction.

Suppose that there is no such subsequence. Then, there should exist a subsequence {η∗n}n of {η′n}n,
some l∗, i∗, b∗, and (j∗′, b∗′), (j∗′′, b∗′′) ∈ Gl∗,i∗,b∗(η′1) such that:

ρl∗(yl∗,j∗′,b∗′(·)) ̸= ρl∗(yl∗,j∗′′,b∗′′(·)) (27)

on any open neighborhood of w + η∗n for all n, and

ρl(yl,j′,b′(w + η∗n)) > ρl(yl,j′′,b′′(w + η∗n)) (28)

for all n, l, i, b, (j′, b′) ∈ Gl,i,b(η′1), and (j′′, b′′) ∈ Il,i,b \ Gl,i,b(η′1). We can show this by ap-
plying a similar argument used above (to show Eq. (25)), to the fact that {(l, i, b, j′, b′, j′′, b′′) :
l, i, b, and (j′, b′), (j′′, b′′) ∈ Gl,i,b(η′1)} is a finite set. By perturbing {η∗n}n a little bit and using
Eqs. (27) and (28), we can construct another sequence {η∗∗n }n such that it still belongs to E ′ and

ρl∗(yl∗,j∗′,b∗′(w + η∗∗n )) ̸= ρl∗(yl∗,j∗′′,b∗′′(w + η∗∗n )), (29)
ρl(yl,j′,b′(w + η∗∗n )) > ρl(yl,j′′,b′′(w + η∗∗n )), (30)

for all n, l, i, b, (j′, b′) ∈ Gl,i,b(η′1), and (j′′, b′′) ∈ Il,i,b \ Gl,i,b(η′1). Further, by applying the same
argument used to show Eq. (25), we can take a subsequence {η∗∗∗n }n of {η∗∗n }n so that it satisfies
Eq. (25). Then, one can observe that {η∗∗∗n }n ∈ E ′ and∑

l,i,b

|Gl,i,b(η∗∗∗1 )| <
∑
l,i,b

|Gl,i,b(η′1)|

because |Gl∗,i∗,b∗(η∗∗∗1 )| < |Gl∗,i∗,b∗(η′1)| (by Eq. (29)) and |Gl,i,b(η∗∗∗1 )| ≤ |Gl,i,b(η′1)| for all
l, i, b (by Eq. (30)). This contradicts to our assumption: {η′n}n has the minimum value of∑

l,i,b |Gl,i,b(η′1)| over all sequences in E ′ satisfying Eq. (25). Hence, there should exist a subse-
quence {η′′n}n of {η′n}n satisfying Eq. (26).
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Step 3-3. Lastly, we show the desired conclusion based on the sequence {η′′n}n, which satisfies
(i)–(iii) and Eq. (26). To do so, we claim that for each n ∈ N, there exists a network Ψ̃n with only
differentiable maxpools such that Ψ̃n = Ψ and DADΨ̃n = DADΨ both on some open neighborhood
of w + η′′n. Such a network Ψ̃n exists because the fact that (Ψ,O′′

n) satisfies Eq. (26) implies that
we can replace all the non-trivial maxpools in Ψ by differentiable maxpools without changing the
value of Ψ and DADΨ on O′′

n; here, we use the fact that if f1, . . . , fp, g1, . . . , gq : A → R satisfy
fi(·) = fi′(·) > gj(·) on A for all i, i′, j, then maxp+q(f1(·), . . . , gq(·)) = max1(fi(·)) on A for
any i (and max1 is a differentiable maxpool).

Given the existence of Ψ̃n, we can show the following:

DΨ̃n(w + η′′n) = DADΨ̃n(w + η′′n) = DADΨ(w + η′′n)→ DADΨ(w) as n→∞. (31)

The first equality is by (ii) and Lemma 13 applied to Ψ̃n, where the lemma is applicable because Ψ̃n

uses only differentiable maxpools; the second equality is by DADΨ̃n = DADΨ on some neighbor-
hood of w + η′′n. The convergence in the above equation follows from the definition of DADΨ (see
Appendix B), (i)–(ii), the definition of Gl,i,b, and two observations: for all n, l, i, b,

Dsl,j′,b′ρl(yl,j′,b′(w)) = DADρl(yl,j′,b′(w)) for all (j′, b′) ∈ [Ml]× [B],

∂ADρl(yl,j′,b′(w))

∂w1:l
=

∂ADρl(yl,j′′,b′′(w))

∂w1:l

for all (j′, b′) ∈ Gl,i,b(η′′n) and
(j′′, b′′) = (µl,i,b, νl,i,b),

where the first equality is by the definition of sl,j′,b′ (see Step 1), and the second equality is by
Gl,i,b(η′′n) ⊆ Tl,i,b (which follows from (iii)), (µl,i,b, νl,i,b) ∈ Tl,i,b, and the definition of Tl,i,b (see
Line 14 of Algorithm 1). From Eq. (31) and the fact that Ψ = Ψ̃n on some open neighborhood
of w + η′′n, Ψ is also differentiable on that neighborhood and DΨ(w + η′′n) = DΨ̃n(w + η′′n) →
DADΨ(w) as n → ∞. From this and (i), we obtain DADΨ(w) ∈ ∂BΨ(w) and this completes the
proof of Theorem 8.
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F ALGORITHM 1 FOR NETWORKS WITH SHARED BIAS AND ReLU

Algorithm 2 is Algorithm 1 for networks with shared bias parameters, where all non-differentiable
ρl are ReLU with DADReLU(0) = 0.

Algorithm 2 Construction of Pl for networks with shared bias parameters, where ρl = ReLU if ρl
is non-differentiable with DADReLU(0) = 0

1: Input: l: the index of the target layer, z0:l−1: the outputs of the 0, . . . , (l − 1)-th layer, w1:l:
the parameters of the 1, . . . , l-th layers, {Ij}j∈[Nl]×[B]: the index sets used by the maxpool
function ϕl at the l-th layer.

2: Initialize: Pl ← RWl

3: for i ∈ [Ml]× [B] do
4: yi ← τl,i(z0:l−1, wl), αi ← ρl(yi), πi ← ∂yi/∂wl

5: end for
6: for j ∈ [Nl]× [B] do
7: Sj = argmaxi∈Ij

αi

8: if |Sj | ≥ 2 and maxi∈Ij
αi > 0 then

9: i∗ ← the index in Ij that AD uses when computing DADmax({αi}i∈Ij
)

10: Tj ← {i ∈ Sj : ∂ADαi∗/∂w1:l = ∂ADαi/∂w1:l}
11: Pl ← Pl ∩

{
x ∈ RWl : ⟨πi∗ , x⟩ > ⟨πi, x⟩ for all i ∈ Sj \ Tj

}
12: end if
13: end for
14: return Pl

G EXAMPLES OF IDENTICAL IMAGE PATCHES

Figure 1: Examples of identical input patches that incur ties in maxn operations.

In Figure 1, we show example images where a tie occurs in a maxn operation due to the same image
patches that correspond to the receptive fields of the maxn’s inputs. As shown in the figure, due to
the nature of the datasets, adjacent image patches are often identical to each other.
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H DISCUSSION ON FAILURE CASES OF AD AND OUR RESULTS

In this section, we consider three well-known failure cases of AD and discuss how they are handled
in Theorems 1, 4–6, and 8. Let g = h = ReLU with DADg(0) = 0 and DADh(0) = 1. Then, AD
returns an incorrect output (i.e., a value not in the Clarke subdifferential) in the following cases,
even though it uses proxy gradients that are in the Bouligand subdifferential.

• For f1(w) = g(w)− g(−w), we have DADf1(0) = 0 /∈ {1} = ∂Cf1(0).
• For f2(w) = g(w)− h(w), we have DADf2(0) = −1 /∈ {0} = ∂Cf2(0).
• For f3(w) = h(−h(w)), we have DADf3(0) = −1 /∈ {0} = ∂Cf3(0).

The three cases are handled in our theorems as follows. First, Theorems 1 and 4 require that a given
neural network should have distinct bias parameters. However, none of fi can be represented by a
network with distinct bias parameters, so they simply do not satisfy the conditions in Theorems 1
and 4. Second, Theorem 5 requires that a given network should have fully-connected layers. How-
ever, none of fi can be represented by a network with fully-connected layers, so they do not satisfy
the condition in Theorem 5 as well. Third, Theorem 6 requires that a given network should have
shared bias parameters and use the same λ for all activation functions at the same layer (see the
statement of the theorem for details). However, f1 and f3 cannot be represented by a network with
shared bias parameters, since the two g’s in f1 take arguments of different signs and the two h’s in
f3 use only one parameter w; further, f2 cannot be represented by a network that satisfies the afore-
mentioned condition on λ, since g and h use the left- and right-hand derivatives at 0, respectively.
Hence, none of fi satisfies the condition in Theorem 6. Finally, none of fi satisfies the sufficient
condition in Theorem 8 (i.e., Pl ̸= ∅ for all l), where each fi is considered a network with two
layers: we have P1 = ∅ for f1 and f2, and P2 = ∅ for f3.

I DISCUSSION ON THEOREMS 1 AND 6

In this section, we compare Theorems 1 and 6 with a closely related prior result: Theorem 3.6 in
(Lee et al., 2023).

Our Theorem 1 is an extension of Theorem 3.6 in (Lee et al., 2023) in two ways. First, our theorem
considers a larger class of neural networks than the previous theorem: the latter restricts a network
to have no residual connections (page 9 of (Lee et al., 2023)), while the former does not have this
restriction (Section 2.2). Second, for the same network, our Theorem 1 proves the same conclusion
given in Theorem 3.6 of (Lee et al., 2023), but under a weaker assumption. The latter theorem states
that if proxy gradients are in the Bouligand subdifferential, then AD computes an element of the
Clarke subdifferential. Our Theorem 1 extends this result as follows: the same conclusion holds
even if we use a wider class of proxy gradients (namely those in the Clarke subdifferential). We
believe this extension is an important addition to a line of recent works (e.g., Bertoin et al. (2021);
Boursier et al. (2022)) on understanding the effects of the choice of proxy gradients.

Our Theorem 6 further generalizes Theorem 3.6 in (Lee et al., 2023) by considering an even larger
class of neural networks. The latter theorem considers networks that do not contain usual residual
connections, convolutional layers, and normalization layers such as BatchNorm (pages 4 and 9 of
(Lee et al., 2023)) and do not allow minibatched inputs; hence, this prior result is not applicable to
most convolutional networks used in practice. In contrast, our Theorem 6 allows a minibatch setup
and a network with general residual connections, convolutional layers, and normalization layers
(Section 2.2); thus, this result is applicable to a wider range of neural networks including practically-
used convolutional networks.
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J DISCUSSION ON ALGORITHM 1 AND THEOREM 8

In this section, we discuss the computational complexity of Algorithm 1 and provide a comparison
between Theorem 8 and prior works.

J.1 COMPUTATIONAL COMPLEXITY OF ALGORITHM 1

We analyze the computational complexity of Algorithm 1 for the l-th layer as follows. To simplify
the notation, we assume that memory read/write, addition/multiplication, and computing a proxy
gradient take a unit cost. LetA ⊂ [Ml]× [B] be the set of indices i of pointwise activation functions
ρl whose non-differentiable points are touched (i.e., Line 5 of Algorithm 1 is true). For each index
j ∈ [Nl]× [B] of maxpool neurons, let Sj ⊂ [Ml]× [B] be the set defined in Line 11 of Algorithm 1,
and let B ⊂ [Nl] × [B] be the set of j’s that satisfy |Sj | ≥ 2 (i.e., Line 12 of Algorithm 1 is true).
First, for each element in A, Algorithm 1 adds a constraint to Pl. Next, for each index j ∈ B,
Algorithm 1 computes Tj , which requires at most |Sj | number of backward passes of AD (up to
the l-th layer), and then it adds at most |Sj | − 1 constraints to Pl. Finally, Algorithm 1 checks
whether Pl is empty or not, which can be done by solving a linear programming problem (see the
last paragraph of Section 3). Hence, the worst-case time complexity of Algorithm 1 can be written
as O(|A| + (

∑
j∈B |Sj |) · Cl + DWl,|A|−|B|+

∑
j∈B |Sj |), where Cl denotes the cost of a backward

pass of AD up to the l-th layer and Dn,k denotes the cost of solving a linear programming problem
with n variables and k constraints. To sum up, Algorithm 1 has a worst-case time complexity that
depends on the number of ties arising in maxpools (i.e., |Sj |) and the number of non-differentiability
touches in pointwise activation functions (i.e., |A|).

J.2 EMPIRICAL OVERHEAD OF ALGORITHM 1

For neural networks that have shared bias parameters and use maxpools and ReLUs (with
DADReLU(0) = 0) as the only non-differentiable activation functions, Algorithm 1 can be sim-
plified to Algorithm 2 which does not care about whether any input to ReLU touches zero or not
(i.e., does not care A discussed above). We used Algorithm 2 to check Pl ̸= ∅ in our experiments,
and empirically observed that Algorithm 2 incurred not much computational overhead: for train-
ing ResNet18 on the CIFAR-10 dataset, the average running times per epoch were 419 seconds
with Algorithm 2 and 237 seconds without our algorithms, i.e., additional computational overhead
was ∼77% of the running time of the vanilla learning algorithm. We further observed that solving
linear programming did not incur much overhead (<1%); almost all overhead (>99%) was from
computing Sj and Tj , and this overhead can be significantly reduced if we optimize our naive im-
plementation of Algorithm 2 (e.g., by implementing a native GPU kernel for computing Sj). This
relatively small overhead of Algorithm 2 was due to two phenomena we observed (shown in the
second and fourth columns of Table 2): ties in maxpools occurred mostly in the first layer, so the
backward passes of AD done in Algorithm 2 were very fast; and the number of constraints in Pl

was typically small, so checking the emptiness of Pl was very fast. To sum up, we observed that the
empirical overhead of running Algorithm 2 was relatively low in the training of neural networks.

J.3 COMPARISON OF THEOREM 8 WITH PRIOR WORKS

Compared to existing results, Theorem 8 has made important contributions in both theoretical and
empirical perspectives. Theoretically, Theorem 8 is a strict generalization of Theorem 4.7 in (Lee
et al., 2023), one of best known sufficient conditions for AD to compute a Clarke subderivative.
More precisely, Theorem 8 not only includes the previous theorem as a special case, but also covers
many more cases such as convolutional networks with residual connections and normalization lay-
ers (which cannot be covered by the previous theorem). To our knowledge, Theorem 8 is the first
sufficient condition that is applicable to practical neural networks. Empirically, Theorem 8 enables
us to verify that AD actually computed a Clarke subderivative in several practical learning scenarios
(Section 4). To our knowledge, there has been no prior work that empirically verified (or theoreti-
cally proved) that AD always outputs a Clarke subderivative in certain learning scenarios; our work
is the first such work.
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