Floating-Point Neural Networks Are Provably Robust Universal Approximators

Geonho Hwang GIST, Korea Wonyeol Lee POSTECH, Korea

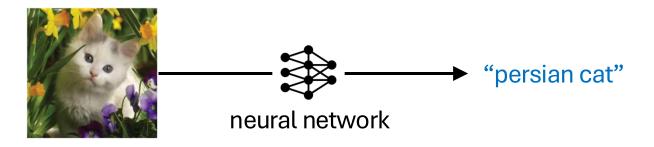
Yeachan Park Sejong U., Korea Sejun Park Korea U., Korea

Feras Saad CMU, USA

CAV, July 2025

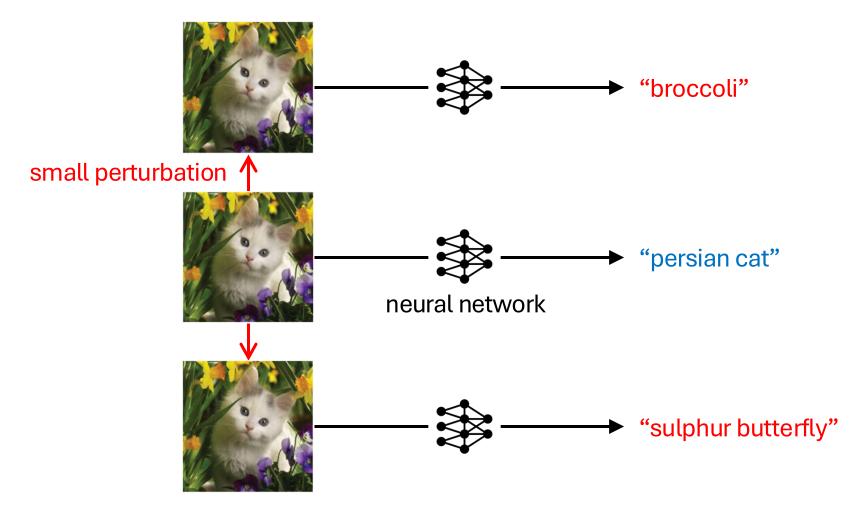
Robustness Issue of Neural Networks

Neural networks can do amazing things.



Robustness Issue of Neural Networks

Neural networks can do amazing things. But they are often not robust.



Provably Robust Neural Networks

Many techniques have been developed to ensure the robustness of NNs.

Robustness verification: Prove the robustness of a given NN.

Robust training: Train a new NN such that it is provably robust (and performs well).

Reluplex: An Efficient SMT Solver for Verifying
Deep Neural Networks

Guy Katz, Clark Barrett, David Dill, Kyle Julian and Mykel Kochenderfer

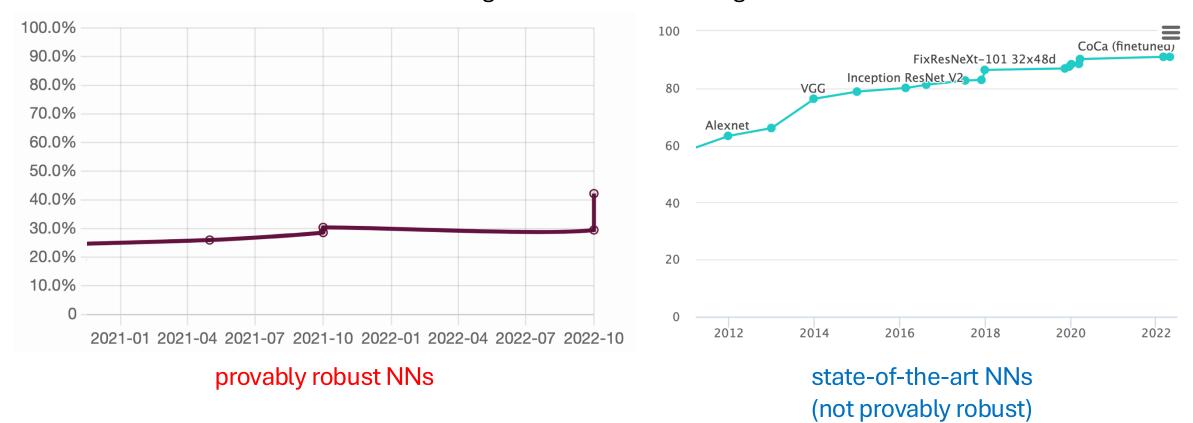
Differentiable Abstract Interpretation for Provably Robust Neural Networks

Matthew Mirman ¹ Timon Gehr ¹ Martin Vechev ¹

Provably Robust Neural Networks

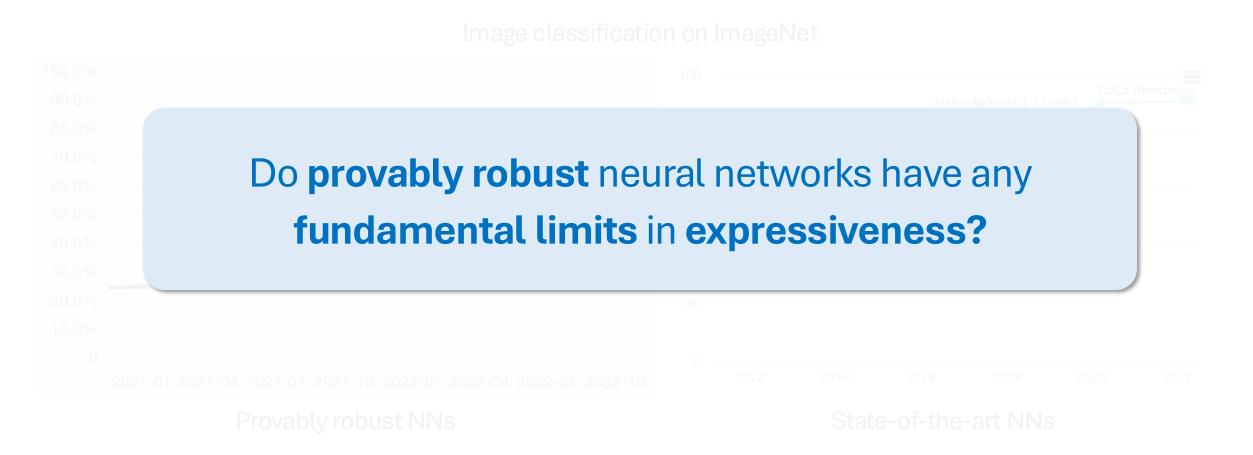
Provably robust NNs still fail to achieve the state-of-the-art accuracy.

Image classification on ImageNet

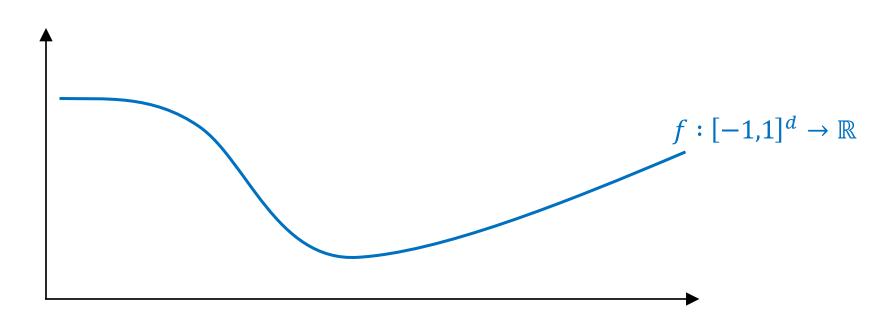


Provably Robust Neural Networks

Provably robust neural networks fail to achieve the state-of-the-art accuracy.

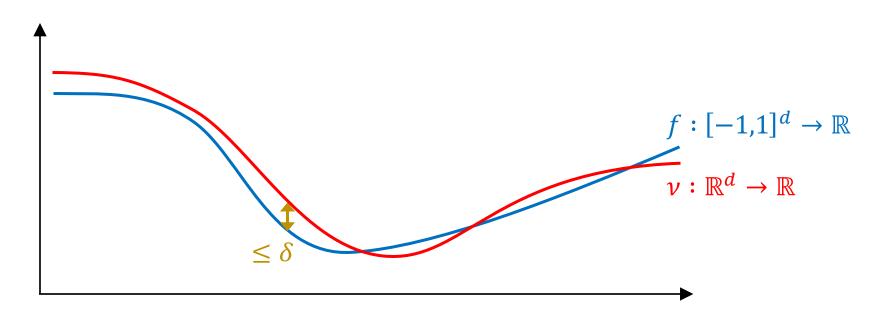


- No fundamental limit exists by universal approximation (UA) theorems.
- Theorem. $f:[-1,1]^d \to \mathbb{R}$ ··· target func (continuous). $\sigma:\mathbb{R}\to\mathbb{R}$ ··· activation func (non-poly).



- No fundamental limit exists by universal approximation (UA) theorems.
- **Theorem.** $f:[-1,1]^d \to \mathbb{R}$ ··· target func (continuous). $\sigma: \mathbb{R} \to \mathbb{R}$ ··· activation func (non-poly). fully-connected For any $\delta > 0$, there exists a σ -neural network $\nu: \mathbb{R}^d \to \mathbb{R}$ such that

$$|\nu(x) - f(x)| \le \delta$$
 for all $x \in [-1,1]^d$.



No fundamental limit exists by the interval universal approximation (IUA) theorem.

```
• Theorem. f:[-1,1]^d \to \mathbb{R} \cdots target func (continuous). \sigma:\mathbb{R} \to \mathbb{R} \cdots activation func (non-poly). For any \delta>0, there exists a \sigma-neural network \nu:\mathbb{R}^d \to \mathbb{R} such that |\nu(x)-f(x)| \leq \delta for all x\in[-1,1]^d.
```

• No fundamental limit exists by the interval universal approximation (IUA) theorem.

```
• Theorem. f:[-1,1]^d \to \mathbb{R} ··· target func (continuous). \sigma:\mathbb{R} \to \mathbb{R} ··· activation func (non-poly). For any \delta>0, there exists a \sigma-neural network \nu:\mathbb{R}^d \to \mathbb{R} such that |\nu(x)-f(x)| \leq \delta for all x\in[-1,1]^d.
```

• **Definition.** For $\nu: \mathbb{R}^d \to \mathbb{R}$, define its **interval semantics** as $\nu^\# : \operatorname{Box}(\mathbb{R}^d) \to \operatorname{Box}(\mathbb{R})$.

• set of d-dim boxes in \mathbb{R}^d

• No fundamental limit exists by the interval universal approximation (IUA) theorem.

```
• Theorem. f:[-1,1]^d \to \mathbb{R} ··· target func (continuous). \sigma:\mathbb{R} \to \mathbb{R} ··· activation func (non-poly). For any \delta>0, there exists a \sigma-neural network \nu:\mathbb{R}^d \to \mathbb{R} such that |\nu(x)-f(x)| \leq \delta for all x\in[-1,1]^d.
```

- **Definition.** For $\nu: \mathbb{R}^d \to \mathbb{R}$, define its **interval semantics** as $\nu^\# : \operatorname{Box}(\mathbb{R}^d) \to \operatorname{Box}(\mathbb{R})$.

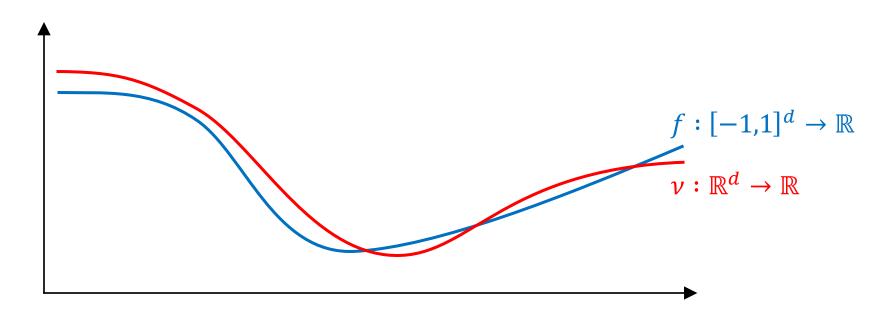
 set of d-dim boxes in \mathbb{R}^d
 - Defined using interval arithmetic: [a,b] + [c,d] = [a+c,b+d], ...
 - Overapproximates ν : $\nu(\mathcal{B}) \subseteq \nu^{\#}(\mathcal{B})$ for all $\mathcal{B} \in \mathrm{Box}(\mathbb{R}^d)$.

- No fundamental limit exists by the interval universal approximation (IUA) theorem.
- Theorem. $f:[-1,1]^d \to \mathbb{R}$ ··· target func (continuous).

 $\sigma:\mathbb{R}\to\mathbb{R}$... activation func (squashable).

For any $\delta > 0$, there exists a σ -neural network $\nu : \mathbb{R}^d \to \mathbb{R}$ such that

$$|y(x) - f(x)| \le \delta \quad \text{for all } x \in [-1,1]^d.$$

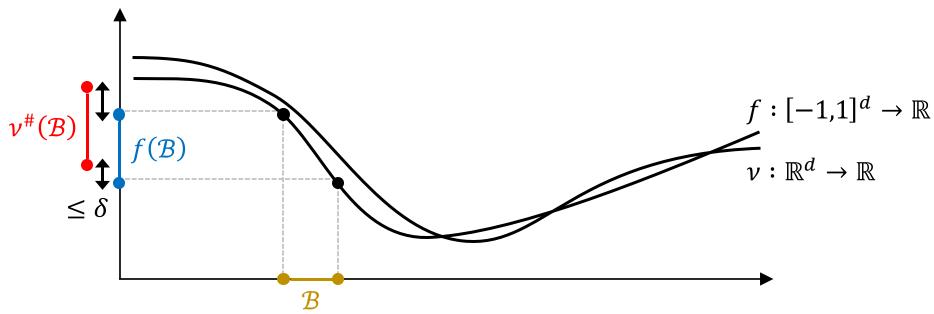


- No fundamental limit exists by the interval universal approximation (IUA) theorem.
- Theorem. $f:[-1,1]^d \to \mathbb{R} + \cdots$ target func (continuous).

 $\sigma:\mathbb{R} \to \mathbb{R}$... activation func (squashable).

For any $\delta>0$, there exists a σ -neural network $\nu:\mathbb{R}^d\to\mathbb{R}$ such that

 $\left|\min \nu^{\#}(\mathcal{B}) - \min f(\mathcal{B})\right| \leq \delta \wedge \left|\max \nu^{\#}(\mathcal{B}) - \max f(\mathcal{B})\right| \leq \delta \quad \text{ for all } \mathcal{B} \in \text{Box}([-1,1]^d).$



- No fundamental limit exists by the interval universal approximation (IUA) theorem.
- Theorem. $f: [-1,1]^d \to \mathbb{R}$ \cdots target func (continuous). $\sigma: \mathbb{R} \to \mathbb{R} \qquad \cdots \text{ activation func (squashable)}.$ For any $\delta > 0$, there exists a σ -neural network $\nu: \mathbb{R}^d \to \mathbb{R}$ such that $\left|\min \nu^\#(\mathcal{B}) \min f(\mathcal{B})\right| \le \delta \quad \wedge \quad \left|\max \nu^\#(\mathcal{B}) \max f(\mathcal{B})\right| \le \delta \quad \text{ for all } \mathcal{B} \in \operatorname{Box}([-1,1]^d).$

• Implication 1. IUA \Longrightarrow UA. ... Because for $\mathcal{B} = \{x\}$, $v^{\#}(\{x\}) = \{v(x)\}$ and $f(\{x\}) = \{f(x)\}$.

- No fundamental limit exists by the interval universal approximation (IUA) theorem.
- **Theorem.** $f:[-1,1]^d \to \mathbb{R}$ ··· target func (continuous). $\sigma: \mathbb{R} \to \mathbb{R}$ ··· activation func (squashable). For any $\delta>0$, there exists a σ -neural network $\nu: \mathbb{R}^d \to \mathbb{R}$ such that

$$\left|\min v^{\#}(\mathcal{B}) - \min f(\mathcal{B})\right| \le \delta \wedge \left|\max v^{\#}(\mathcal{B}) - \max f(\mathcal{B})\right| \le \delta \quad \text{for all } \mathcal{B} \in \text{Box}([-1,1]^d).$$

- Implication 1. IUA \Longrightarrow UA. \cdots Because for $\mathcal{B} = \{x\}$, $\nu^{\#}(\{x\}) = \{\nu(x)\}$ and $f(\{x\}) = \{f(x)\}$.
- Implication 2. IUA ⇒ Existence of provably robust NNs.

 \exists ideal classifier h (not NN) that is robust (not provably robust)

 \Rightarrow 3 NN that is provably robust and outputs the same as h.

- No fundamental limit exists by the interval universal approximation (IUA) theorem.
- **Theorem.** $f:[-1,1]^d \to \mathbb{R}$ ··· target func (continuous). $\sigma: \mathbb{R} \to \mathbb{R}$ ··· activation func (squashable). For any $\delta>0$, there exists a σ -neural network $\nu: \mathbb{R}^d \to \mathbb{R}$ such that

$$\left|\min v^{\#}(\mathcal{B}) - \min f(\mathcal{B})\right| \le \delta \wedge \left|\max v^{\#}(\mathcal{B}) - \max f(\mathcal{B})\right| \le \delta \quad \text{ for all } \mathcal{B} \in \text{Box}([-1,1]^d).$$

- Implication 1. IUA \Longrightarrow UA. \cdots Because for $\mathcal{B} = \{x\}$, $\nu^{\#}(\{x\}) = \{\nu(x)\}$ and $f(\{x\}) = \{f(x)\}$.
- Implication 2. IUA ⇒ Existence of provably robust NNs.

 \exists ideal classifier h (not NN) that is robust (not provably robust)

 \implies 3 NN that is provably robust and outputs the same as h.

"Provably robust NNs have no fundamental limits in expressiveness."

Limitation of Existing Results

- No fundamental limit exists by the interval universal approximation (IUA) theorem.
- Theorem. $f:[-1,1]^d \to \mathbb{R}$ ··· target func (continuous). $\sigma: \mathbb{R} \to \mathbb{R}$ ··· activation func (squashable). For any $\delta > 0$, there exists a σ -neural network $\nu: \mathbb{R}^d \to \mathbb{R}$ such that $\left|\min \nu^\#(\mathcal{B}) \min f(\mathcal{B})\right| \le \delta \quad \wedge \quad \left|\max \nu^\#(\mathcal{B}) \max f(\mathcal{B})\right| \le \delta \quad \text{ for all } \mathcal{B} \in \operatorname{Box}([-1,1]^d).$
- Unrealistic Assumption. "NNs operate on real numbers with exact arithmetic."
- Actual Implemenations. "NNs operate on floating-point numbers with floating-point arithmetic."

Limitation of Existing Results

- No fundamental limit exists by the interval universal approximation (IUA) theorem.
- Theorem. $f: [-1,1]^d \to \mathbb{R}$ \cdots target func (continuous). $\sigma: \mathbb{R} \to \mathbb{R} \qquad \cdots \text{ activation func (squashable)}.$ For any $\delta > 0$, there exists a σ -neural network $\mathbf{v}: \mathbb{R}^d \to \mathbb{R}$ such that $\left|\min \mathbf{v}^\#(\mathcal{B}) \min f(\mathcal{B})\right| \le \delta \quad \wedge \quad \left|\max \mathbf{v}^\#(\mathcal{B}) \max f(\mathcal{B})\right| \le \delta \quad \text{ for all } \mathcal{B} \in \mathrm{Box}\big([-1,1]^d\big).$
- Unrealistic Assumption. "NNs operate on real numbers with exact arithmetic."
- Actual Implemenations. "NNs operate on floating-point numbers with floating-point arithmetic."
 - Consequences. Existing results do not apply to the NNs used in practice.

Fundamental limits may still exist in practice for provably robust NNs.

Our Work: Overview

Do existing results still hold in real-world settings?

- Unrealistic Assumption. "NNs operate on real numbers with exact arithmetic."
- Actual Implemenations. "NNs operate on floating-point numbers with floating-point arithmetic."
- Consequences. Existing results do not apply to the NNs used in practice.

Fundamental limits may still exist in practice for provably robust NNs.

Our Work: Overview

Do existing results still hold in real-world settings?

We study the expressiveness of provably robust NNs over floats.

- Prove the IUA theorem over floats.
- Prove the existence of provably robust NNs over floats.

Our Work: Overview

Do existing results still hold in real-world settings?

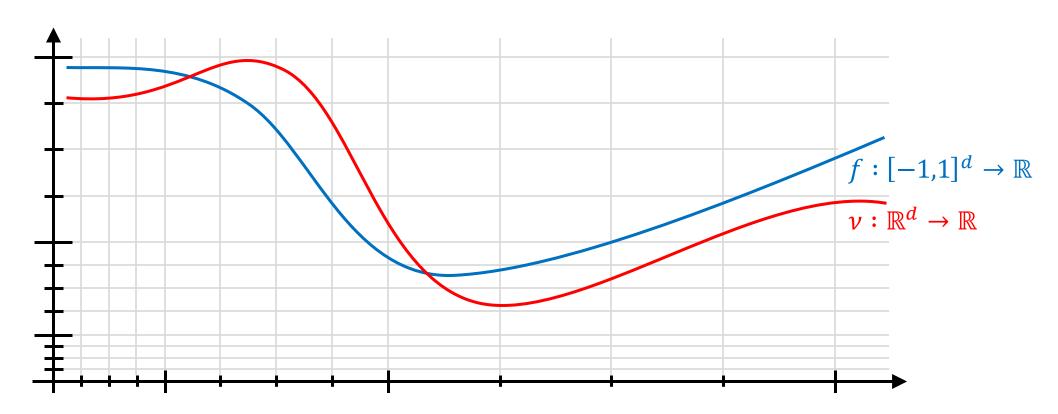
We study the expressiveness of provably robust NNs over floats.

- Prove the IUA theorem over floats.
- Prove the existence of provably robust NNs over floats.
- Prove the computational completeness of "simple" programs over floats.

Our Main Results

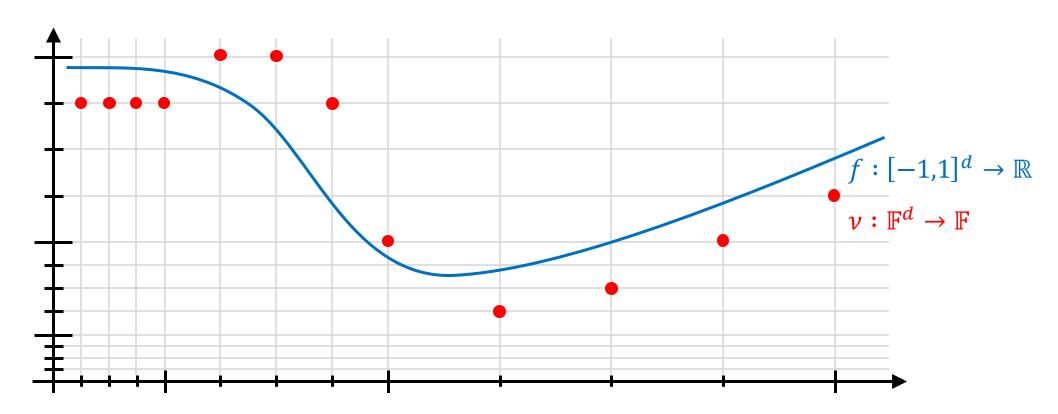
• Theorem. Let $f:[-1,1]^d\to\mathbb{R}$ and $\delta>0$. defined using exact arithmetic There exists a σ -neural network $\nu:\mathbb{R}^d\to\mathbb{R}$ such that

 $\left|\min \nu^{\#}(\mathcal{B}) - \min f(\mathcal{B})\right| \leq \delta \wedge \left|\max \nu^{\#}(\mathcal{B}) - \max f(\mathcal{B})\right| \leq \delta \quad \text{ for all } \mathcal{B} \in \text{Box}([-1,1]^d).$



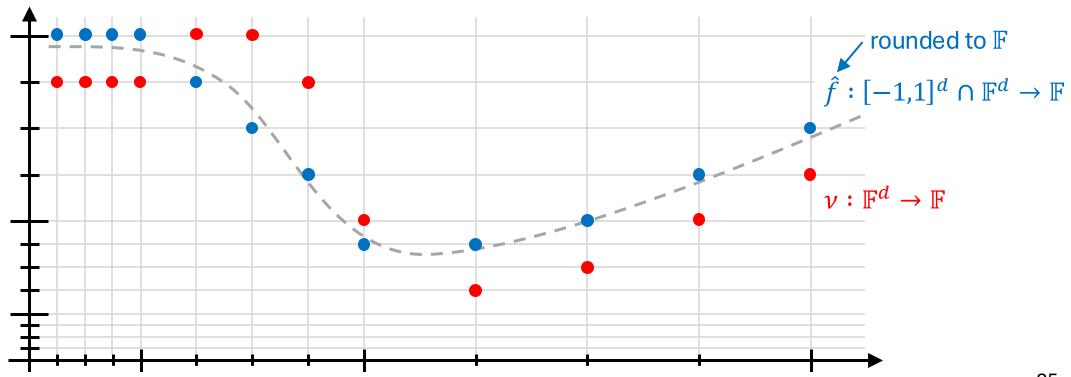
• Theorem? Let $f:[-1,1]^d\to\mathbb{R}$ and $\delta>0$. defined using FP arithmetic There exists a σ -neural network $\nu:\mathbb{F}^d\to\mathbb{F}$ such that

 $\left|\min \nu^{\#}(\mathcal{B}) - \min f(\mathcal{B})\right| \le \delta \wedge \left|\max \nu^{\#}(\mathcal{B}) - \max f(\mathcal{B})\right| \le \delta \quad \text{ for all } \mathcal{B} \in \text{Box}([-1,1]^d).$



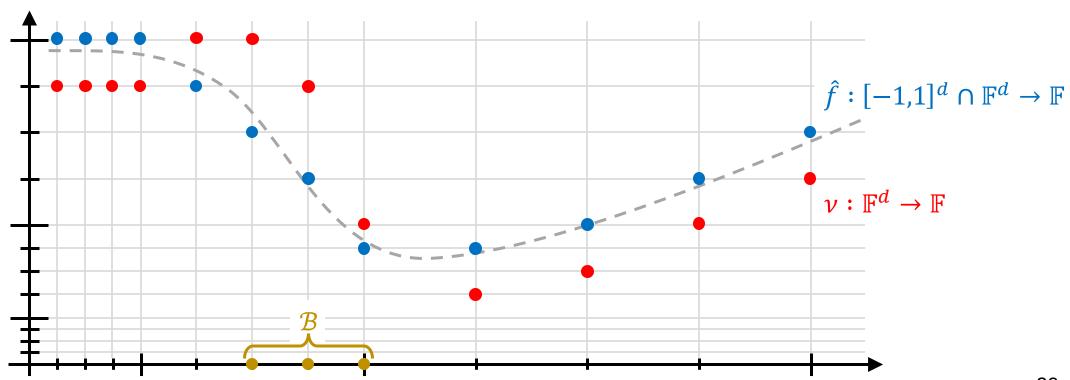
• Theorem? Let $f:[-1,1]^d\to\mathbb{R}$ and $\delta>0$. There exists a σ -neural network $\nu:\mathbb{F}^d\to\mathbb{F}$ such that

 $\left|\min v^{\#}(\mathcal{B}) - \min \hat{f}(\mathcal{B})\right| \leq \delta \wedge \left|\max v^{\#}(\mathcal{B}) - \max \hat{f}(\mathcal{B})\right| \leq \delta \quad \text{ for all } \mathcal{B} \in \text{Box}([-1,1]^d).$



• Theorem? Let $f:[-1,1]^d\to\mathbb{R}$ and $\delta>0$. There exists a σ -neural network $\nu:\mathbb{F}^d\to\mathbb{F}$ such that

 $\left|\min \nu^{\#}(\mathcal{B}) - \min \hat{f}(\mathcal{B})\right| \leq \delta \ \land \ \left|\max \nu^{\#}(\mathcal{B}) - \max \hat{f}(\mathcal{B})\right| \leq \delta \quad \text{ for all } \mathcal{B} \in \operatorname{Box} \left([-1,1]^d \cap \mathbb{F}^d\right).$

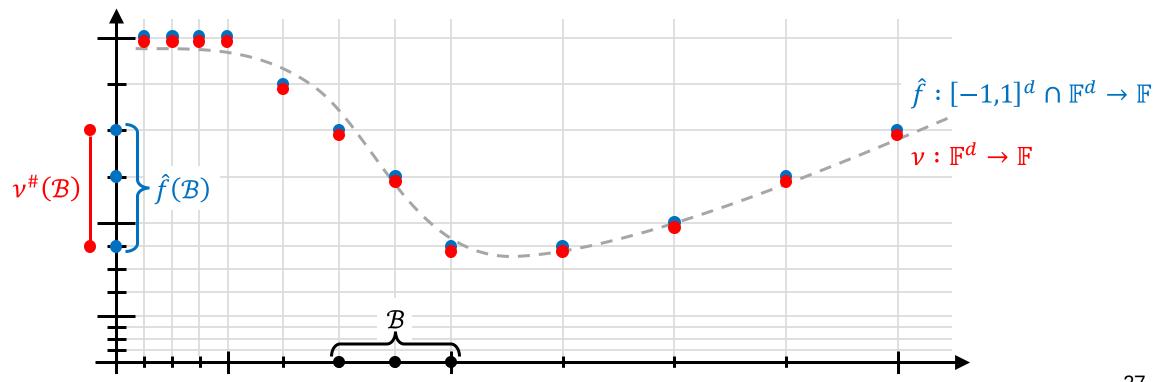


• Theorem! Let $f: [-1,1]^d \to \mathbb{R}$.

There exists a σ -neural network $\nu: \mathbb{F}^d \to \mathbb{F}$ such that

$$v^{\#}(\mathcal{B}) = \left[\min \hat{f}(\mathcal{B}), \max \hat{f}(\mathcal{B})\right]$$

for all
$$\mathcal{B} \in \text{Box}([-1,1]^d \cap \mathbb{F}^d)$$
.

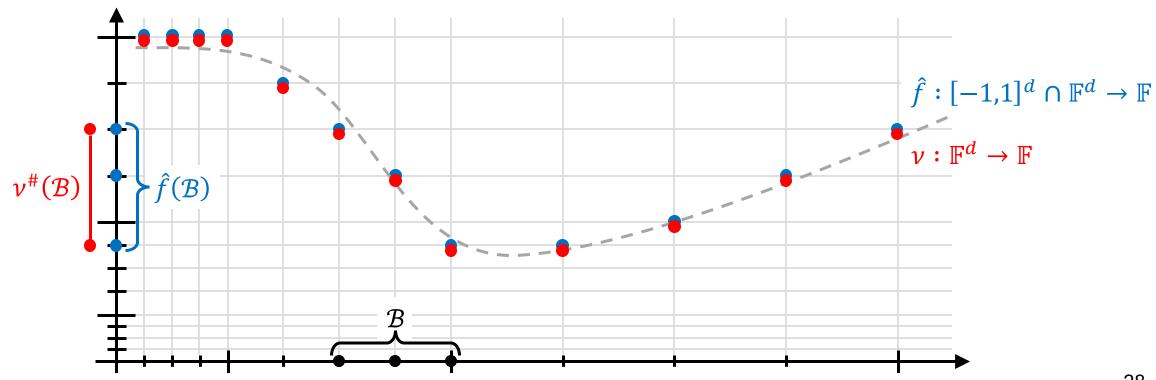


• Theorem! Let $f:[-1,1]^d \to \mathbb{R}$. Assume $\sigma: \mathbb{F} \to \mathbb{F}$ satisfies mild conditions.

There exists a σ -neural network $\nu:\mathbb{F}^d\to\mathbb{F}$ such that

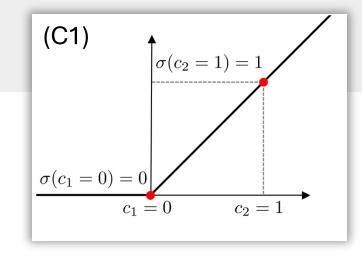
$$\nu^{\#}(\mathcal{B}) = \left[\min \hat{f}(\mathcal{B}), \max \hat{f}(\mathcal{B})\right]$$

for all
$$\mathcal{B} \in \text{Box}([-1,1]^d \cap \mathbb{F}^d)$$
.

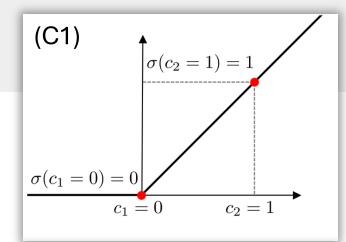


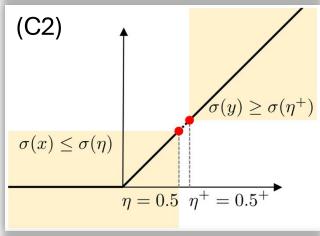
• Conditions on $\sigma:\mathbb{F}\to\mathbb{F}$ (Informal).

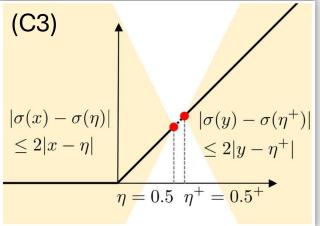
(C1)
$$\exists c_1, c_2 \in \mathbb{F}$$
 such that $\sigma(c_1) = 0$ and $\frac{\varepsilon}{2} \leq |\sigma(c_2)| \leq \frac{5}{4}$.



- Conditions on $\sigma:\mathbb{F}\to\mathbb{F}$ (Informal).
 - (C1) $\exists c_1, c_2 \in \mathbb{F}$ such that $\sigma(c_1) = 0$ and $\frac{\varepsilon}{2} \leq |\sigma(c_2)| \leq \frac{5}{4}$.
 - (C2) $\exists \eta \in \mathbb{F} \cap [-4, 4]$ such that for all $x, y \in \mathbb{F}$, $x \leq \eta < \eta^+ \leq y \implies \sigma(x) \leq \sigma(\eta) < \sigma(\eta^+) \leq \sigma(y)$ (or the reverse order holds).
 - (C3) $\exists \lambda \in \mathbb{R} \cap [0, 2^{\text{emax}-7} | \sigma(\eta) |]$ such that for all $x, y \in \mathbb{F}$, $x \leq \eta < \eta^+ \leq y \implies |\sigma(x) \sigma(\eta)| \leq \lambda |x \eta|$ and $|\sigma(y) \sigma(\eta^+)| \leq \lambda |y \eta^+|$.

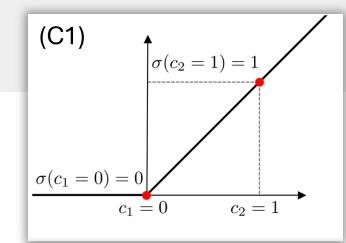


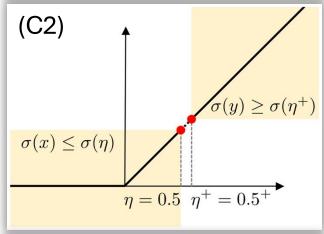


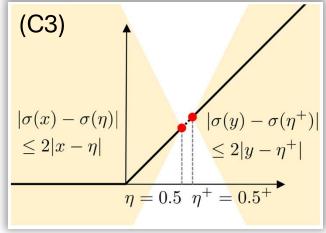


- Conditions on $\sigma:\mathbb{F}\to\mathbb{F}$ (Informal).
 - (C1) $\exists c_1, c_2 \in \mathbb{F}$ such that $\sigma(c_1) = 0$ and $\frac{\varepsilon}{2} \leq |\sigma(c_2)| \leq \frac{5}{4}$.
 - (C2) $\exists \eta \in \mathbb{F} \cap [-4,4]$ such that for all $x,y \in \mathbb{F}$, $x \leq \eta < \eta^+ \leq y \implies \sigma(x) \leq \sigma(\eta) < \sigma(\eta^+) \leq \sigma(y)$ (or the reverse order holds).
 - (C3) $\exists \lambda \in \mathbb{R} \cap [0, 2^{\text{emax}-7} | \sigma(\eta) |]$ such that for all $x, y \in \mathbb{F}$, $x \leq \eta < \eta^+ \leq y \implies |\sigma(x) \sigma(\eta)| \leq \lambda |x \eta|$ and $|\sigma(y) \sigma(\eta^+)| \leq \lambda |y \eta^+|$.
- **Proposition.** The correct roundings of the following activation func's satisfy the conditions (C1)--(C3):

ReLU, LeakyReLU, ELU, GELU, Mish, softplus, sigmoid, tanh : $\mathbb{R} \to \mathbb{R}$.







Approximation Power.

- Over \mathbb{R} : NNs can sufficiently approximate continuous target functions ($\mathbb{R} \to \mathbb{R}$).
- Over \mathbb{F} : NNs can exactly compute any target functions ($\mathbb{F} \to \mathbb{F}$).

Approximation Power.

- Over \mathbb{R} : NNs can sufficiently approximate continuous target functions ($\mathbb{R} \to \mathbb{R}$).
- Over \mathbb{F} : NNs can exactly compute any target functions ($\mathbb{F} \to \mathbb{F}$).

Activation Functions.

• Over \mathbb{R} : IUA theorem does not hold for $\sigma = \mathrm{id}_{\mathbb{R}}$.

• Over \mathbb{F} : IUA theorem does hold for $\sigma = \mathrm{id}_{\mathbb{F}}$.

Approximation Power.

- Over \mathbb{R} : NNs can sufficiently approximate continuous target functions ($\mathbb{R} \to \mathbb{R}$).
- Over \mathbb{F} : NNs can exactly compute any target functions ($\mathbb{F} \to \mathbb{F}$).

Activation Functions.

- Over $\mathbb R$: IUA theorem does not hold for $\sigma=\mathrm{id}_{\mathbb R}$.
 - $\circ \sigma$ -NN over $\mathbb R$ must be affine over $\mathbb R$ (: σ -NN := composition of σ and $\operatorname{aff}_{\mathbb R}:\mathbb R^k\to\mathbb R$).
- Over \mathbb{F} : IUA theorem does hold for $\sigma = \mathrm{id}_{\mathbb{F}}$.

Approximation Power.

- Over \mathbb{R} : NNs can sufficiently approximate continuous target functions ($\mathbb{R} \to \mathbb{R}$).
- Over \mathbb{F} : NNs can exactly compute any target functions ($\mathbb{F} \to \mathbb{F}$).

Activation Functions.

- Over \mathbb{R} : IUA theorem does not hold for $\sigma = \mathrm{id}_{\mathbb{R}}$.
 - $\circ \sigma$ -NN over $\mathbb R$ must be affine over $\mathbb R$ ($: \sigma$ -NN := composition of σ and aff $_{\mathbb R} : \mathbb R^k \to \mathbb R$).
- Over \mathbb{F} : IUA theorem does hold for $\sigma = \mathrm{id}_{\mathbb{F}}$.
 - $\circ \sigma$ -NN over \mathbb{F} can be non-affine over \mathbb{R} ($: aff_{\mathbb{F}} : \mathbb{F}^k \to \mathbb{F}$ are often non-affine over \mathbb{R} by rounding error).

Implications of Our IUA Theorem

Provable Robustness Over F.

- Theorem (Informal). \exists ideal classifier f over \mathbb{F} (not NN) that is robust (not provably robust)
 - \implies 3 neural network over \mathbb{F} that is provably robust and outputs the same as f.

Provable Robustness Over F.

- **Theorem (Informal).** \exists ideal classifier f over \mathbb{F} (not NN) that is robust (not provably robust)
 - \implies 3 neural network over \mathbb{F} that is provably robust and outputs the same as f.

"Provably robust NNs over F have no fundamental limits in expressiveness."

• Note. Positive answer to the main question raised earlier in this talk.

Computational Completeness Over F.

Computational Completeness Over F.

• Theorem (Informal). All terminating programs that take and return floats can be expressed by straight-line programs using only \oplus and \otimes .

"{FP programs with \bigoplus , \bigotimes } is computationally complete for {FP programs that halt}."

• **Note.** Important contribution to the FP literature, independent of the NN/verification literature.

Computational Completeness Over F.

• Theorem (Informal). All terminating programs that take and return floats can be expressed by straight-line programs using only \oplus and \otimes .

"(FP programs with \bigoplus , \bigotimes) is computationally complete for (FP programs that halt)."

• Note. Important contribution to the FP literature, independent of the NN/verification literature. Prove this theorem by extending our IUA theorem for $\sigma = id$.

Summary

Provably robust NNs have no fundamental limit in expressiveness, even over floats.

- Prove the IUA theorem for NNs over F.
- Prove the existence of provably robust NNs over F.

Summary

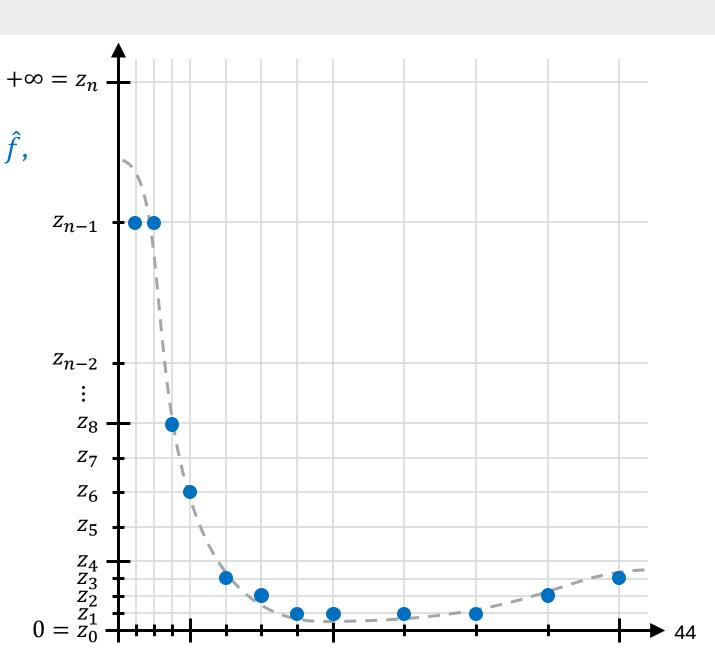
Provably robust NNs have no fundamental limit in expressiveness, even over floats.

- Prove the IUA theorem for NNs over F.
- Prove the existence of provably robust NNs over \mathbb{F} .

Unexpected byproducts.

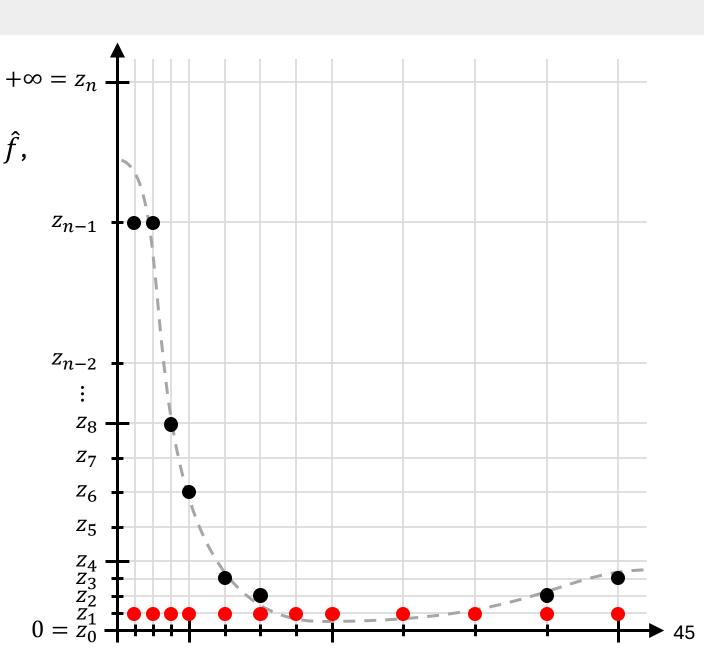
- Identify fundamental distinctions between two computations models: over \mathbb{F} and over \mathbb{R} .
- Prove that all halting programs over \mathbb{F} can be expressed using only two operations: \bigoplus and \bigotimes .

• Proof Sketch.



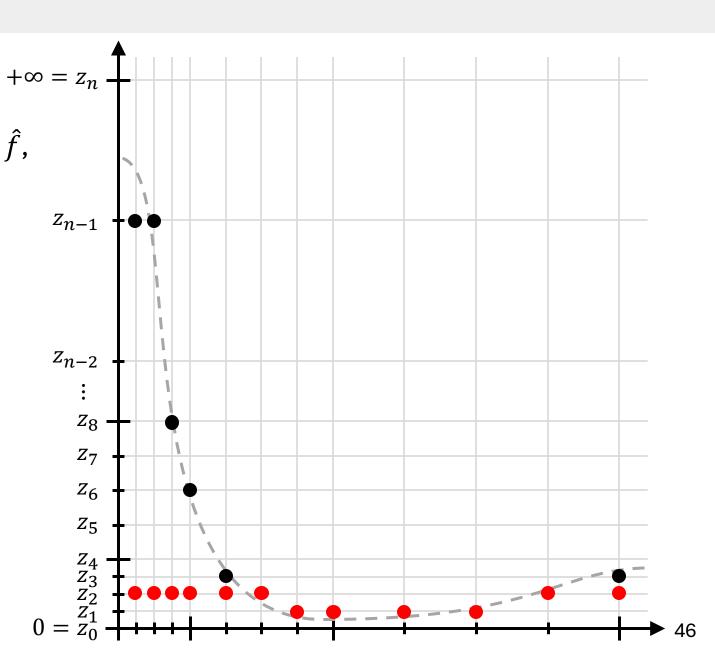
· Proof Sketch.

$$\nu(x) = (z_1 \ominus z_0) \otimes \mathbb{1}[\hat{f}(x) \ge z_1]$$



Proof Sketch.

$$\nu(x) = (z_1 \ominus z_0) \otimes \mathbb{1}[\hat{f}(x) \ge z_1]$$
$$\oplus (z_2 \ominus z_1) \otimes \mathbb{1}[\hat{f}(x) \ge z_2]$$

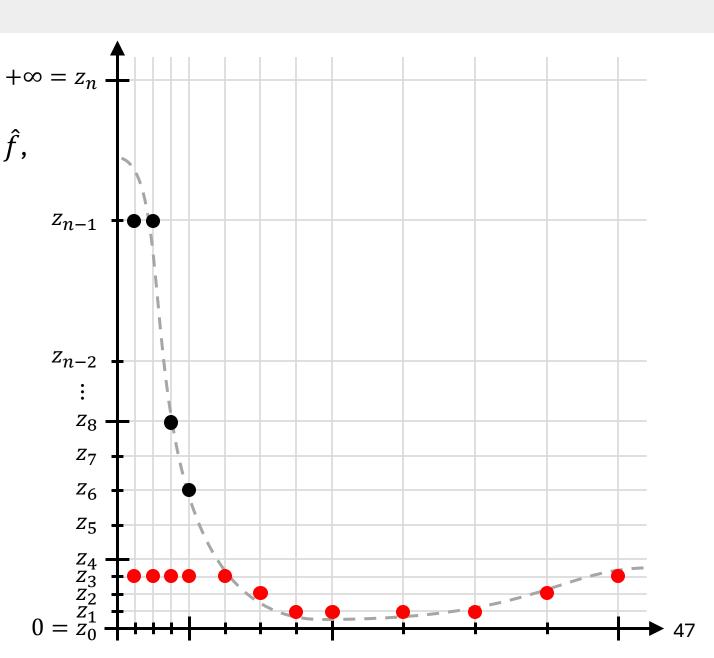


· Proof Sketch.

$$\nu(x) = (z_1 \ominus z_0) \otimes \mathbb{1}[\hat{f}(x) \ge z_1]$$

$$\oplus (z_2 \ominus z_1) \otimes \mathbb{1}[\hat{f}(x) \ge z_2]$$

$$\oplus (z_3 \ominus z_2) \otimes \mathbb{1}[\hat{f}(x) \ge z_3]$$



· Proof Sketch.

$$v(x) = (z_1 \ominus z_0) \otimes \mathbb{1}[\hat{f}(x) \ge z_1]$$

$$\oplus (z_2 \ominus z_1) \otimes \mathbb{1}[\hat{f}(x) \ge z_2]$$

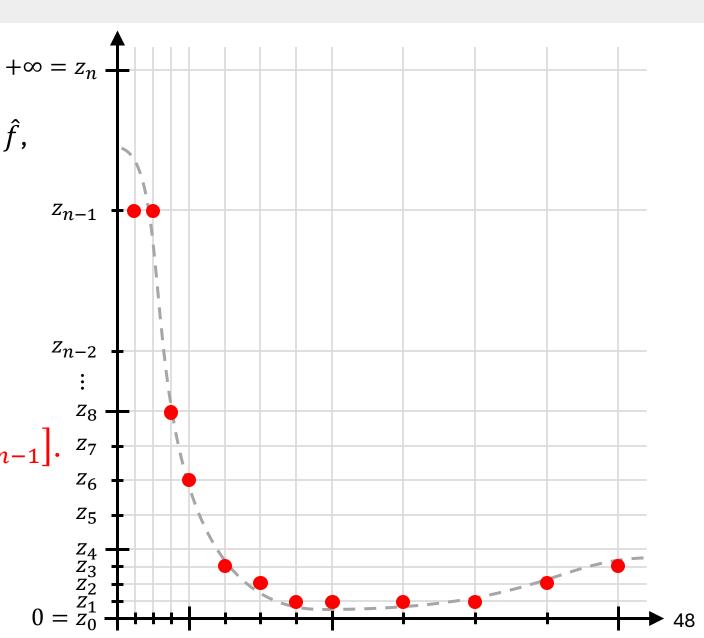
$$\oplus (z_3 \ominus z_2) \otimes \mathbb{1}[\hat{f}(x) \ge z_3]$$

$$g_1$$

$$g_2$$

$$g_3$$

$$g_4$$



Proof Sketch.

To approximate the rounded target function \hat{f} , we "stack" indicator functions.

$$\nu(x) = (z_1 \ominus z_0) \otimes \mathbb{1}[\hat{f}(x) \ge z_1]$$

$$\oplus (z_2 \ominus z_1) \otimes \mathbb{1}[\hat{f}(x) \ge z_2]$$

$$\oplus (z_3 \ominus z_2) \otimes \mathbb{1}[\hat{f}(x) \ge z_3]$$

$$\oplus \cdots$$

$$\oplus (z_{n-1} \ominus z_{n-2}) \otimes \mathbb{1}[\hat{f}(x) \ge z_{n-1}].$$

Key Challenge.

Construct the indicator functions using NNs while considering the following:

- NNs: Use affine & activation funcs only.
- Floats: Handle rounding errors & overflows.
- Intervals: Match interval semantics.

• **Proof Sketch.** We construct the scaled indicator function $\sigma(c_2) \cdot \mathbb{1}[x \leq z]$ as follows.

