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• Neural networks can do amazing things.

Robustness Issue of Neural Networks
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Source: arxiv.org/abs/2010.09624



• Neural networks can do amazing things.  But they are often not robust.

Robustness Issue of Neural Networks
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Provably Robust Neural Networks

• Many techniques have been developed to ensure the robustness of NNs.

• Robustness verification:    Prove the robustness of a given NN.
• Robust training:     Train a new NN such that it is provably robust (and performs well).
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Provably Robust Neural Networks

• Provably robust NNs still fail to achieve the state-of-the-art accuracy.
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Image classification on ImageNet

provably robust NNs state-of-the-art NNs
(not provably robust)

Sources:  https://sokcertifiedrobustness.github.io/leaderboard/,  https://paperswithcode.com/sota/image-classification-on-imagenet 
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• Provably robust neural networks fail to achieve the state-of-the-art accuracy.
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Do provably robust neural networks have any
fundamental limits in expressiveness?



Expressiveness of Provably Robust Neural Networks

• No fundamental limit exists by universal approximation (UA) theorems.

• Theorem.  𝑓 ∶ −1,1 𝑑 → ℝ   ⋯   target func (continuous).
           𝜎 ∶ ℝ → ℝ                ⋯   activation func (non-poly).
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Expressiveness of Provably Robust Neural Networks

• No fundamental limit exists by the interval universal approximation (IUA) theorem.

• Theorem.  𝑓 ∶ −1,1 𝑑 → ℝ   ⋯   target func (continuous).
           𝜎 ∶ ℝ → ℝ                ⋯   activation func (non-poly).
           For any 𝛿 > 0, there exists a 𝜎-neural network 𝜈 ∶ ℝ𝑑 → ℝ such that

𝜈 𝑥 − 𝑓 𝑥 ≤ 𝛿       for all 𝑥 ∈ −1,1 𝑑.

9[Baader+2020, Wang+ 2022]



Expressiveness of Provably Robust Neural Networks

• No fundamental limit exists by the interval universal approximation (IUA) theorem.

• Theorem.  𝑓 ∶ −1,1 𝑑 → ℝ   ⋯   target func (continuous).
           𝜎 ∶ ℝ → ℝ                ⋯   activation func (non-poly).
           For any 𝛿 > 0, there exists a 𝜎-neural network 𝜈 ∶ ℝ𝑑 → ℝ such that

𝜈 𝑥 − 𝑓 𝑥 ≤ 𝛿       for all 𝑥 ∈ −1,1 𝑑.

• Definition.  For 𝜈 ∶ ℝ𝑑 → ℝ, define its interval semantics as 𝜈# ∶ Box ℝ𝑑 → Box ℝ .
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set of 𝑑-dim boxes in ℝ𝑑



Expressiveness of Provably Robust Neural Networks

• No fundamental limit exists by the interval universal approximation (IUA) theorem.

• Theorem.  𝑓 ∶ −1,1 𝑑 → ℝ   ⋯   target func (continuous).
           𝜎 ∶ ℝ → ℝ                ⋯   activation func (non-poly).
           For any 𝛿 > 0, there exists a 𝜎-neural network 𝜈 ∶ ℝ𝑑 → ℝ such that

𝜈 𝑥 − 𝑓 𝑥 ≤ 𝛿       for all 𝑥 ∈ −1,1 𝑑.

• Definition.  For 𝜈 ∶ ℝ𝑑 → ℝ, define its interval semantics as 𝜈# ∶ Box ℝ𝑑 → Box ℝ .

• Defined using interval arithmetic: 𝑎, 𝑏 +# 𝑐, 𝑑 ≔ 𝑎 + 𝑐, 𝑏 + 𝑑 ,  ⋯
• Overapproximates 𝜈:  𝜈 ℬ ⊆ 𝜈#(ℬ)       for all ℬ ∈ Box ℝ𝑑 .
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Expressiveness of Provably Robust Neural Networks

• No fundamental limit exists by the interval universal approximation (IUA) theorem.
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Expressiveness of Provably Robust Neural Networks

• No fundamental limit exists by the interval universal approximation (IUA) theorem.

• Theorem.  𝑓 ∶ −1,1 𝑑 → ℝ   ⋯   target func (continuous).
           𝜎 ∶ ℝ → ℝ                ⋯   activation func (squashable).
           For any 𝛿 > 0, there exists a 𝜎-neural network 𝜈 ∶ ℝ𝑑 → ℝ such that
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Expressiveness of Provably Robust Neural Networks

• No fundamental limit exists by the interval universal approximation (IUA) theorem.

• Theorem.  𝑓 ∶ −1,1 𝑑 → ℝ   ⋯   target func (continuous).
           𝜎 ∶ ℝ → ℝ                ⋯   activation func (squashable).
           For any 𝛿 > 0, there exists a 𝜎-neural network 𝜈 ∶ ℝ𝑑 → ℝ such that

min 𝜈# ℬ − min 𝑓 ℬ ≤ 𝛿 ∧ max 𝜈# ℬ − max 𝑓 ℬ ≤ 𝛿       for all ℬ ∈ Box −1,1 𝑑 .

• Implication 1.  IUA  ⟹  UA.   ⋯   Because  for ℬ = 𝑥 ,  𝜈# 𝑥 = 𝜈 𝑥   and  𝑓 𝑥 = 𝑓 𝑥 .
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Expressiveness of Provably Robust Neural Networks

• No fundamental limit exists by the interval universal approximation (IUA) theorem.
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• Implication 1.  IUA  ⟹  UA.   ⋯   Because  for ℬ = 𝑥 ,  𝜈# 𝑥 = 𝜈 𝑥   and  𝑓 𝑥 = 𝑓 𝑥 .

• Implication 2.  IUA  ⟹  Existence of provably robust NNs.

  ∃ ideal classifier ℎ (not NN) that is robust (not provably robust)            .
⟹   ∃ NN that is provably robust and outputs the same as ℎ.
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Expressiveness of Provably Robust Neural Networks

• No fundamental limit exists by the interval universal approximation (IUA) theorem.

• Theorem.  𝑓 ∶ −1,1 𝑑 → ℝ   ⋯   target func (continuous).
           𝜎 ∶ ℝ → ℝ                ⋯   activation func (squashable).
           For any 𝛿 > 0, there exists a 𝜎-neural network 𝜈 ∶ ℝ𝑑 → ℝ such that

min 𝜈# ℬ − min 𝑓 ℬ ≤ 𝛿 ∧ max 𝜈# ℬ − max 𝑓 ℬ ≤ 𝛿       for all ℬ ∈ Box −1,1 𝑑 .

• Implication 1.  IUA  ⟹  UA.   ⋯   Because  for ℬ = 𝑥 ,  𝜈# 𝑥 = 𝜈 𝑥   and  𝑓 𝑥 = 𝑓 𝑥 .

• Implication 2.  IUA  ⟹  Existence of provably robust NNs.

  ∃ ideal classifier ℎ (not NN) that is robust (not provably robust)            .
⟹   ∃ NN that is provably robust and outputs the same as ℎ.

“Provably robust NNs have no fundamental limits in expressiveness.”

16[Baader+2020, Wang+ 2022]



Limitation of Existing Results

• No fundamental limit exists by the interval universal approximation (IUA) theorem.

• Theorem.  𝑓 ∶ −1,1 𝑑 → ℝ   ⋯   target func (continuous).
           𝜎 ∶ ℝ → ℝ                ⋯   activation func (squashable).
           For any 𝛿 > 0, there exists a 𝜎-neural network 𝜈 ∶ ℝ𝑑 → ℝ such that

min 𝜈# ℬ − min 𝑓 ℬ ≤ 𝛿 ∧ max 𝜈# ℬ − max 𝑓 ℬ ≤ 𝛿       for all ℬ ∈ Box −1,1 𝑑 .

• Unrealistic Assumption.  “NNs operate on real numbers with exact arithmetic.”

• Actual Implemenations.  “NNs operate on floating-point numbers with floating-point arithmetic.”
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• Actual Implemenations.  “NNs operate on floating-point numbers with floating-point arithmetic.”

• Consequences.  Existing results do not apply to the NNs used in practice.

         Fundamental limits may still exist in practice for provably robust NNs.

18[Baader+2020, Wang+ 2022]



Our Work: Overview

• No fundamental limit exists, according to the interval universal approximation (IUA) theorem.

• Theorem.  𝑓 ∶ −1,1 𝑑 → ℝ   ⋯   target func (continuous).
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• Unrealistic Assumption.  “NNs operate on real numbers with exact arithmetic.”

• Actual Implemenations.  “NNs operate on floating-point numbers with floating-point arithmetic.”

• Consequences.  Existing results do not apply to the NNs used in practice.

         Fundamental limits may still exist in practice for provably robust NNs.
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Do existing results still hold in real-world settings?
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We study the expressiveness of provably robust NNs over floats.

• Prove the IUA theorem over floats.
• Prove the existence of provably robust NNs over floats.

Do existing results still hold in real-world settings?
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We study the expressiveness of provably robust NNs over floats.

• Prove the IUA theorem over floats.
• Prove the existence of provably robust NNs over floats.
• Prove the computational completeness of “simple” programs over floats.

Do existing results still hold in real-world settings?



Our Main Results
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What to Prove?

• Theorem.    Let 𝑓 ∶ −1,1 𝑑 → ℝ and 𝛿 > 0.
             There exists a 𝜎-neural network 𝜈 ∶ ℝ𝑑 → ℝ such that

min 𝜈# ℬ − min 𝑓 ℬ ≤ 𝛿 ∧ max 𝜈# ℬ − max 𝑓 ℬ ≤ 𝛿       for all ℬ ∈ Box −1,1 𝑑 .
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defined using exact arithmetic 



What to Prove?

• Theorem?   Let 𝑓 ∶ −1,1 𝑑 → ℝ and 𝛿 > 0.
             There exists a 𝜎-neural network 𝜈 ∶ 𝔽𝑑 → 𝔽 such that

min 𝜈# ℬ − min 𝑓 ℬ ≤ 𝛿 ∧ max 𝜈# ℬ − max 𝑓 ℬ ≤ 𝛿       for all ℬ ∈ Box −1,1 𝑑 .
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𝑓 ∶ −1,1 𝑑 → ℝ 

𝜈 ∶ 𝔽𝑑 → 𝔽 

defined using FP arithmetic 



What to Prove?

• Theorem?   Let 𝑓 ∶ −1,1 𝑑 → ℝ and 𝛿 > 0.
             There exists a 𝜎-neural network 𝜈 ∶ 𝔽𝑑 → 𝔽 such that

min 𝜈# ℬ − min መ𝑓 ℬ ≤ 𝛿 ∧ max 𝜈# ℬ − max መ𝑓 ℬ ≤ 𝛿       for all ℬ ∈ Box −1,1 𝑑 .
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𝜈 ∶ 𝔽𝑑 → 𝔽 

መ𝑓 ∶ −1,1 𝑑 ∩ 𝔽𝑑 → 𝔽

rounded to 𝔽



What to Prove?

• Theorem?   Let 𝑓 ∶ −1,1 𝑑 → ℝ and 𝛿 > 0.
             There exists a 𝜎-neural network 𝜈 ∶ 𝔽𝑑 → 𝔽 such that

min 𝜈# ℬ − min መ𝑓 ℬ ≤ 𝛿 ∧ max 𝜈# ℬ − max መ𝑓 ℬ ≤ 𝛿       for all ℬ ∈ Box −1,1 𝑑 ∩ 𝔽𝑑 .
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𝜈 ∶ 𝔽𝑑 → 𝔽 

መ𝑓 ∶ −1,1 𝑑 ∩ 𝔽𝑑 → 𝔽

ℬ



IUA Theorem Over 𝔽

• Theorem!    Let 𝑓 ∶ −1,1 𝑑 → ℝ.
             There exists a 𝜎-neural network 𝜈 ∶ 𝔽𝑑 → 𝔽 such that

      𝜈# ℬ = min መ𝑓 ℬ , max መ𝑓 ℬ                                            for all ℬ ∈ Box −1,1 𝑑 ∩ 𝔽𝑑 .
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𝜈 ∶ 𝔽𝑑 → 𝔽 

መ𝑓 ∶ −1,1 𝑑 ∩ 𝔽𝑑 → 𝔽

ℬ
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IUA Theorem Over 𝔽

• Theorem!    Let 𝑓 ∶ −1,1 𝑑 → ℝ.  Assume 𝜎 ∶ 𝔽 → 𝔽 satisfies mild conditions.
             There exists a 𝜎-neural network 𝜈 ∶ 𝔽𝑑 → 𝔽 such that

      𝜈# ℬ = min መ𝑓 ℬ , max መ𝑓 ℬ                                            for all ℬ ∈ Box −1,1 𝑑 ∩ 𝔽𝑑 .
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መ𝑓 ∶ −1,1 𝑑 ∩ 𝔽𝑑 → 𝔽

ℬ

መ𝑓 ℬ𝜈# ℬ
𝜈 ∶ 𝔽𝑑 → 𝔽 



IUA Theorem Over 𝔽

• Conditions on 𝝈 ∶ 𝔽 → 𝔽 (Informal).

(C1)  ∃𝑐1, 𝑐2 ∈ 𝔽  such that  𝜎 𝑐1 = 0  and  𝜀
2

≤ 𝜎 𝑐2 ≤
5

4
.
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IUA Theorem Over 𝔽

• Conditions on 𝝈 ∶ 𝔽 → 𝔽 (Informal).

(C1)  ∃𝑐1, 𝑐2 ∈ 𝔽  such that  𝜎 𝑐1 = 0  and  𝜀
2

≤ 𝜎 𝑐2 ≤
5

4
.

(C2)  ∃𝜂 ∈ 𝔽 ∩ −4, 4   such that  for all 𝑥, 𝑦 ∈ 𝔽,
    𝑥 ≤ 𝜂 < 𝜂+ ≤ 𝑦   ⟹   𝜎 𝑥 ≤ 𝜎 𝜂 < 𝜎 𝜂+ ≤ 𝜎(𝑦) 
                   (or the reverse order holds).

(C3)  ∃𝜆 ∈ ℝ ∩ 0, 2emax−7 𝜎 𝜂   such that  for all 𝑥, 𝑦 ∈ 𝔽,
    𝑥 ≤ 𝜂 < 𝜂+ ≤ 𝑦   ⟹ 𝜎 𝑥 − 𝜎 𝜂 ≤ 𝜆 𝑥 − 𝜂   and
   𝜎 𝑦 − 𝜎 𝜂+ ≤ 𝜆 𝑦 − 𝜂+ .
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IUA Theorem Over 𝔽

• Conditions on 𝝈 ∶ 𝔽 → 𝔽 (Informal).

(C1)  ∃𝑐1, 𝑐2 ∈ 𝔽  such that  𝜎 𝑐1 = 0  and  𝜀
2

≤ 𝜎 𝑐2 ≤
5

4
.

(C2)  ∃𝜂 ∈ 𝔽 ∩ −4, 4   such that  for all 𝑥, 𝑦 ∈ 𝔽,
    𝑥 ≤ 𝜂 < 𝜂+ ≤ 𝑦   ⟹   𝜎 𝑥 ≤ 𝜎 𝜂 < 𝜎 𝜂+ ≤ 𝜎(𝑦) 
                   (or the reverse order holds).

(C3)  ∃𝜆 ∈ ℝ ∩ 0, 2emax−7 𝜎 𝜂   such that  for all 𝑥, 𝑦 ∈ 𝔽,
    𝑥 ≤ 𝜂 < 𝜂+ ≤ 𝑦   ⟹ 𝜎 𝑥 − 𝜎 𝜂 ≤ 𝜆 𝑥 − 𝜂   and
   𝜎 𝑦 − 𝜎 𝜂+ ≤ 𝜆 𝑦 − 𝜂+ .

• Proposition.  The correct roundings of the following activation func’s
satisfy the conditions (C1)--(C3):

      ReLU,  LeakyReLU,  ELU,  GELU,  Mish,  softplus,  sigmoid,  tanh  :  ℝ → ℝ.
31
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IUA Theorem Over ℝ vs. 𝔽

• Approximation Power.

• Over ℝ:    NNs can sufficiently approximate continuous target functions (ℝ → ℝ).

• Over 𝔽:    NNs can exactly compute any target functions (𝔽 → 𝔽).
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IUA Theorem Over ℝ vs. 𝔽

• Approximation Power.

• Over ℝ:    NNs can sufficiently approximate continuous target functions (ℝ → ℝ).

• Over 𝔽:    NNs can exactly compute any target functions (𝔽 → 𝔽).

• Activation Functions.

• Over ℝ:    IUA theorem does not hold for 𝜎 = idℝ.

• Over 𝔽:     IUA theorem does hold for 𝜎 = id𝔽.
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IUA Theorem Over ℝ vs. 𝔽

• Approximation Power.

• Over ℝ:    NNs can sufficiently approximate continuous target functions (ℝ → ℝ).

• Over 𝔽:    NNs can exactly compute any target functions (𝔽 → 𝔽).

• Activation Functions.

• Over ℝ:    IUA theorem does not hold for 𝜎 = idℝ.
    ◦  𝜎-NN over ℝ must be affine over ℝ        (∵ 𝜎-NN ∶= composition of 𝜎 and affℝ ∶ ℝ𝑘 → ℝ).

• Over 𝔽:     IUA theorem does hold for 𝜎 = id𝔽.
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IUA Theorem Over ℝ vs. 𝔽

• Approximation Power.

• Over ℝ:    NNs can sufficiently approximate continuous target functions (ℝ → ℝ).

• Over 𝔽:    NNs can exactly compute any target functions (𝔽 → 𝔽).

• Activation Functions.

• Over ℝ:    IUA theorem does not hold for 𝜎 = idℝ.
    ◦  𝜎-NN over ℝ must be affine over ℝ        (∵ 𝜎-NN ∶= composition of 𝜎 and affℝ ∶ ℝ𝑘 → ℝ).

• Over 𝔽:     IUA theorem does hold for 𝜎 = id𝔽.
    ◦  𝜎-NN over 𝔽 can be non-affine over ℝ  (∵ aff𝔽 ∶ 𝔽𝑘 → 𝔽 are often non-affine over ℝ by rounding error).
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Implications of Our IUA Theorem

Provable Robustness Over 𝔽.

• Theorem (Informal).  ∃ ideal classifier 𝑓 over 𝔽 (not NN) that is robust (not provably robust)
         ⟹   ∃ neural network over 𝔽 that is provably robust and outputs the same as 𝑓.

36



Implications of Our IUA Theorem

Provable Robustness Over 𝔽.

• Theorem (Informal).  ∃ ideal classifier 𝑓 over 𝔽 (not NN) that is robust (not provably robust)
         ⟹   ∃ neural network over 𝔽 that is provably robust and outputs the same as 𝑓.

“Provably robust NNs over 𝔽 have no fundamental limits in expressiveness.”

• Note.  Positive answer to the main question raised earlier in this talk.
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Implications of Our IUA Theorem

Computational Completeness Over 𝔽.

• Theorem (Informal).  All terminating programs that take and return floats
                  can be expressed by straight-line programs using only ⊕ and ⊗.
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Implications of Our IUA Theorem

Computational Completeness Over 𝔽.

• Theorem (Informal).  All terminating programs that take and return floats
                  can be expressed by straight-line programs using only ⊕ and ⊗.

“{FP programs with ⊕, ⊗} is computationally complete for {FP programs that halt}.”

• Note.  Important contribution to the FP literature, independent of the NN/verification literature.
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Implications of Our IUA Theorem

Computational Completeness Over 𝔽.

• Theorem (Informal).  All terminating programs that take and return floats
                  can be expressed by straight-line programs using only ⊕ and ⊗.

“{FP programs with ⊕, ⊗} is computationally complete for {FP programs that halt}.”

• Note.  Important contribution to the FP literature, independent of the NN/verification literature.

  Prove this theorem by extending our IUA theorem for 𝜎 = id.
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Summary

Provably robust NNs have no fundamental limit in expressiveness, even over floats.

• Prove the IUA theorem for NNs over 𝔽.

• Prove the existence of provably robust NNs over 𝔽.
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Summary

Provably robust NNs have no fundamental limit in expressiveness, even over floats.

• Prove the IUA theorem for NNs over 𝔽.

• Prove the existence of provably robust NNs over 𝔽.

Unexpected byproducts.

• Identify fundamental distinctions between two computations models: over 𝔽 and over ℝ.

• Prove that all halting programs over 𝔽 can be expressed using only two operations: ⊕ and ⊗.
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IUA Theorem Over 𝔽

• Proof Sketch.

    To approximate the rounded target function መ𝑓, 
    we “stack” indicator functions.
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…

+∞ = 𝑧𝑛 

𝑧𝑛−1 

𝑧𝑛−2 



IUA Theorem Over 𝔽

• Proof Sketch.

    To approximate the rounded target function መ𝑓, 
    we “stack” indicator functions.

     𝜈 𝑥 = 𝑧1 ⊖ 𝑧0 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧1

450 = 𝑧0 
𝑧1 
𝑧2 
𝑧3 
𝑧4 
𝑧5 
𝑧6 
𝑧7 
𝑧8 

…

+∞ = 𝑧𝑛 

𝑧𝑛−1 

𝑧𝑛−2 



IUA Theorem Over 𝔽

• Proof Sketch.

    To approximate the rounded target function መ𝑓, 
    we “stack” indicator functions.

     𝜈 𝑥 = 𝑧1 ⊖ 𝑧0 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧1

 ⊕ 𝑧2 ⊖ 𝑧1 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧2

460 = 𝑧0 
𝑧1 
𝑧2 
𝑧3 
𝑧4 
𝑧5 
𝑧6 
𝑧7 
𝑧8 

…

+∞ = 𝑧𝑛 

𝑧𝑛−1 

𝑧𝑛−2 



IUA Theorem Over 𝔽

• Proof Sketch.

    To approximate the rounded target function መ𝑓, 
    we “stack” indicator functions.

     𝜈 𝑥 = 𝑧1 ⊖ 𝑧0 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧1

 ⊕ 𝑧2 ⊖ 𝑧1 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧2

 ⊕ 𝑧3 ⊖ 𝑧2 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧3

470 = 𝑧0 
𝑧1 
𝑧2 
𝑧3 
𝑧4 
𝑧5 
𝑧6 
𝑧7 
𝑧8 

…

+∞ = 𝑧𝑛 

𝑧𝑛−1 

𝑧𝑛−2 



IUA Theorem Over 𝔽

• Proof Sketch.

    To approximate the rounded target function መ𝑓, 
    we “stack” indicator functions.

     𝜈 𝑥 = 𝑧1 ⊖ 𝑧0 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧1

 ⊕ 𝑧2 ⊖ 𝑧1 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧2

 ⊕ 𝑧3 ⊖ 𝑧2 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧3

 ⊕  ⋯ መ𝑓

 ⊕ 𝑧𝑛−1 ⊖ 𝑧𝑛−2 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧𝑛−1 .
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• Proof Sketch.

    To approximate the rounded target function መ𝑓, 
    we “stack” indicator functions.

     𝜈 𝑥 = 𝑧1 ⊖ 𝑧0 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧1

 ⊕ 𝑧2 ⊖ 𝑧1 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧2

 ⊕ 𝑧3 ⊖ 𝑧2 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧3

 ⊕  ⋯ መ𝑓

 ⊕ 𝑧𝑛−1 ⊖ 𝑧𝑛−2 ⊗ 𝟙 መ𝑓 𝑥 ≥ 𝑧𝑛−1 .

• Key Challenge.

    Construct the indicator functions using NNs
    while considering the following:

• NNs:  Use affine & activation funcs only.
• Floats:  Handle rounding errors & overflows.
• Intervals:  Match interval semantics.

     



IUA Theorem Over 𝔽

50

• Proof Sketch.  We construct the scaled indicator function 𝜎 𝑐2 ⋅ 𝟙 𝑥 ≤ 𝑧  as follows.
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