
Floating-Point Neural Networks Can Represent
Almost All Floating-Point Functions

Geonho Hwang 1 Yeachan Park 2 Wonyeol Lee 3 Sejun Park 4

Abstract

Existing works on the expressive power of neural
networks typically assume real-valued parameters
and exact mathematical operations during the eval-
uation of networks. However, neural networks
run on actual computers can take parameters only
from a small subset of the reals and perform inex-
act mathematical operations with round-off errors
and overflows. In this work, we study the expres-
sive power of floating-point neural networks, i.e.,
networks with floating-point parameters and op-
erations. We first observe that for floating-point
neural networks to represent all functions from
floating-point vectors to floating-point vectors, it
is necessary to distinguish different inputs: the
first layer of a network should be able to gen-
erate different outputs for different inputs. We
also prove that such distinguishability is sufficient,
along with mild conditions on activation func-
tions. Our result shows that with practical acti-
vation functions, floating-point neural networks
can represent floating-point functions from a wide
domain to all finite or infinite floats. For exam-
ple, the domain is all finite floats for Sigmoid and
tanh, and it is all finite floats of magnitude less
than 1/8 times the largest float for ReLU, ELU,
SeLU, GELU, Swish, Mish and sin.

1. Introduction
Deep neural networks have achieved remarkable success
in various fields of science and engineering (LeCun et al.,
2015). One of the theoretical foundations of neural networks
is the universal approximation theorem, which states that

1Department of Mathematical Sciences, GIST 2Department
of Mathematics and Statistics, Sejong University 3Department
of Computer Science and Engineering, POSTECH 4Department
of Artificial Intelligence, Korea University. Correspondence to:
Sejun Park <sejun.park000@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

neural networks can approximate a large class of target func-
tions. Classical results show that two-layer fully-connected
networks using a non-polynomial activation function can
approximate any continuous function on a compact domain
within an arbitrary accuracy (Cybenko, 1989; Hornik et al.,
1989; Pinkus, 1999; Leshno et al., 1993). Such results have
been extended to width-bounded setups (Lu et al., 2017;
Kidger & Lyons, 2020; Park et al., 2021) and more practical
networks (Zhou, 2020; Tabuada & Gharesifard, 2021; Yun
et al., 2020; Ramanujan et al., 2020; Yuan & Agaian, 2023).

These universal approximation results assume real-valued
network parameters and/or exact mathematical operations
(e.g., addition and multiplication) during the evaluation of
networks. In practice, however, neural networks are exe-
cuted on actual computers in which network parameters can
take values only from a finite subset of the reals and math-
ematical operations can be inexact due to round-off errors.
This presents a clear gap between theoretical assumptions
and practical environments for neural networks, which be-
comes more significant under low-precision setups: network
parameters can take only a tiny number of values, and math-
ematical operations can have huge round-off errors.

Several works have studied the expressive power of neural
networks that take parameter values from a fixed finite set.
For example, Ding et al. (2019) investigate the universal
approximation of ReLU networks with quantized parame-
ters, and show that such “quantized” ReLU networks with
at least two distinct parameters can approximate Sobolev
functions Wn,∞ (n ≥ 1). Similarly, Gonon et al. (2023) ex-
amine the impact of quantization on the approximation abil-
ity of ReLU networks, and show that a uniformly quantized
network can approximate a network with real parameters.
However, all these works assume exact mathematical oper-
ations, which limits our understanding of neural networks
under finite-precision operations with round-off errors.

Some recent studies have investigated more realistic setups,
where parameters can take values from a finite set and mathe-
matical operations can be inexact. For example, Hwang et al.
(2024) study the expressive power of neural networks under
fixed-point arithmetic, and show that such “fixed-point” net-
works with finite-precision weights and infinite-precision
biases can approximate any continuous function when they

1

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

use popular activation functions such as Sigmoid, ReLU,
ELU, SoftPlus, SiLU, Mish, and GELU. Likewise, Park
et al. (2024) analyze the expressive power of networks under
floating-point arithmetic. They show that such “floating-
point” networks can represent all floating-point functions
over a unit cube when they use ReLU or Step (i.e., the step
function) as activation functions.

Despite all these advances, no existing work has studied the
expressive power of neural networks under the following
arguably most practical setup:

• Parameters are represented as floating-point numbers.
• Operations are performed using floating-point arithmetic.
• A broad class of activation functions is supported.

For instance, Hwang et al. (2024) considers fixed-point arith-
metic, not floating-point arithmetic; and Park et al. (2024)
considers only two activation functions (ReLU and Step),
leaving out many widely-used activation functions such as
GELU (Hendrycks & Gimpel, 2016), SeLU (Klambauer
et al., 2017), Swish (Ramachandran et al., 2017), Mish
(Bochkovskiy et al., 2020), and sin (Sitzmann et al., 2020).
We remark that the proof technique of Park et al. (2024)
relies heavily on the piecewise linearity of activation func-
tions, so extending their proof to non-piecewise-linear acti-
vation functions is highly non-trivial, if possible at all. To
summarize, the following question has remained open:

What is the expressivity of floating-point neural net-
works using general practical activation functions?

1.1. Contribution

In this work, we investigate the class of floating-point func-
tions that can be represented by feed-forward neural net-
works using general activation functions under floating-
point arithmetic. To this end, we first observe that to rep-
resent all functions from some domain X of floating-point
numbers to floating-point numbers, it is necessary for net-
works to distinguish any pair of distinct inputs in the domain
in the first layer (Lemma 3.2). Namely, for any x, x′ ∈ X
with x ̸= x′, there should exist a floating-point affine trans-
formation ϕ such that σ(ϕ(x)) ̸= σ(ϕ(x′)), where σ de-
notes the activation function. Using this property, we show
that networks using the correctly rounded version of the
cos activation function cannot represent some floating-point
functions (Lemma 3.3): e.g., some functions over [−28, 28]
for the 16-bit half-precision floating-point format.

We then show that such distinguishability is sufficient for
networks to represent all floating-point functions under mild
conditions on activation functions σ (Theorem 3.4): σ can
output zero and two moderate values (e.g., values around 1)
(Condition 1). We also provide easily verifiable conditions
on activation functions that ensure distinguishability (Lem-
mas 3.6, 3.7, and 3.10). Using these conditions, we show

that floating-point neural networks can represent a large
class of floating-point functions for various activation func-
tions (e.g., Identity, Sigmoid, tanh, ReLU, ELU, SeLU,
GELU, Swish), under various floating-point formats from
low-precision ones (e.g., float8, bfloat16) to high-precision
ones (e.g., float32, float64) (Corollaries 3.8 and 3.11).

We note that a concurrent work by Hwang et al. (2025)
studies universal approximation under floating-point arith-
metic. Their work considers interval universal approxima-
tion, which generalizes the classical pointwise approxima-
tion. However, a special case of their result for pointwise
approximation is subsumed by our result (Theorem 3.4):
their condition is strictly stronger, and their network con-
struction requires more depth than ours. In addition, they do
not study the necessity of their condition unlike our work.

2. Preliminaries
In this section, we introduce the basic notations and con-
cepts used throughout the paper, including floating-point
arithmetic and floating-point neural networks.

We begin with notations. We use N, Z, and R to denote
the sets of natural numbers, integers, and real numbers, re-
spectively. For a, b ∈ R, we define [a, b] := {x ∈ R :
a ≤ x ≤ b} and (a, b) := {x ∈ R : a < x < b}; we
define [a, b) and (a, b] analogously. For S ⊂ R, we de-
fine [a, b]S := [a, b] ∩ S, with (a, b)S , [a, b)S , and (a, b]S
defined analogously. For n ∈ N, we write [n] := [1, n]N.
For d ∈ N, a set S, and x ∈ Sd, we define xi as the i-th
coordinate of x. In this paper, all fractional numbers with a
radix point are assumed to be in binary representation: e.g.,
1.101 = 20 + 2−1 + 2−3 = 13/8.

2.1. Floating-Point Arithmetic

Floating-point numbers. For p, q ∈ N, we define Fp,q as
the set of finite floating-point numbers:

Fp,q :=
{
s× (1.m1 · · ·mp)× 2e : s ∈ {−1, 1},
m1, . . . ,mp ∈ {0, 1}, e ∈ [emin, emax]Z

}
∪
{
s× (0.m1 · · ·mp)× 2emin :

s ∈ {−1, 1},m1, . . . ,mp ∈ {0, 1}
}
, (1)

where emin and emax are defined as emin := −2q−1 + 2 and
emax := 2q−1 − 1. Here, s, m1 . . .mp, and e are called
the sign, mantissa, and exponent of a floating-point number,
respectively. Note that p + q + 1 bits suffice to represent
all numbers in Fp,q: p bits and q bits for representing the
mantissa and exponent, respectively, and one additional bit
for the sign. For simplicity, we omit the subscript and write
F for Fp,q when p and q are clear from the context.

We use ∞ and −∞ to denote positive and negative infinities,
and assume the usual order: −∞ < x < ∞ for any x ∈ R.

2

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

Format (p, q)

16-bit half precision (IEEE, 2019) (10, 5)
32-bit single precision (IEEE, 2019) (23, 8)
64-bit double precision (IEEE, 2019) (52, 11)
8-bit E5M2 (Micikevicius et al., 2022) (2, 5)
8-bit E4M3 (Micikevicius et al., 2022) (3, 4)
bfloat16 (Google; Abadi et al., 2016) (7, 8)

Table 1: List of frequently-used floating-point formats.

We use NaN to denote not-a-number, which can be pro-
duced, e.g., when ∞ is added to −∞ under floating-point
arithmetic. We assume any operation including NaN pro-
duces NaN; this does hold for floating-point addition, sub-
traction, and multiplication. We use F to denote the set of all
floating-point numbers (or floats) F := F∪{−∞,∞,NaN}.
We note that Fp,q can also be represented using p+q+1 bits
since we are not using the whole 2q representations for the
exponent of floats in Fp,q . For x ∈ F, x+ and x− denote the
smallest and largest floats greater than and less than x, re-
spectively. For x ∈ F, we use ex := max{emin, ⌊log2 |x|⌋}.
The smallest and largest finite positive floats are denoted by
ω := 2emin−p and Ω := (2− 2−p)× 2emax , respectively.

The IEEE-754 standard (IEEE, 2019) defines (p, q) for
widely used floating-point formats: e.g., (10, 5) for the
16-bit half precision (float16), (23, 8) for the 32-bit single
precision (float32), and (52, 11) for the 64-bit double preci-
sion (float64). In this paper, we assume that (p, q) satisfies
2 ≤ p ≤ 2q−1 − 3. Many popular floating-point formats
satisfy this condition, as illustrated in Table 1.

Floating-point operations. The rounding function ⌈·⌋F :
R ∪ {−∞,∞,NaN} → F is defined as

⌈x⌋F :=

argminy∈F |x− y| if |x| < Ω

(
1 + 2−p−1

)
,

∞ if x ≥ Ω
(
1 + 2−p−1

)
,

−∞ if x ≤ −Ω
(
1 + 2−p−1

)
,

NaN if x = NaN.

There can be two floats equidistant from a real number. In
such a case, we break the tie using the tie-to-even rule: ⌈x⌋F
is defined by the (unique) float whose last mantissa bit mp

(see Eq. (1)) is zero. If F is clear from the text, we omit the
subscript F in ⌈·⌋F.

For ρ : R → R, we define the correctly rounded function
⌈ρ⌋ : F → F of ρ as follows:

⌈ρ⌋ (x) :=

⌈ρ(x)⌋ if x ∈ F,
⌈l⌋ if x = −∞∧ ∃ limx→−∞ ρ(x),

⌈r⌋ if x = ∞∧ ∃ limx→∞ ρ(x),

NaN otherwise,

where l = limx→−∞ ρ(x) and r = limx→∞ ρ(x). Here,
the existence of l, r includes the case l, r ∈ {−∞,∞}.

For x, y ∈ F, we define the floating-point operations ⊕,⊖,
and ⊗ as x⊕y := ⌈x+ y⌋, x⊖y := ⌈x− y⌋, and x⊗y :=
⌈x× y⌋. Note that the addition and multiplication are not
associative: e.g., (x ⊕ y) ⊕ z ̸= x ⊕ (y ⊕ z) in general.
Therefore, we must be very careful about the ordering of the
operations. To concisely represent the addition of floating-
point numbers x1, . . . , xn, we use

⊕
as follows:

n⊕
i=1

xi := x1 ⊕ · · · ⊕ xn,

where addition is performed from left to right. Likewise, we
use ⊕ and

⊕
in a left-associative manner. For example,

n⊕
i=1

m⊕
j=1

xi,j :=x1,1 ⊕ · · · ⊕ x1,m ⊕ x2,1 ⊕ · · · ⊕ x2,m

⊕ · · · ⊕ xn,1 ⊕ · · · ⊕ xn,m,

where addition is performed from left to right. These defini-
tions ensure that the addition is always performed sequen-
tially, starting from the first element. When performing
summation on the product of finite sets of integers, the sum-
mation is always carried out in lexicographic order. E.g.,⊕
x,y∈{1,2}×{3,4}

(x⊕y) := (1⊕3)⊕ (1⊕4)⊕ (2⊕3)⊕ (2⊕4).

For X ⊂ Fd, we use 1X : Fd → F to denote the indicator
function of X : 1X (x) is one if x ∈ X and zero otherwise.
If X = {x0} is a singleton set, we use 1x0 to denote 1X .

2.2. Floating-Point Neural Networks

To define floating-point neural networks, we first define a
floating-point affine transformation. For d1, d2 ∈ N, let
wi = (wi,1,, . . . , wi,d1) ∈ Fd1 and bi ∈ F for all i ∈ [d2].
Then, for I = (w1, . . . , wd2 , b1, . . . , bd2), we define the
(floating-point) affine transformation affI : Fd1 → Fd2 as

affI(x1, . . . , xd1)i :=

 d1⊕
j=1

(wi,j ⊗ xj)

⊕ bi

for all i ∈ [d2]. For a floating-point activation function
σ : F → F, we will slightly abuse notation so that σ also
performs a vectorized operation: for d ∈ N and x ∈ Fd,

σ(x) := (σ(x1), . . . , σ(xd)) .

Based on the above definitions, we define a σ neural network
as an alternating composition of floating-point affine trans-
formations and activation functions. Concretely, let l ∈ N,

3

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

d0, . . . , dl ∈ N, and let affIi : Fdi−1 → Fdi be affine trans-
formations for all i ∈ [l]. Then, for I = (I1, . . . , Il), a
function NI : Fd1 → Fdl defined by

NI = affIl ◦ σ ◦ · · · ◦ affI2 ◦ σ ◦ affI1 (2)

is called a (floating-point) σ neural network. We define the
number of layers of a network N as the number of affine
transformations in N : e.g., NI has l layers. For techni-
cal purposes, we also define a neural network ending with
activation functions: for I ′ = (I1, . . . , Il−1), the function

MI′ = σ ◦ affIl−1
◦ σ ◦ · · · ◦ affI2 ◦ σ ◦ affI1 ,

which omits the last affine transformation, is called a neural
network ending with activation functions. Here, MI′ has
l − 1 layers as it contains l − 1 affine transformations.

In this paper, we investigate the representation power of
floating-point neural networks. For d1, d2 ∈ N, X ⊂ Fd1 ,
and f : X → (F ∪ {−∞,∞})d2 , we say that “f can be
represented by a (floating-point) neural network” if there
exists a floating-point neural network N such that

f(x) = N (x) for all x ∈ X .

Note that f can output ∞ and −∞.

3. Main Results
In this section, we formally present our main results. We
first introduce a necessary condition on activation functions
for floating-point networks to represent floating-point func-
tions (Section 3.1). We then introduce a sufficient condition
and compare it with our necessary condition (Section 3.2).
We lastly provide easily verifiable conditions on activation
functions that imply the sufficient condition, and show that
networks using practical activation functions can represent
all floating-point functions on a wide domain (Section 3.3).

3.1. Necessary Condition on Activation Functions

Given a floating-point activation function σ : F → F
and a domain X ⊂ Fd, we are interested in identifying
whether σ networks can represent all functions from X to
F ∪ {−∞,∞}. A natural observation is that such universal
representation is impossible if there exist x, x′ ∈ X such
that σ(ϕ(x)) = σ(ϕ(x′)) for all floating-point affine trans-
formations ϕ. That is, for any σ network, the outputs of
the first layer at x and x′ are identical. By the definition
of neural networks (Eq. (2)), this implies that the final out-
puts of the network at x and x′ must also be identical for
all σ networks; and thus, σ networks cannot represent any
function f : X → F ∪ {−∞,∞} such that f(x) ̸= f(x′).

To formally describe the above idea, we define the distin-
guishability of an input domain.

Definition 3.1 (Distinguishability). Let σ : F → F, d ∈ N,
X ⊂ Fd, and Y ⊂ F. We say that “X is σ-distinguishable
with range Y” if for every x, x′ ∈ X with x ̸= x′, there
exists an affine transformation ϕ : Fd → F such that

σ(ϕ(x)) ̸= σ(ϕ(x′)) and σ(ϕ(X)) ⊂ Y. (3)

To represent all functions from X ⊂ Fd to F ∪ {−∞,∞},
one can observe that X should be σ-distinguishable with
range F ∪ {−∞,∞} as stated in the following lemma. See
Appendix D.1 for the formal proof.

Lemma 3.2. Let d ∈ N, X ⊂ Fd, and σ : F → F. If X is
not σ-distinguishable with range F ∪ {−∞,∞}, then there
exists f : X → F∪{−∞,∞} such that f ̸= g on X for all
σ networks g.

We note that if a one-dimensional subset X ⊂ F is σ-
distinguishable with some range, then for any d ∈ N, X d is
also σ-distinguishable with the same range.

Using Lemma 3.2, we show in Lemma 3.3 that networks
using the ⌈cos⌋ activation function cannot represent all func-
tions from

[
−2⌊(p+7/2)⌋, 2⌊(p+7/2)⌋]

F to F ∪ {−∞,∞}
(e.g., p = 10 for float16 and p = 23 for float32). The
proof of Lemma 3.3 is in Appendix D.2.

Lemma 3.3. Any f : [−2⌊(p+7/2)⌋, 2⌊(p+7/2)⌋]F → F with
f(0) ̸= f(ω) cannot be represented by a ⌈cos⌋ network.

Nevertheless, for most practical activation functions,
floating-point neural networks can represent all functions
over a wide domain (−2emax−2, 2emax−2)F. We will see this
in the next subsection.

3.2. Sufficient Condition on Activation Functions

While the distinguishability of X ⊂ Fd with range F ∪
{−∞,∞} is necessary for representing all floating-point
functions from X to F ∪ {−∞,∞}, the distinguishability
is also sufficient under mild assumptions on its range and
the activation function (Theorem 3.4).

We first introduce the following condition to explain our
sufficient condition.

Condition 1. For an activation function σ : F → F, there
exist C0, C1, C2 ∈ F such that |Ci|, |Ci − Cj | ≤ 2emax for
all 0 ≤ i, j ≤ 2, and

σ(C0) = 0, 2emin ≤ |σ(C1)| <
5

4
, |σ(C2)| > (2−p−2)+.

Condition 1 requires the existence of three points C0, C1, C2

for an activation function σ : F → F. This condition
can be easily satisfied for the correctly rounded versions
of popular activation functions. For example, σ(C0) =
0 can be satisfied for C0 = 0 (e.g., ReLU, GELU, sin,

4

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

tanh) or for C0 of large magnitude such as −2emax (e.g.,
Sigmoid). Furthermore, the conditions on C1, C2 can be
easily satisfied by choosing some C1 = C2 so that σ(C1 =
C2) ∈ ((2−p−2)+, 5/4).

Under Condition 1, we show that the distinguishability of
X with range [−2emax , 2emax] suffices for representing all
functions from X to (F ∪ {−∞,∞})dout .

Theorem 3.4. Let σ : F → F, din, dout ∈ N, X ⊂ Fdin ,
and f : X → (F ∪ {−∞,∞})dout . Suppose that σ sat-
isfies Condition 1 and X is σ-distinguishable with range
[−2emax , 2emax]F. Then, there exists a four-layer σ network
g such that f = g on X .

There are two notable differences between our necessary
condition (Lemma 3.2) and sufficient condition (Theo-
rem 3.4): Theorem 3.4 requires Condition 1, and considers a
smaller range [−2emax , 2emax]F for distinguishability. First,
we use Condition 1 for networks to generate all possible val-
ues in F∪{−∞,∞} (see Lemma 4.2). If an activation func-
tion σ can only output too large values (e.g., [2emax ,∞]) or
too small values (e.g., in [−ω, ω]), then a σ network may not
be able to generate some values in F ∪ {−∞,∞}. Second,
the smaller range is due to technical reasons in our proof,
which is used to avoid overflow during the evaluation of net-
works. If a network can generate values with large absolute
values (e.g., close to Ω) while distinguishing inputs, then
multiplying/adding constants to those values may incur over-
flow and the network may output NaN. However, if σ has
a well-bounded range (i.e., σ(F ∪ {−∞,∞}) ⊂ [2−emax ,
2emax]) as in the correctly rounded versions of Sigmoid and
tanh, then this range condition is automatically satisfied.

3.3. Sufficient Conditions for Distinguishability

In this subsection, we provide easily verifiable conditions
on floating-point activation functions (Lemmas 3.6 and 3.7)
and real activation functions (Lemma 3.10) that imply distin-
guishability. Using these conditions, we show that networks
with popular activation functions are universal function rep-
resenters (Corollaries 3.8 and 3.11).

To describe our conditions, we first define the separating
points of a floating-point activation function σ.

Definition 3.5 (Separating Point). For σ : F → F, we say
that η ∈ F is a “separating point of σ” if

σ(η−) /∈ {σ(η), σ(η+)} or σ(η+) /∈ {σ(η), σ(η−)}.

Here, η− (or η+) denotes the largest (or smallest) float that
is smaller (or larger) than η (see Section 2.1).

We design our sufficient conditions using separating points.
Specifically, for each distinct pair (x, x′) of inputs in a
domain X , we aim to find a floating-point affine transfor-
mation ϕx,x′ and a separating point ηx,x′ of σ such that

ϕx,x′(x) = η−x,x′ (or η+x,x′) and ϕx,x′(x′) ∈ {ηx,x′ , η+x,x′}
(or {η−x,x′ , ηx,x′}). If we can find such an affine transforma-
tion and a separating point for all distinct pairs in the domain,
then the domain is distinguishable since σ(ϕx,x′(x)) ̸=
σ(ϕx,x′(x′)) (see Eq. (3)).

Based on the above idea, we propose our sufficient condition
for distinguishability in the following lemma. The proof of
Lemma 3.6 is in Appendix D.3.
Lemma 3.6. Let σ : F → F, n ∈ N, and η1, . . . , ηn ∈ F
be separating points of σ with |η1| ≤ · · · ≤ |ηn|. Suppose
that integers e1, e2 ∈ [emin + 1, emax] satisfy

[emin, e2]Z ⊂
n⋃

i=1

[eηi − e1, eηi + emax − 2]Z .

Then, (−2e2+1, 2e2+1)F is σ-distinguishable with range

Re1,e2 := σ
(
[−(2e1+e2+1 ⊕ |ηn|+), 2e1+e2+1 ⊕ |ηn|+]F

)
.

In Lemma 3.6, one can observe that having two separating
points—one with small magnitude and one with moderate-
to-large magnitude—suffices to distinguish a large domain.
In particular, if σ has two separating points η1, η2 with

|η1| < 2emin+1 and 4 ≤ |η2| < 2emax−p−1,

then (−2e2+1, 2e2+1)F is σ-distinguishable with range
R0,e2 for all e2 ∈ [emin + 1, emax]Z. By choosing the
largest e∗2 such that R0,e∗2

⊂ [−2emax , 2emax] and by using
Theorem 3.4, we can show that σ networks can represent
all functions from (−2e

∗
2+1, 2e

∗
2+1)F to F∪ {−∞,∞}. For

example, e∗2 = emax − 1 when σ = ReLU.

We note that having a separating point with small absolute
value (e.g., ≈ 2emin) is critical for distinguishing a large
domain using Lemma 3.6, while avoiding overflow. This
is because, to distinguish two small numbers (e.g., 0 and
ω), we find w, b ∈ F and a separating point η ∈ F such
that w ⊗ 0⊕ b = η− (or η+) and w ⊗ ω ⊕ b ∈ {η, η+} (or
{η, η−}). If η is large in magnitude, then w and b must also
be large. As a result, overflow may occur when the domain
contains large numbers. We also note that a separating
point with moderate-to-large absolute value (e.g., ≥ 1) is
necessary to distinguish a large domain using Lemma 3.6.

Using Lemma 3.6, we provide a sufficient condition for
the distinguishability of floating-point activation functions
that have finite values at all inputs including ±∞, such as
⌈Sigmoid⌋. The proof of Lemma 3.7 is in Appendix D.4.
Lemma 3.7. Let σ : F → F such that σ(F∪ {−∞,∞}) ⊂
[−2emax , 2emax]F. Suppose that σ has two separating points
|η1| < 2 and |η2| ≥ 4. Then, F is σ-distinguishable with
range [−2emax , 2emax]F.

Lemma 3.7 states that if |σ(F ∪ {∞,−∞})| is bounded by
2emax and there exist two separating points of moderate size,

5

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

Figure 1: Visualization of the conditions in Lemma 3.10.

then F is σ-distinguishable with range [−2emax , 2emax]F. By
Theorem 3.4, this implies that σ networks can represent all
functions from Fd to F∪{−∞,∞}, leading to the following
corollary for ⌈Sigmoid⌋ and ⌈tanh⌋.

Corollary 3.8. Let σ be one of ⌈Sigmoid⌋ and ⌈tanh⌋.
Then, for any d ∈ N, σ networks can represent all functions
from Fd to F ∪ {−∞,∞}.

We now consider a more realistic scenario: σ is the correctly
rounded version of a real activation function ρ. For this case,
we first introduce a sufficient condition for having a separat-
ing point. The proof of Lemma 3.9 is in Appendix D.5.

Lemma 3.9. Let ρ : R → R, a, b ∈ F, and e ∈ [emin,
emax]Z with |⌈ρ⌋ (a)| ≤ 2e+1 (1− 2−p). Suppose that there
exists L > 0 such that L(b− a) ≥ 2e−p and either

• ⌈ρ⌋ (a) ≥ 0 and ρ′(x) ≥ L for all x ∈ [a, b], or
• ⌈ρ⌋ (a) ≤ 0 and ρ′(x) ≤ −L for all x ∈ [a, b].

Then, there exists a separating point η ∈ [a, b]F of ⌈ρ⌋.

Lemma 3.9 states that if ρ is sufficiently increasing or de-
creasing on a long enough interval, then that interval con-
tains a separating point of ⌈ρ⌋. Using this lemma, we now
present a sufficient condition on a real activation function ρ
that guarantees the distinguishability of its correctly rounded
version ⌈ρ⌋. The proof of Lemma 3.10 is in Appendix D.6.

Lemma 3.10. Let ρ, ζ : R → R with ζ(x) = −x. Suppose
that there exist ρ̂ ∈ {ρ, ζ ◦ ρ, ρ ◦ ζ, ζ ◦ ρ ◦ ζ}, L1, L2 > 0,
and e ∈ Z such that the following hold:

• L1x ≤ ρ̂(x) ≤ L2x for all x ∈ [0, 2e).
• ρ̂′(x) ≥ L1 for all x ∈ (0, 2e).
• −p ≤ l1 ≤ l2 ≤ l1+p, where l1 = ⌊log2(L1/2)⌋ and
l2 = ⌊log2(2L2)⌋.

Then, (−2e
′
, 2e

′
)F is ⌈ρ⌋-distinguishable with range

[−2emax , 2emax]F, where e′ = emax +min{e− 2,−l2}.

Lemma 3.10 roughly states that for some moderate-size
L1, L2 > 0, if a real activation function ρ is bounded be-

tween L1x and L2x, and ρ′ is lower bounded by L1 for
all inputs between 0 and 2e, then the domain (−2e

′
, 2e

′
)F

is ⌈ρ⌋-distinguishable with range [−2emax , 2emax]F, where
e′ ≈ emax + e− 2. By Theorem 3.4, this implies that ⌈ρ⌋
networks can represent all functions from (−2e

′
, 2e

′
)F to

F ∪ {−∞,∞}. Since Lemma 3.10 covers various practical
activation functions ρ with ρ(0) = 0, the following corol-
lary holds for the correctly rounded version of such ρ. The
proof of Corollary 3.11 is in Appendix D.7.

Corollary 3.11. Let σ be one of ⌈Identity⌋, ⌈ReLU⌋,
⌈ELU⌋, ⌈SeLU⌋, ⌈GELU⌋, ⌈Swish⌋, ⌈Mish⌋, and ⌈sin⌋.
Then, for any d ∈ N, σ networks can represent all functions
from (−2emax−2, 2emax−2)dF to F ∪ {−∞,∞}.

4. Proof of Theorem 3.4
We prove Theorem 3.4 by explicitly constructing the tar-
get four-layer network g under Condition 1. Specifically,
we construct g as a linear combination of indicator func-
tions of points (Lemma 4.1). Given z in the domain, our
construction of the indicator function of z consists of three
parts. In the first part, we create an injective layer consist-
ing of an affine transformation followed by an activation
function based on the distinguishability. Due to the injec-
tivity, all inputs in the domain have distinct output vectors
after passing this part. Here, we use y = (y1, . . . , yk) to
denote the output of the first part of z. In the second part, we
construct 2n binary step functions f1,1, f1,2, . . . , fn,1, fn,2
where fi,1(x) = (C1−C0)1[x ≥ yi]+C0 and fi,2(−x) =
(C1 − C0)1[x ≤ yi] + C0 where C0, C1 are from Condi-
tion 1. Namely, all fi,1 (or fi,2) is C1 if and only if the input
to the network is z (or −z). To implement such fi,j , we
exploit the round-off error in floating-point operations and
show that we can increase the gap between arbitrary two
numbers by sequentially adding the same floats to those two
numbers (see Lemma 4.6). In the third part, we construct a
function that outputs C1 or C2 if all fi,j are C1 and outputs
C0 otherwise. We then apply the activation function after
this function so that our indicator function is either zero (i.e.,
σ(C0)) if the input is z or some non-zero value (i.e., σ(C1)
or σ(C2)) otherwise.

We now formally prove Theorem 3.4.

Lemma 4.1. Let σ : F → F, d ∈ N, and X ⊂ Fd. Suppose
that σ satisfies Condition 1 and X is σ-distinguishable with
range [−2emax , 2emax]F. Then, for any z ∈ Fd and c ∈
{C1, C2}, there exists a three-layer σ network f : X → F
ending with the activation function such that

f(x) = σ (c)1z (x) .

We present the proof of Lemma 4.1 in Section 4.2.
Lemma 4.1 states that if an activation function σ satis-
fies Condition 1 and the domain X is σ-distinguishable,

6

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

then we can construct an indicator function of z ∈ F with
a coefficient of σ(C1) or σ(C2). With Condition 1, this
implies that we can construct indicator functions with co-
efficients σ(C1) ∈ [2emin , 5/4] and σ(C2) > (2−p−2)+.
The following lemma states that applying affine transforma-
tions to these coefficients suffice for generating all floats in
F ∪ {−∞,∞}.
Lemma 4.2. Suppose that σ : F → F satisfies Condi-
tion 1. Then, for any x ∈ F ∪ {−∞,∞}, there exist n ∈ N,
w1, . . . , wn ∈ F, and z1, . . . , zn ∈ {C1, C2} such that

x = (w1 ⊗ σ(z1))⊕ · · · ⊕ (wn ⊗ σ(zn)).

To prove Lemma 4.2, we show that for each x ∈ F, there
exist w ∈ F and z ∈ {C1, C2} such that x⊕ (w⊗ σ(z)) =
x+. Here, we note that w ⊗ σ(z) may not be exactly equal
to x+ − x due to the round-off error. For a more formal
argument, see the full proof in Appendix D.8.

We now prove Theorem 3.4 using Lemmas 4.1 and 4.2.
Without loss of generality, we assume d2 = 1, i.e., the target
function f is scalar-valued. To represent f ′ : X → (F ∪
{−∞,∞})d2 with d2 > 1, we can construct d2 networks
that represent coordinatewise functions x 7→ f ′(x)i and
concatenate them.

For any f : X → F ∪ {−∞,∞}, we can represent f as
follows:

f(x) =
∑
y∈X

f(y)1y (x) .

Let c := f(y). Then, by Condition 1 and Lemma 4.2, for
any c ∈ F∪{−∞,∞}, there exist nc ∈ N, zc,1, . . . , zc,nc

∈
{C1, C2}, and wc,1, . . . , wc,nc ∈ F such that

c =

nc⊕
i=1

(wc,i ⊗ σ(zc,i)) .

By Lemma 4.1, for each f(y) = c ∈ F and i ∈ [nc], there
exists a three-layer σ-network hc,i : X → F ending with
the activation function such that hc,i(x) = σ(zc,i)1y (x) .
We construct the target four-layer σ network g as follows:

g =
⊕
y∈X

nf(y)⊕
i=1

wf(y),i ⊗ hf(y),i.

Since 1y (x) = 0 if y ̸= x, it holds that for each x ∈ X ,

g(x) =

nf(x)⊕
i=1

(wf(x),i ⊗ σ(zf(x),i)) = f(x).

This completes the proof of Theorem 3.4.

4.1. Sequential Addition and Transferability

To describe our proof of Lemma 4.1, we introduce the se-
quential addition defined as follows.

Figure 2: A composition of a network f2 ending with an
activation function (blue) and a sequential addition f1 (red).
Each zi in the sequential addition can be represented by
wi ⊗ σ(ci) and f1 ◦ f2 can be represented by a network.

Definition 4.3 (Sequential addition). Let σ : F → F and
Σσ := {w ⊗ σ(c) : w, c ∈ F with w ⊗ σ(c) ∈ F}. We say
a function f : F → F is a “sequential addition using σ” if
f(F) ⊂ F and there exist n ∈ N and z1, . . . , zn ∈ Σσ such
that for each x ∈ F,

f(x) = x⊕ z1 ⊕ · · · ⊕ zn. (4)

We often drop σ and use Σ to denote Σσ if it is clear from
the context.

We often compose a sequential addition with a network
ending with an activation function: for a sequential addition
f1 using σ and a σ network f2 : Fd → F, f1 ◦ f2 is also
a σ network (see Fig. 2 for an illustration). Here, we use
additional activation functions and biases to represent zi
in Eq. (4). However, since the floating-point addition is
not associative, the sequential addition in Eq. (4) can be
different from adding a single float (e.g., a bias) to x, i.e.,
x 7→ x ⊕ (z1 ⊕ · · · ⊕ zn). We note that for sequential
additions g1, g2 using σ, their composition g1 ◦ g2 is also a
sequential addition.

By Definition 4.3, for any sequential addition f , we have
f(F) ⊂ F, i.e., overflow does not occur for finite inputs. Fur-
thermore, by the monotonicity of the floating-point addition,
we have f(x1) ≤ f(x2) for all finite floats x1 ≤ x2, i.e.,
a sequential addition preserves the order of inputs. These
properties also imply the following lemma. The proof of
Lemma 4.4 is presented in Appendix D.9.

Lemma 4.4. For any σ : F → F and a sequential addition
f using σ, f([−2emax , 2emax]F) ⊂ [−2emax , 2emax]F.

To concisely describe what the sequential addition can do,

7

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

we define the transferability as follows.

Definition 4.5 (Transferability). Let n ∈ N and
(x1, . . . , xn), (y1, . . . , yn) ∈ Fn. We say “(x1, . . . , xn)
is transferable to (y1, . . . , yn) using σ” or write
“(x1, . . . , xn)

σZ=⇒ (y1, . . . , yn)” if there exists a sequen-
tial addition f : F → F using σ such that f(xi) = yi for all
i ∈ [n].

By Definitions 4.3 and 4.5, one can observe that

(x1, x2)
σZ=⇒ (x1 ⊕ z1 ⊕ · · · ⊕ zn, x2 ⊕ z1 ⊕ · · · ⊕ zn)

for all z1, . . . , zn ∈ Σσ. We now describe what sequential
addition can do in the following lemma.

Lemma 4.6. Let σ : F → F and suppose that σ satis-
fies Condition 1. Then, for any y ∈ [−2emax , 2emax)F and
x1, x2 ∈ [−2emax , 2emax]F such that x2 − x1 ∈ (0, 2emax]F,
it holds that

(−2emax , y, y+, 2emax)
σZ=⇒ (x1, x1, x2, x2).

Due to the order-preserving property of sequential additions,
for the sequential addition (say f) in Lemma 4.6, it holds
that f([−2emax , y]F) = {x1} and f([y+, 2emax]F) = {x2}.
Namely, we can split the set [−2emax , 2emax]F into two parts
with respect to the threshold y using f . We note that such
a sequential addition f cannot be constructed by adding
a single bias term; we use the round-off error and non-
associativity of floating-point addition to prove Lemma 4.6.
For more details, see the proof of Lemma 4.6 in Section 4.3.

4.2. Proof of Lemma 4.1

We are now ready to prove Lemma 4.1. By the defi-
nition of the distinguishability, there exist n ∈ N and
affine transformations ϕ1, . . . , ϕn : Fd → F satisfying the
following two properties: (i) for any y ∈ X , there ex-
ists jy ∈ [n] such that σ(ϕjy (z)) ̸= σ(ϕjy (y)) and (ii)
σ (ϕj(X)) ⊂ [−2emax , 2emax]F for all j ∈ [n].

Consider C0, C1 ∈ F in Condition 1. Without loss of gen-
erality, we assume C0 < C1, σ(C1) > 0, and C0 < c; the
proof for the remaining cases can be done similarly.

By Lemma 4.6, there exist sequential additions fj,1, fj,2 for
all j ∈ [n] such that

fj,1(x) =

{
C1 if σ (ϕj(z)) ≤ x ≤ 2emax ,

C0 if − 2emax ≤ x < σ (ϕj(z)) ,

fj,2(−x) =

{
C0 if σ (ϕj(z)) < x ≤ 2emax ,

C1 if − 2emax ≤ x ≤ σ (ϕj(z)) .

Define gj,k : X → F as

gj,k(x) := σ
(
fj,k

(
(−1)k−1 × σ (ϕj(x))

))
.

Then, one can observe that gj,k is a two-layer network
ending with the activation function. Furthermore, for any
x ∈ X , gj,k(x) = σ(C1) for all j ∈ [n] and k ∈ {1, 2} if
and only if x = z; otherwise, there exists some j, k such
that gj,k(x) = σ(C0) = 0.

We now construct the target three-layer network f ending
with the activation function σ as

f(x) := σ(h(g1,1(x), g1,2(x), . . . , gn,1(x), gn,2(x)))

h(y1, . . . , y2n) := h2n−1 (· · ·h2 (h1(y1 ⊕ y2)⊕ y3) · · · ⊕ y2n)

for some sequential additions h1, . . . , h2n−1. Here, we
choose h1, h2, . . . , h2n−1 such that for i ∈ [2n− 2],

hi : (0, σ(C1), 2σ(C1))
σZ=⇒ (0, 0, σ(C1)),

h2n−1 : (0, σ(C1), 2σ(C1))
σZ=⇒ (C0, C0, c).

Note that such sequential additions exist by Lemma 4.6.
Under these choices of h1, . . . , h2n, one can observe that
for any x ∈ X , f(x) = 0 if x ̸= z and f(x) = σ(c) if
x = z. This completes the proof of Lemma 4.1 which leads
to the proof of Theorem 3.4

4.3. Proof of Lemma 4.6

To describe our proof of Section 4.3, we introduce the fol-
lowing lemmas. The proofs of Lemmas 4.7–4.9 are pre-
sented in Appendices D.10–D.12, respectively.

Lemma 4.7. Let σ : F → F and suppose that σ satisfies
Condition 1. Then, for any x1, x2 ∈ [−2emax , 2emax]F with
x1 < x2, there exists a constant y ∈ (0, 2emax]F such that

(x1, x2)
σZ=⇒ (0, y).

Lemma 4.8. Let σ : F → F and suppose that σ satisfies
Condition 1. Then, for any x1, x2 ∈ [−2emax , 2emax]F with
x1x2 > 0,

(0, x1)
σZ=⇒ (0, x2).

Lemma 4.9. Let σ : F → F and suppose that σ satisfies
Condition 1. Then, for any x1, x2 ∈ [−2emax , 2emax]F with
x2 − x1 ∈ (0, 2emax], there exists x ∈ (0, 2emax]F such that

(0, x)
σZ=⇒ (x1, x2).

We now prove Lemma 4.6. By Lemma 4.7, there exists
c ∈ (0, 2emax]F and a sequential addition f1 : (y, y+)

σZ=⇒
(0, c). Then, by the order-preserving property of sequential
additions, it holds that

f1(x) ∈ [−2emax , 0]F, f1(z) ∈ [c, 2emax]F,

for all x ∈ [−2emax , y]F and z ∈ [y+, 2emax]F. Further-
more, by Lemma 4.8, there exists a sequential addition

8

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

f2 : (0, c)
σZ=⇒ (0, 2emax). Again, by the order-preserving

property of sequential additions, we have

f2 ◦ f1(x)⊖ ω ∈ [−2emax ,−ω]F, f2 ◦ f1(z)⊖ ω = 2emax

for all x ∈ [−2emax , y]F and z ∈ [y+, 2emax]F. Here, note
that f3 := f2 ◦ f1 ⊖ ω is also a sequential addition. We also
choose a sequential addition f4 : (−ω, 0)

σZ=⇒ (−2emax , 0)
which exists by Lemma 4.8. Then, it holds that

f4◦f3(x) = −2emax , f4◦f3(z) = f4(2
emax) ∈ [0, 2emax]F

for all x ∈ [−2emax , y]F and z ∈ [y+, 2emax]F.

By Lemma 4.9, there exist x∗ ∈ [−2emax , 2emax]F and a
sequential addition f5 : (0, x∗)

σZ=⇒ (x1, x2). In addition,
by Lemmas 4.7 and 4.8, there exists a sequential addition
f6 : (−2emax , f4(2

emax))
σZ=⇒ (0, x∗). Then, we have

f5 ◦ f6 ◦ f4 ◦ f3(x) = x1, f5 ◦ f6 ◦ f4 ◦ f3(z) = x2

for all x ∈ [−2emax , y]F and z ∈ [y+, 2emax]F. This im-
plies that (−2emax , y, y+, 2emax)

σZ=⇒ (x1, x1, x2, x2) and
completes the proof of Lemma 4.6.

5. Quantitative Analysis
Our network construction uses width O(ndin2

(p+q)(din+1)),
where din is the input dimension, p and q are the numbers of
bits for the mantissa and exponent, respectively, and n is a
constant depending on the activation function. Specifically,
we use width O(ndin2

p+q) for each indicator function, and
the entire network consists of O(2(p+q)din) such indicator
functions—one for each input. This results in a total width
of O(ndin2

(p+q)(din+1)).

We note that a width of 2Θ((p+q)din) is necessary for floating-
point networks of constant depth to represent all func-
tions from a floating-point domain (e.g., [−1, 1]din

F) to
F ∪ {−∞,∞}. Consider a floating-point network with
width W and constant depth. Such a network has at most
O(W 2) parameters. Since each parameter can take at
most O(2p+q) distinct values, the network can represent
at most 2O((p+q)W 2) distinct functions. In contrast, the
number of all functions from [−1, 1]din

F to F ∪ {−∞,∞}
is 2(p+q)2Θ((p+q)din) , as there are 2Θ((p+q)din) inputs and
Θ(2p+q) outputs. Therefore, to represent all such functions,
the network must have width at least 2Θ((p+q)din).

Such exponential growth in din also arises in the real-valued
setting: under constant depth, networks constructed in prior
works (e.g., Yarotsky (2017; 2018); Park et al. (2021); Zhang
et al. (2024)) require width ε−Θ(d), where ε denotes the tar-
get approximation error. Moreover, this exponential growth
has been shown to be necessary for ReLU networks (Yarot-
sky, 2018). Our results in the floating-point setting closely
mirror these findings in the real-valued setting.

Nevertheless, our results do not establish (i) the minimum
depth and width or (ii) depth-width trade-offs for floating-
point universal approximation. This contrasts with existing
results for real-valued universal approximation:

(i) It is well-known that depth 2 is necessary and sufficient
for universal approximation with non-polynomial acti-
vation functions (Pinkus, 1999). Recently, it has been
shown that width max{din, dout, 2} is necessary and
sufficient to approximate any continuous function from
[0, 1]din to Rdout in the Lp distance (1 ≤ p < ∞), for
activation functions that can approximate the identity
function and the binary step function (Shin et al., 2025).
The minimum width in the L∞ distance is known only
for specific pairs of din and dout (Kim et al., 2024).

(ii) For ReLU networks, the number of parameters re-
quired for universal approximation decreases from
Θ(ε−din) to Θ(ε−din/2) as the network depth increases
(Yarotsky, 2018). This benefit of depth has also been
observed in the approximation of specific function
classes (Telgarsky, 2016; Safran & Shamir, 2017;
Chatziafratis et al., 2020).

We believe identifying the minimum depth/width and under-
standing depth-width trade-offs for floating-point universal
approximation are important directions for future research.

6. Conclusion
In this work, we propose necessary and sufficient conditions
on activation functions for floating-point neural networks to
represent a large class of floating-point functions. Specifi-
cally, we demonstrate that the distinguishability of an activa-
tion function is crucial for determining the representability
of neural networks. Furthermore, our results show that net-
works using correctly rounded practical activation functions
can represent all floating-point functions on a wide domain.
We believe that our research contributes to the theoretical
understanding of practical floating-point neural networks
and will provide a solid foundation for future research.

Acknowledgements
This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government MSIT (RS-2019-
II190079, Artificial Intelligence Graduate School Program,
Korea University); the IITP-ITRC (Information Technology
Research Center) grant funded by MSIT (IITP-2025-RS-
2024-00436857); the Culture, Sports, and Tourism R&D
Program through the Korea Creative Content Agency grant
funded by the Ministry of Culture, Sports and Tourism in
2024 (RS-2024-00345025 and 25% by RS-2024-00348469);
the KIAS Individual Grant by the Center for AI and Natural
Sciences at Korea Institute for Advanced Study (AP092801

9

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

and AP090301); National Research Foundation of Korea
grant funded by MSIT (RS-2025-00515264 and RS-2024-
00406127); the Global University Project grant funded by
GIST in 2025; and the Sejong University faculty research
fund in 2025.

Impact Statement
This paper investigates the representability of floating-point
neural networks. We could not find notable potential societal
consequences of our work.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., et al. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. Yolov4:
Optimal speed and accuracy of object detection. arXiv
preprint arXiv:2004.10934, 2020.

Chatziafratis, V., Nagarajan, S. G., Panageas, I., and Wang,
X. Depth-width trade-offs for ReLU networks via
Sharkovsky’s theorem. In International Conference on
Learning Representations (ICLR), 2020.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of Control, Signals and
Systems, 2(4):303–314, 1989.

Ding, Y., Liu, J., Xiong, J., and Shi, Y. On the univer-
sal approximability and complexity bounds of quantized
ReLU neural networks. In International Conference on
Learning Representations (ICLR), 2019.

Gonon, A., Brisebarre, N., Gribonval, R., and Riccietti, E.
Approximation speed of quantized versus unquantized
ReLU neural networks and beyond. IEEE Transactions
on Information Theory, 69(6):3960–3977, 2023.

Google. Improve your model’s performance with
bfloat16. https://cloud.google.com/tpu/
docs/bfloat16.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(GELUs). arXiv preprint arXiv:1606.08415, 2016.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral Networks, 2(5):359–366, 1989.

Hwang, G., Park, Y., and Park, S. On expressive power of
quantized neural networks under fixed-point arithmetic.
arXiv preprint arXiv:2409.00297, 2024.

Hwang, G., Lee, W., Park, Y., Park, S., and Saad, F. Floating-
point neural networks are provably robust universal ap-
proximators. In International Conference on Computer
Aided Verification (CAV), 2025.

IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE
Std 754-2019). IEEE, Piscataway, NJ, USA, 2019. doi:
10.1109/IEEESTD.2019.8766229.

Kidger, P. and Lyons, T. Universal approximation with deep
narrow networks. In Conference on Learning Theory
(COLT), 2020.

Kim, N., Min, C., and Park, S. Minimum width for universal
approximation using ReLU networks on compact domain.
In International Conference on Learning Representations
(ICLR), 2024.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S.
Self-normalizing neural networks. In Annual Conference
on Neural Information Processing Systems (NeurIPS),
2017.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. Mul-
tilayer feedforward networks with a nonpolynomial ac-
tivation function can approximate any function. Neural
Networks, 1993.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. The expres-
sive power of neural networks: A view from the width.
In Annual Conference on Neural Information Processing
Systems (NeurIPS), 2017.

Micikevicius, P., Stosic, D., Burgess, N., Cornea, M., Dubey,
P., Grisenthwaite, R., Ha, S., Heinecke, A., Judd, P.,
Kamalu, J., et al. FP8 formats for deep learning. arXiv
preprint arXiv:2209.05433, 2022.

Park, S., Yun, C., Lee, J., and Shin, J. Minimum width for
universal approximation. In International Conference on
Learning Representations (ICLR), 2021.

Park, Y., Hwang, G., Lee, W., and Park, S. Expressive
power of ReLU and step networks under floating-point
operations. Neural Networks, 175:106297, 2024.

Pinkus, A. Approximation theory of the MLP model in
neural networks. Acta Numerica, 8:143 – 195, 1999.

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for
activation functions. arXiv preprint arXiv:1710.05941,
2017.

Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A.,
and Rastegari, M. What’s hidden in a randomly weighted
neural network? In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

10

https://cloud.google.com/tpu/docs/ bfloat16
https://cloud.google.com/tpu/docs/ bfloat16

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

Safran, I. and Shamir, O. Depth-width tradeoffs in ap-
proximating natural functions with neural networks. In
International Conference on Machine Learning (ICML),
2017.

Shin, J., Kim, N., Hwang, G., and Park, S. Minimum
width for universal approximation using squashable acti-
vation functions. In International Conference on Machine
Learning (ICML), 2025.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wet-
zstein, G. Implicit neural representations with periodic
activation functions. In Annual Conference on Neural
Information Processing Systems (NeurIPS), 2020.

Tabuada, P. and Gharesifard, B. Universal approximation
power of deep residual neural networks via nonlinear
control theory. In International Conference on Learning
Representations (ICLR), 2021.

Telgarsky, M. Benefits of depth in neural networks. In
Conference on Learning Theory (COLT), 2016.

Yarotsky, D. Error bounds for approximations with deep
ReLU networks. Neural Networks, 94:103–114, 2017.

Yarotsky, D. Optimal approximation of continuous func-
tions by very deep ReLU networks. In Conference on
Learning Theory (COLT), 2018.

Yuan, C. and Agaian, S. S. A comprehensive review of
binary neural network. Artificial Intelligence Review, 56
(11):12949–13013, 2023.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S., and
Kumar, S. Are transformers universal approximators
of sequence-to-sequence functions? In International
Conference on Learning Representations (ICLR), 2020.

Zhang, S., Lu, J., and Zhao, H. Deep network approxi-
mation: Beyond ReLU to diverse activation functions.
Journal of Machine Learning Research (JMLR), 25(35):
1–39, 2024.

Zhou, D.-X. Universality of deep convolutional neural net-
works. Applied and Computational Harmonic Analysis,
48(2):787–794, 2020.

11

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

A. Notation Table

Table 2: Notation table

Symbol Description Definition Reference

Fp,q = F set of all finite floating-point numbers. Section 2.1
Fp,q = F set of all floating-point numbers F ∪ {−∞,∞,NaN} Section 2.1

q bit for exponent. Section 2.1
p bit for mantissa. Section 2.1

emin the smallest exponent of F −2q−1 + 2. Section 2.1
emax the largest exponent of F. 2q−1 − 1 Section 2.1
ω the smallest positive float. 2emin−p Section 2.1
Ω the largest positive float. 2emax × (2− 2−p) Section 2.1

∞ , −∞ positive, negative infinity. Section 2.1
NaN Not a number. Section 2.1
ex the exponent of x ∈ F. Section 2.1
mx the significand of x ∈ F. Section 2.1
ẽx normalized exponent of x ∈ F. Eq. (7) Appendix B
m̃x normalized mantissa of x ∈ F. Eq. (7) Appendix B
x− the predecessor of x ∈ F. Section 2.1
x+ the successor of x ∈ F. Section 2.1

⌈·⌋F rounding operation.
round to nearest
(tie-to-even rule) Section 2.1

ρ real-valued activation function. Section 2.1
⌈ρ⌋ corrected rounded function of ρ. Section 2.1
σ floating activation function. Section 2.1

⊕,⊖,⊗ floating-point operations. Section 2.1⊕
addition of multiple floats. Section 2.1

1 indicator function. Section 2.1

σ-distinguishable with range R Definition 3.1 Section 3.1
C0, C1, C2 constants for Condition 1. Condition 1 Section 3.2

η1, η2, . . . , ηn separating points of σ. Definition 3.5 Section 3.3
e1, e2 constants in Lemma 3.6. Section 3.3

Σσ = Σ set of output after activation. F ∩ {w ⊗ σ(c) : w, c ∈ F}. Section 4.1
sequential addition using σ. Definition 4.3 Section 4.1

σZ=⇒ transferrable using σ. Definition 4.5 Section 4.1
⌈x⌉Z ceiling function min{m ∈ Z : m ≥ x} Appendix B
⌊x⌋Z floor function max{m ∈ Z : m ≤ x} Appendix B

B. Additional notations
The set of floating-point numbers consists of two disjoint subsets,

{0} ∪
{
s× (1.m1 · · ·mp)× 2e : s ∈ {−1, 1}, m1, . . . ,mp ∈ {0, 1}, e ∈ [emin, emax]Z

}
(5)

and {
s× (0.m1 · · ·mp)× 2e : s ∈ {−1, 1}, m1, . . . ,mp ∈ {0, 1}, e = emin

}
\ {0}. (6)

An element of subset (5) is called a normal floating-point number. And an element of subset (6) is denoted as a subnormal
floating-point number. For each x ∈ F, x can be represented by products of three parts, the sign s, significand m0.m1 . . .mp,
and the exponent e:

x = s×m0.m1 . . .mp × 2e.

12

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

To clearly denote the components of a floating-point number x ∈ F, we denote its entire significand m0.m1 . . .mp of x as mx

with each binary digit mi is denoted as mx,i. In other words, the significand can be expressed as mx = mx,0.mx,1 . . .mx,p.
Note that for a normal floating-point number x, mx,0 = 1 whereas for a subnormal floating-point number, mx,0 = 0. The
sign s of x is denoted as sx, the exponent e of x is denoted as ex. By the definition, we have ex ∈ [emin, emax]Z for any
x ∈ F and ex = emin for a subnormal floating-point number x. In short, x can be represented as

x = sx ×mx × 2ex .

As the significant of a normal floating-point number is always in [1, 2), it is often convenient to express a subnormal
floating-point in the same form. For x ∈ F, m̃x and ẽx are defined as the unique numbers satisfying sx ∈ {−1, 1},
m̃x ∈ [1, 2)F, ẽx ∈ Z and

x = sx × m̃x × 2ẽx . (7)

Note that if x is normal, we have m̃x = mx and ẽx = ex. If x is subnormal, we have emin − p ≤ ẽx ≤ emin − 1.

Additionally, we define the ceiling function ⌈x⌉Z and the floor function ⌊x⌋Z as follows.

⌈x⌉Z := min{m ∈ Z : m ≥ x},
⌊x⌋Z := max{m ∈ Z : m ≤ x}.

C. Technical lemmas
Lemma C.1. Assume that σ satisfies Condition 1. Consider x1, x2 ∈ F such that ex1

≤ ex2
− 2. Then,

(x1, x2)
σZ=⇒ (0, x2).

This lemma implies that if we have two floating-point numbers whose exponents differ by two or more, performing sequential
addition can effectively eliminate the smaller number. The lemma is used to simplify calculations in the proofs of other
lemmas.
Proof technique: If there is a discrepancy between the exponents of two floating-point numbers, one can select a floating-point
number such that its addition is ignored by the larger number and modifies the smaller number.

Proof of Lemma C.1. Fix x2 and use mathematical induction on the absolute value of x1 to prove the statement. If x1 = 0,
there is nothing to prove. Assume that for x′ ∈ F such that |x′| < |x1|, the induction hypothesis is satisfied. By Lemma C.6,
there exists γ such that γ ∈

(
2ex2

−p−3, 2ex2
−p−2

]
F ∩ Σ. Then, x2 ⊕ (±γ) = x2. For x1 > 0, |x1 ⊕ (−γ)| < x1, and for

x1 < 0, |x1 ⊕ γ| < x1. Therefore, there exists x′ such that |x′| < |x1|, and

(x1, x2)
σZ=⇒ (x′, x2)

σZ=⇒ (0, x2),

where the last relation is by the induction hypothesis. This completes the proof.

The following lemma states that if the exponent of the floating-point number x is not too close to emin, then, (0, x) is
transferable to (0, x−) and (0, x+).

Lemma C.2. Assume that σ satisfies Condition 1. Consider a floating-point number 0 < x ∈ F such that emin + 2 ≤ ex <
emax. Then,

(0, x)
σZ=⇒ (0, x+).

And if 2emin+2 ≤ x ≤ 2emax ,
(0, x)

σZ=⇒ (0, x−).

Proof of Lemma C.2. By Lemma C.6, there exists γ such that γ ∈
(
2ex−p−1, 2ex−p

]
F ∩ Σ. Therefore,

(0, x)
σZ=⇒ (γ, x⊕ γ) = (γ, x+)

σZ=⇒ (0, x+),

13

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

where the last relation is by Lemma C.1. Similarly, if x ̸= 2ex ,

(0, x)
σZ=⇒ (−γ, x⊕ (−γ)) = (−γ, x−)

σZ=⇒ (0, x−).

If x = 2ex , there exists γ such that γ ∈
(
2ex−p−2, 2ex−p−1

]
F ∩ Σ, and similar arguments hold. This completes the

proof.

The following lemma states that if the exponent of a floating-point number x is close to emin, then, (0, x) is transferable to
(0, x−). Together with Lemma C.2, for any x such that 0 < x ≤ 2emax , (0, x) can be transferable to (0, x−).

Lemma C.3. Assume that σ satisfies Condition 1. For x ∈ F such that 0 < x < 2emin+2, the following relation holds:

(0, x)
σZ=⇒ (0, x−).

Proof of Lemma C.3. By Lemma C.6, ω, 2ω ∈ Σ. If 2emin+1 < x < 2emin+2 and mx,p = 0, then,

(0, x)
σZ=⇒ (ω, x⊕ ω) = (ω, x)

σZ=⇒ (2ω, x)
σZ=⇒ (0, x⊕ (−2ω)) =

(
0, x−) .

If ex = emin + 1 and mx,p = 1, then, ex− = emin + 1 or ex+ = emin + 1. If ex− = emin + 1, then, mx,p = 1 and thus,

(0, x)
σZ=⇒ (−2ω, x⊕ (−2ω)) = (−2ω, x−)

σZ=⇒
(
−ω, x− ⊕ ω

)
=

(
−ω, x−) σZ=⇒

(
0, x−) .

Symmetric arguments hold for ex+ = emin + 1 case.

If x ≤ 2emin+1, then x = Nω where N ∈
[
2p+1

]
.

(0, Nω)
σZ=⇒ (ω, (N + 1)ω)

σZ=⇒ · · · σZ=⇒
((
2p+1 −N

)
ω, 2p+1ω

)
σZ=⇒

((
2p+1 −N

)
ω ⊕ ω, 2p+1ω ⊕ ω

)
=

((
2p+1 −N + 1

)
ω, 2p+1ω

)
σZ=⇒

((
2p+1 −N + 1

)
ω ⊕ (−ω), 2p+1 ⊕ (−ω)

)
=

((
2p+1 −N

)
ω,

(
2p+1 − 1

)
ω
)

σZ=⇒
((
2p+1 −N

)
ω ⊕ (−ω),

(
2p+1 − 1

)
ω ⊕ (−ω)

)
=

((
2p+1 −N − 1

)
ω,

(
2p+1 − 2

)
ω
)

σZ=⇒ · · · σZ=⇒ (0, (N − 1)ω) =
(
0, x−) .

The following lemma is the corresponding version of Lemma C.3 for x+; that is, if the exponent of a positive floating-point
number x is not too big, then, (0, x) is transferable to (0, y) for some larger floating-point numbers y. Note that, unlike the
previous lemma, it only claims the existence of larger y, not x+. However, together with the combination of Lemmas C.2
and C.3, one can easily check that (0, x) is transferable to (0, x+).

Lemma C.4. Assume that σ satisfies Condition 1. Consider 0 ̸= x ∈ F such that ex ≤ emax − 2p− 2. Then, there exists
y ∈ F such that xy > 0, 2emax ≥ |y| > |x|, and

(0, x)
σZ=⇒ (0, y).

Proof of Lemma C.4. As the floating-point number is symmetric with respect to zero, we only need to consider the case of
x > 0. By Condition 1, there exists K ∈ Σ such that eK = ẽx + p+ 1. If mK,p = 1 or x > 2ẽx ,

(0, x)
σZ=⇒

(
mK × 2ẽx+p+1,mK × 2ẽx+p+1 ⊕ x

)
=

(
mK × 2ẽx+p+1,

(
mK × 2ẽx+p+1

)+
)

σZ=⇒
(
0,
(
mK × 2ẽx+p+1

)+

⊖mK × 2ẽx+p+1

)
=

(
0, 2ẽx+1

)
or

(
0, 2ẽx+2

)
.

If mK,p = 0, x = 2ẽx and x is normal, by Lemma C.6, there exists γ ∈ Σ such that 2ex−p−1 < γ ≤ 2ex−p. Then,

(0, x)
σZ=⇒ (γ, x⊕ γ) =

(
γ, x+

) σZ=⇒
(
mK × 2ẽx+p+1 ⊕ γ,mK × 2ẽx+p+1 ⊕ x+

)
14

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

=

(
mK × 2ẽx+p+1,

(
mK × 2ẽx+p+1

)+
)

σZ=⇒
(
0,
(
mK × 2ẽx+p+1

)+

⊖mK × 2ẽx+p+1

)
=

(
0, 2ẽx+1

)
or

(
0, 2ẽx+2

)
.

If mK,p = 0, x = 2ẽx and x is subnormal, by Lemma C.6, ω ∈ Σ. Therefore,

(0, x)
σZ=⇒ (ω, ω ⊕ x) = (ω, x+)

σZ=⇒
(
mK × 2ẽx+p+1,

(
mK × 2ẽx+p+1

)+
)

σZ=⇒
(
0, 2ẽx+1

)
or

(
0, 2ẽx+2

)
.

This completes the proof.

Lemma C.5. Consider a floating-point η ∈ F. Then, for any x1, x2 ∈ F such that x1 ̸= x2, |x1| ≤ |x2|, and

emin + 1 ≤ eη − ex2
≤ emax,

there exist w, b ∈ F such that

{w ⊗ x1 ⊕ b, w ⊗ x2 ⊕ b} =
{
η, η+

}
or

{
η−, η+

}
.

Furthermore,
|w| ≤

(
1 + 2−p

)
× 2eη−ex2 ,

and
|b| ≤ η+.

Proof of Lemma C.5.
Case 1: 0 ≤ x1 < x2

Consider the case
0 ≤ x1 < 2ẽx2 < x2,

define w as w := 2eη−ẽx2−p−1 and b as b := η. Then,

w ⊗ x2 ⊕ η > 2eη−p−1 ⊕ η = η+,

and as w ⊗ x1 ≤ 2eη−p−1,
η ≤ w ⊗ x1 ⊕ η ≤ η.

Consider the case
0 ≤ x1 < 2ẽx2 = x2,

If mη,p = 1, define w as w := 2eη−ẽx2−p−1 and b as b := η. Then, similar to x2 > 2ex2 case, w ⊗ x2 ⊕ b = η and
w⊗x1⊕b = η. If mη,p = 0, define w as w := −2eη−ẽx2−p−1 and b as b := η+. Then, w⊗x2⊕b = η and w⊗x1⊕b = η+.

Consider the case x1, x2 are subnormal or
2ex2 ≤ x1 < x2.

Then, there exists i ∈ N0 such that
mx1,j = mx2,j for j ∈ [i],

and
0 = mx1,i+1 ̸= mx2,i+1 = 1.

If mη,p = 1 define w ∈ F as
w := 2eη+i−ex2

−p.

Define b as
b := η − 1.mx2,1 . . .mx2,i 0 . . . 0︸ ︷︷ ︸

p−i

×2eη−p+i.

15

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

As
1.mx2,1 . . .mx2,i 0 . . . 0︸ ︷︷ ︸

p−i

×w = 1mx2,1 . . .mx2,i × 2eη−p,

the operation is exact: η − 1.mx2,1 . . .mx2,i 0 . . . 0︸ ︷︷ ︸
p−i

×2eη−p+i ∈ F. Then,

w ⊗ x1 ⊕ b = 1.mx2,1 . . .mx2,i0mx1,i+2 . . .mx1,p × 2eη−p+i ⊕ b =
⌈
η + 0.mx1,i+2 . . .mx1,p × 2eη−p−1

⌋
= η,

and

w ⊗ x2 ⊕ b = 1.mx2,1 . . .mx2,i1mx2,i+2 . . .mx2,p × 2eη−p+i ⊕ b =
⌈
η + 1.mx2,i+2 . . .mx2,p × 2eη−p−1

⌋
= η+.

If mη,p = 0, define b as
b := η+ − 1.mx2,1 . . .mx2,i 0 . . . 0︸ ︷︷ ︸

p−i

×2eη−p+i.

and w as := −2eη+i−ex2
−p. Then, similarly,

w ⊗ x1 ⊕ b = 1.mx2,1 . . .mx2,i0mx1,i+2 . . .mx1,p × 2eη−p+i ⊕ b =
⌈
η+ − 0.mx1,i+2 . . .mx1,p × 2eη−p−1

⌋
= η+,

and

w ⊗ x2 ⊕ b = 1.mx2,1 . . .mx2,i1mx2,i+2 . . .mx2,p × 2eη−p+i ⊕ +b =
⌈
η+ − 1.mx2,i+2 . . .mx2,p × 2eη−p−1

⌋
= η.

Case 2: x1 < 0 < x2 Define b as b := η. If m̃x2
< 1.1, define w as

w := −2eη−ẽx2
−p.

Then,
w ⊗ x2 = m̃x2

× 2eη−p,

and
w ⊗ x2 ⊕ b = η−.

And as
|w ⊗ x2| ≤ |w ⊗ x1|,

η ≤ w ⊗ x2 ⊕ b ≤ η+.

If m̃x2 ≥ 1.1, define w as
w := −2eη−ẽx2

−p−1,

and we get the same conclusion. This completes the proof.

Lemma C.6. Suppose that σ : F → F satisfies Condition 1 with constants C1 and C2 and let e ∈ [emin − p, emax − p]Z.
Then, there exists γ ∈ F and i ∈ [2] such that

2e−1 < γ ⊗ σ(Ci) ≤ 2e.

Proof of Lemma C.6. Let C1 and C2 from Condition 1 be represented as

σ(C1) = mσ(C1) × 2eσ(C1) and σ(C2) = mσ(C2) × 2eσ(C2) .

Consider the case emin − p− 2 ≤ e ≤ 2. If mσ(C1) ∈
[
1, 5

4

]
F, define γ as

γ := 1.1× 2e−eσ(C1)−1.

16

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

As eσ(C1) ≥ emin = −2q−1 + 2, e− eσ(C1) − 1 ≤ 2q−1 − 1 = emax, and γ ∈ F. Then,

3

4
× 2e ≤ γ × σ(C1) = mσ(C1) × 0.11× 2e ≤ 15

16
× 2e,

and thus
3

4
× 2e ≤ γ ⊗ σ(C1) =

⌈
mσ(C1) × 1.1× 2e

⌋
F ≤ 2e,

where the first inequality is satisfied as e ≥ emin − p+ 2. If mσ(C1) ∈
(
5
4 , 2

)
F, define γ as

γ := 2e−eσ(C1)−1.

Similar to the above case, γ ∈ F. Then,

1

2
× 2e < γ ⊗ σ(C1) =

⌈
mσ(C1) × 2e−1

⌋
F ≤ 2e,

where the first inequality is satisfied as e− 1 ≥ emin − p+ 1.

Consider the case 2 < e < emax − p. If mσ(C2) ∈
[
1, 5

4

]
F, define γ as

γ := 1.1× 2e−eσ(C2)−1.

As e− eσ(C2) − 1 ≤ emax − p− 1− eσ(C2) − 1 ≤ emax, γ ∈ F. Then, similar to the above case,

3

4
× 2e ≤ ⌈γ × σ(C2)⌋ ≤ 2e.

If mσ(C2) ∈
(
5
4 , 2

)
F, define γ as

γ := 2e−eσ(C2)−1,

and similar arguments holds.

Consider the case e = emax − p. If mσ(C2) ≥ 1++, define γ as

γ :=
(
2− 2−p

)
× 2emax−p−2−eσ(C2) .

Then, γ ∈ F, and we have

2emax−p−1 < γ ⊗ σ(C2) =
(
mσ(C2) ⊗

(
2− 2−p

))
× 2emax−p−2 ≤ 2emax−p.

If mσ(C2) ≤ 1+, then, eσ(C2) ≥ −p− 1. If mσ(C2) ∈
[
1, 5

4

]
F, define γ as

γ := 1.1× 2emax−p−1−eσ(C2) ,

and if mσ(C2) ∈
(
5
4 , 2

)
F, define γ as

γ := 2emax−p−1−eσ(C2) .

Then, γ ∈ F, and similar arguments hold as in 2 < e < emax − p case.

Consider the case e = emin − p+ 1. If 1 ≤ mσ(C1) <
5
4 , define γ as

γ := 2e−eσ(C1) .

Then,
γ ⊗ σ(C1) =

⌈
mσ(C1) × 2e

⌋
F =

⌈
mσ(C1) × 2ω

⌋
F = 2ω = 2e.

If 5
4 ≤ mσ(C1) <

5
3 , define γ as

γ := 1.1× 2e−eσ(C1)−1.

17

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

As eσ(C1) ≤ −1, γ ∈ F. Then,

γ ⊗ σ(C1) =
⌈
mσ(C1) × 1.1× 2e−1

⌋
F =

⌈
mσ(C1) × 1.1× ω

⌋
F = 2ω = 2e.

If 5
3 ≤ mσ(C1) < 2, define γ as

γ := 2e−eσ(C1)−1.

Then,
γ ⊗ σ(C1) =

⌈
mσ(C1) × 2e−1

⌋
F =

⌈
mσ(C1) × ω

⌋
F = 2ω = 2e.

Consider the case e = emin − p. If 1 ≤ mσ(C1) < 1.1, define γ as

γ := 2e−eσ(C1) .

Then,
γ ⊗ σ(C1) =

⌈
mσ(C1) × 2e

⌋
F =

⌈
mσ(C1) × ω

⌋
F = ω = 2e.

If 1.1 ≤ mσ(C1) < 2, define γ as
γ := 2e−eσ(C1)−1.

As eσ(C1) ≤ −1, γ ∈ F. Then,

γ ⊗ σ(C1) =
⌈
mσ(C1) × 2e − 1

⌋
F =

⌈
mσ(C1) ×

1

2
ω

⌋
F
= ω = 2e.

This completes the proof.

D. Proof of lemmas
D.1. Proof of Lemma 3.2

Proof. Suppose that X is not σ-distinguishable with range F. Then, there exist x1, x2 ∈ X such that for any d2 ∈ N and
affine transformations ϕ1, ϕ2 : Fd → Fd2 ,

σ(ϕ1(x1)) = σ(ϕ1(x2)).

This implies that for any σ network g : X → F, g(x1) = g(x2). In other words, σ networks cannot represent a function
f : X → F with f(x1) ̸= f(x2). This completes the proof.

D.2. Proof of Lemma 3.3

Proof. By Lemma 3.2, it is sufficient to prove that ⌈cos⌋ can not distinguish the domain with range F ∪ {−∞,∞}. Let
σ(x) := ⌈cos(x)⌋. As σ(0) = 1 and cos(x) ≥ 1− x2

2 , for x ∈ F such that 0 < |x| ≤ 2
−p−1

2 ,

cos(x) > 1− x2

2
≥ 1− 2−p−2

Therefore, for |x| ≤ 2
−p−1

2 ,
σ(x) = ⌈cos(x)⌋ = 1.

Consider w, b ∈ F such that σ(w ⊗ 0⊕ b) ̸= σ(w ⊗ ω ⊕ b). Then, w should satisfy

|w ⊗ ω| > 2−⌊
p+1
2 ⌋Z

−p−1.

Thus,
|w| > 2−emin−1−⌊ p+1

2 ⌋Z .

And one of |w ⊗ x⊕ b|, |w ⊗ (−x)⊕ b| is greater than or equal to w ⊗ x. Therefore, for |x| ≥ 23+⌊
p+1
2 ⌋Z ,

w ⊗ x⊕ b = ∞ or −∞,

which means that
σ(w ⊗ x⊕ b) = NaN.

This completes the proof.

18

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

D.3. Proof of Lemma 3.6

Proof. Consider arbitrary x1, x2 ∈
(
−2e2+1, 2e2+1

)
F such that x1 ̸= x2 and |x1| ≤ |x2|. By the condition of the lemma,

there exists i ∈ [n] such that
ex2

∈ [eηi
− e1, eηi

+ emax − 2]Z .

By Lemma C.5, there exist w and b such that

σ(w ⊗ x1 ⊕ b) ̸= σ(w ⊗ x2 ⊕ b),

|w| ≤
(
1 + 2−p

)
× 2e1 , and |b| ≤ |ηi|+.

Then,

σ
((
−2e2+1, 2e2+1

)
F ⊗ w ⊕ b

)
⊂ σ

([
−2e2+e1+1, 2e2+e1+1

]
F ⊕ b

)
⊂ σ

([
−
(
2e2+e1+1 ⊕ |ηn|+

)
, 2e2+e1+1 ⊕ |ηn|+

]
F

)
.

This completes the proof.

D.4. Proof of Lemma 3.7

Proof. This is a direct consequence of Lemma 3.6. By defining e1 = e2 = emax, as eη1
≤ 1 and eη2

≥ 2, we have

[emin, emax]Z ⊂
2⋃

i=1

[eηi
− emax, eηi

+ emax − 2]Z .

Thus, F =
(
−2emax+1, 2emax+1

)
F is σ-distinguishable with range

σ
([
−
(
2e1+e2+1 ⊕ |η2|+

)
, 2e1+e2+1 ⊕ |η2|+

]
F

)
⊂ σ (F ∪ {∞,−∞}) ⊂ [−2emax , 2emax]F .

This completes the proof.

D.5. Proof of Lemma 3.9

Proof. Without loss of generality, consider the case: ρ′(x) ≥ L for all x ∈ [a, b] and ⌈ρ⌋ (a) ≥ 0. As

ρ (b)− ρ (a) ≥ L(b− a) ≥ 2e−p,

σ(b) ̸= σ(a). Therefore, there exists η ∈ [a, b]F such that σ(η−) < σ(η) ≤ σ(η+). This completes the proof.

D.6. Proof of Lemma 3.10

Proof. Define σ as σ := ⌈ρ̂⌋. We will prove that for any e1 ∈ [emin, e− 1]Z, there exists a distinguishing point η such that
eη = e. For any floating-point number x ∈ F, if σ(x) is normal, as

|σ(x)| = |⌈ρ̂(x)⌋| ≤ L2x×
(
1 + 2−p

)
,

eσ(x) ≤ ex + ⌈log2 (L2 × (1 + 2−p))⌉Z. Note that for any x ≥ 2emin ,

σ(x) ≥ σ (2emin) ≥ 2l12emin ≥ ω,

Consider Lemma 3.9 with a = 2e1 , b =
(
2e1+1

)−
, L = L1, and e = eσ(x). As

L1

((
2e1+1

)− − 2e1
)
= L1

(
1− 2−p

)
2e1 ≥ L1

(
1− 2−p

)
2eσ(x)−⌈log2(L2×(1+2−p))⌉Z ≥ 2eσ(x)−p,

there exists a distinguishing point η ∈ [2e1 ,
(
2e1+1

)−
] such that eη = e1. Then, by Lemma 3.6 with distinguishing

points with exponents emin, emin + 1, . . . , e − 1, e1 = 0, and e2 = min (emax − l2 − 1, emax + e− 3), the interval(
−2e2+1, 2e2+1

)
F is σ-distinguishable with range

σ
([
−
(
2e1+e2+1 ⊕ |ηn|+

)
, 2e1+e2+1 ⊕ |ηn|+

])
⊂ L2

(
1 + 2−p

) [
−
(
2e1+e2+1 ⊕ |ηn|+

)
, 2e1+e2+1 ⊕ |ηn|+

]
⊂ 2l2

[
−
(
2emax−l2

)
, 2emax−l2

]
⊂ [−2emax , 2emax] .

This completes the proof.

19

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

D.7. Proof of Corollary 3.11

Proof. Let ρ̂(x) = ρ(x). The result is straightforward by Table 3.

ρ(x) e L1 L2 l1 l2 e′

ReLU emax 1 1 -1 1 emax − 1
ELU emax 1 1 -1 1 emax − 1
GELU emax 0.5 1 -2 1 emax − 1
SeLU emax 1.05 2 -1 2 emax − 1
Swish emax 0.5 1 -2 1 emax − 1
Mish emax 0.6 1 -2 1 emin − 1
sin 0 0.540 1 -2 1 emin − 2

Table 3: Properties of floating-point format for verifying the conditions. Numbers in the table are rounded to the second
decimal place.

D.8. Proof of Lemma 4.2

Proof. By Lemma C.6, for any e ∈ [emin − p, emax − p], there exists γ and i ∈ [2] such that

2e−1 < γ ⊗ σ(Ci) ≤ 2e.

Therefore, for any x ∈ F, there exists γ and i ∈ [2] such that x⊕ γ ⊗ σ(Ci) = x+. This completes the proof.

D.9. Proof of Lemma 4.4

Proof. Represent f as

f(x) = x⊕
n⊕

i=1

yi.

where n ∈ N and yi ∈ Σ for i ∈ [n]. We first note that for any yi, if |yi| < 2emax−p−1, then, Ω⊕yi = Ω and −Ω⊕yi = −Ω.
And if |yi| ≥ 2emax−p−1, then Ω⊕ yi = ∞ or −Ω⊕ yi = −∞. As f is a function from F to F, |yi| < 2emax−p−1 for any
i ∈ [n], and thus, Ω⊕

⊕j
i=1 yi = Ω and −Ω⊕

⊕j
i=1 yi = −Ω for any j ∈ [n].

Now, we will use proof by contradiction. Without loss of generality, assume that f(2emax) > 2emax . Then, there exists
i0 ∈ [n] such that 2emax ⊕

⊕i0−1
i=1 yi ≤ 2emax and 2emax ⊕

⊕i0
i=1 yi > 2emax . Then, yi0 > 2emax−p−1 and it gives the

contradiction. This completes the proof.

D.10. Proof of Lemma 4.7

Proof. Without loss of generality, assume that x1 < x2. Use mathematical induction on |x1|. If x1 = 0, there is nothing to
prove. Assume that if |x′| < x1 for any x′

2 ̸= x′, then there exists y′ such that (x′, x′
2)

σZ=⇒ (0, y′).

If 0 < x1 < x2, by Lemma C.6, there exists γ ∈ Σ such that γ < x1 and x1 ⊕ (−γ) < x1 and x2 ⊕ (−γ) ̸= x1 ⊕ (−γ).
Therefore,

(x1, x2)
σZ=⇒ (x1 ⊕ (−γ), x2 ⊕ (−γ))

σZ=⇒ (0, y′),

by the induction hypothesis.

If x1 < 0 < x2, by Lemma C.6, there exists γ ∈ Σ such that x1 ⊕ γ > x1. Therefore,

(x1, x2)
σZ=⇒ (x1 ⊕ γ, x2 ⊕ γ)

σZ=⇒ (0, y′),

by the induction hypothesis. This completes the proof.

20

Floating-Point Neural Networks Can Represent Almost All Floating-Point Functions

D.11. Proof of Lemma 4.8

We only prove the case x1, x2 > 0 and the remaining case is by symmetry. We first prove that for any 0 < x ∈ F such that
x ∈ (0, 2emax)F,

(0, x)
σZ=⇒ (0, x+).

If ex ≥ emin + 2, it is by Lemma C.2. If ex ≤ emin + 1, then by Lemma C.4, there exists y ∈ F such that (0, x) σZ=⇒ (0, y).
Use mathematical induction on decreasing order to prove that for any x < x′ ≤ y, (0, x) σZ=⇒ (0, x′). Assume that if
x′ < x′′, then (0, x)

σZ=⇒ (0, x′′). By Lemmas C.2 and C.3, (0, x′+)
σZ=⇒ (0, x′). Therefore,

(0, x)
σZ=⇒ (0, x′+)

σZ=⇒ (0, x′).

Therefore, the induction hypothesis holds for any x′, which leads to (0, x+).

Use mathematical induction on the difference |x2 − x1|. If x1 = x2, there is nothing to prove. Assume that the lemma holds
for any x′

1, x
′
2 such that |x′

2 − x′
1| < |x2 − x1|. If x1 < x2, by Lemmas C.2 and C.4 and the induction hypothesis (note that

|x+
1 − x2| < |x2 − x1|.)

(0, x1)
σZ=⇒ (0, x+

1)
σZ=⇒ (0, x2).

Similarly, if x1 > x2, by Lemmas C.2 and C.3 and the induction hypothesis,

(0, x1)
σZ=⇒ (0, x−

1)
σZ=⇒ (0, x2).

This completes the proof.

D.12. Proof of Lemma 4.9

Proof. By the symmetry, we only need to consider the case |x2| ≥ |x1|. Use mathematical induction on the absolute value
of x1. Assume that there exists x ∈ F such that

(0, x)
σZ=⇒ (x′

1, x2),

for any |x′
1| < |x1|. First consider the case x1 ≥ 0. If x1 = 0, there is nothing to prove.

If x1 ≤ 2emin+1, by Lemma C.6, we have ω ∈ Σ. Since there exists x′
1, x

′
2 ∈ F such that x′

1 ⊕ ω = x1, x′
2 ⊕ ω = x2, and

x′
1 < x′

2, we have

(x′
1, x

′
2)

σZ=⇒ (x′
1 ⊕ ω, x′

2 ⊕ ω) = (x1, x2).

As |x′
1| < |x1|, the induction hypothesis is satisfied.

If x1 > 2emin+1, define e as e := ẽx−
1

. By Lemma C.6, there exists γ ∈ Σ such that

2e−p−1 < γ ≤ 2e−p.

Then, there exists x′
2 = x2 or x−

2 such that
x′
2 ⊕ γ = x2.

Then, (
x−
1 , x

′
2

) σZ=⇒
(
x−
1 ⊕ γ, x′

2 ⊕ γ
)
= (x1, x2) .

As
∣∣x−

1

∣∣ < x1 and x1 ≤ 2emax , the induction hypothesis is satisfied.

Similarly, if x1 < 0, there exists γ such that

(x′
1, x

′
2)

σZ=⇒ (x′
1 ⊖ γ, x′

2 ⊖ γ) = (x1, x2). (8)

Therefore, the induction hypothesis is satisfied. This completes the proof.

21

