
Random Variate Generation
with Formal Guarantees

Feras Saad and Wonyeol Lee

PLDI 2025

Seoul, Korea

1

Agenda

• Overview of Random Variate Generation

• Technical Approach

• Experimental Results

• Future Work

2

Probability distributions over the real line

Continuous

Discrete

Mixed

if flip(0.5):
 return Poisson(7)
else:
 return Normal(0,1)

3

Probability distributions over the real line

https://rovusa.com/visual-guides-summaries-tables-models-list-and-useful-addenda/relationship-among-probability-distributions/ (reused with permission)

4

https://rovusa.com/visual-guides-summaries-tables-models-list-and-useful-addenda/relationship-among-probability-distributions/

Probability distributions are central to many fields

• Robotics Probabilistic Robotics (Thrun et al. 2005)

• Computational Statistics Random Variate Generation (Devroye 1986)

• Operations Research Simulation Techniques in Operations Research (Harling 1958)

• Statistical Physics Monte Carlo Methods in Statistical Physics (Binder 1986)

• Financial Engineering Monte Carlo Methods in Financial Engineering (Glasserman 2003)

• Machine Learning An Intro to MCMC for Machine Learning (Andrieu+ 2003)

• Systems Biology Monte Carlo Methods in Biology (Manly 1991)

• Scientific Computing Monte Carlo Strategies in Scientific Computing (Liu 2001)

• Software Engineering Statistical Methods in Software Engineering (Singpurwalla+ 1999)

• Programming Languages Foundations of Probabilistic Programming (Barthe+ 2020)

we need reliable software abstractions and programming

interfaces for interacting with probability distributions

5

Computing with probability distributions

A probability measure 𝜇 over ℝ is a set function

 𝜇 𝐴 ∈ 0,1 𝐴 ⊂ ℝ (measurable)

Operations of Interest

• Generate a random variate 𝑋 ∼ 𝜇

• Compute cumulative probabilities 𝐹 𝑥 ≔ 𝜇(−∞, 𝑥] (𝑥 ∈ ℝ)

• Compute survival probabilities 𝑆 𝑥 ≔ 𝜇(𝑥, ∞) (𝑥 ∈ ℝ)

• Compute quantiles 𝑄 𝑢 ≔ inf 𝑥 ∈ ℝ ∣ 𝑢 ≤ 𝐹 𝑥 𝑢 ∈ 0,1

6

Computing with probability distributions

Theorem: The quantities 𝜇, 𝑋, 𝐹, 𝑆, 𝑄 are all mathematically equivalent

representations of a probability distribution over ℝ.

Examples of theoretical relationships

• 𝐹 𝑥 = Pr(𝑋 ≤ 𝑥) “left-tail probability”

• 𝑆(𝑥) = Pr(𝑋 > 𝑥) “right-tail probability”

• 𝑆 𝑥 = 1 − 𝐹(𝑥) “additivity and normalization of measure”

• 𝑋 =
𝐷

𝑄 𝑈 , 𝑈 ∼ Uniform 0,1 “inverse-transform theorem”

• 𝜇 𝐴 = Pr 𝑈 ∈ 𝑋−1 𝐴 “pushforward measure”

7

Computing with probability distributions

Theorem: The quantities 𝜇, 𝑋, 𝐹, 𝑆, 𝑄 are all mathematically equivalent

representations of a probability distribution over ℝ.

Does not hold in real-world software! (ℝ ≠ 𝔽)

8

Computing with probability distributions

Theorem: The quantities 𝜇, 𝑋, 𝐹, 𝑆, 𝑄 are all mathematically equivalent

representations of a probability distribution over ℝ.

Does not hold in real-world software! (ℝ ≠ 𝔽)

9

Failures of the real RAM model of computation

In the GNU Scientific Library, for the exponential distribution:

• The numerical CDF 𝐹 𝑥 = 1 at 𝑥 ≈ 17.33 -expm1(-x)
• The random variate 𝑋 can be as high as ≈ 22.18! -log1p(-uniform())

10

Failures of the real RAM model of computation

In the GNU Scientific Library, for the exponential distribution:

• The numerical CDF 𝐹 𝑥 = 1 at 𝑥 ≈ 17.33 -expm1(-x)
• The random variate 𝑋 can be as high as ≈ 22.18! -log1p(-uniform())

we found dozens of bug reports

in widely used random variate

libraries about such inconsistencies

NumPy issues/17007 np.random.geometric(10**-20) returns negative values

PyTorch issues/2257 CPU torch.exponential_function may generate 0 which can cause downstream NaN

11

https://github.com/numpy/numpy/issues/17007
https://github.com/pytorch/pytorch/issues/2257

Failures of the real RAM model of computation

In the GNU Scientific Library, for the exponential distribution:

• The numerical CDF 𝐹 𝑥 = 1 at 𝑥 ≈ 17.33 -expm1(-x)
• The random variate 𝑋 can be as high as ≈ 22.18! -log1p(-uniform())

we found dozens of bug reports

in widely used random variate

libraries about such inconsistencies

These problems also impact

• Differential privacy (Mironov 2012)

• Cryptography (Follath 2014)

12

Numerical approximations do not “commute”

15

Numerical approximations do not “commute”

16

This work: Automatically synthesizing generators

this work
17

Example: Implementing a Gaussian distribution

We can also reuse CDF/SF implementations from existing libraries

22

Example: Implementing a Gaussian distribution

We can also reuse CDF/SF implementations from existing libraries

23

Example: Implementing a Gaussian distribution

We can also reuse CDF/SF implementations from existing libraries

24

Example: A correct uniform over all floats in (0,1)

Traditional Method (Dividing Integers)

• covers <1% of floats, many gaps

• may have incorrect probabilities

• bit patterns have undesirable properties

• see also Goualard (2020)

1 double unif_gen(){
2 i = rand();
3 return i / (RAND_MAX+1.0);
4 }

25

Example: A correct uniform over all floats in (0,1)

Proposed Method (Synthesize from CDF)

• covers 100% of floats (incl. subnormals)

• guarantees correctly rounded probabilities

• automated (custom solutions exist)

26

1 double unif_cdf(double x) {
2 if (x<0) {return 0;}
3 else if (x<=1) {return x;}
4 else {return 1;}
5 }
6
7 GENERATE_FROM_CDF(unif_cdf)

Comparison of Traditional and Proposed Approach

Traditional Approach Proposed Approach

Automation
separate implementations

of the CDF, SF, QF, and RVG

automatically synthesize the

RVG (and QF/SF) given CDF spec

Coherence CDF/SF/QF/RVG all disagree CDF/SF/QF/RVG all agree

Entropy highly wasteful of random bits information-theoretically optimal cost

Analyzability
output distribution of the RVG

is intractable to compute

output distribution of the RVG

exactly matches its formal spec

Accuracy covers narrower range of values covers broader range of values

27

Agenda

• Overview of Random Variate Generation

• Technical Approach

• Experimental Results

• Future Work

28

The random bit model of computation

Infinite-Precision Model

Finite-Precision Model

Entropy

Source

Entropy

Source

Random Variable

𝑋: 0,1 → ℝ

Random Variate

𝑋: 0,1 ∗ → 0,1 𝑛

“infinitely precise”

uniform real number

stream of i.i.d. fair bits

(getrandom Linux syscall)

𝑈
0.57236123 …

𝐵1 𝐵2 𝐵3 𝐵4 …
0 1 1 0 …

𝑥 ∈ ℝ

𝑥 ∈ 0,1 𝑛

real number

𝑛-bit string in some

number format

29

DDG trees: A universal computational model

Suppose the target distribution 𝑝 = 𝑝1, … , 𝑝𝑛 is discrete

Every computable RVG is a discrete distribution generating (DDG) tree 𝑇:

1. start at the root node

2. get a new random bit: if 0 go left, else go right

3. if reach a leaf node, return its label, else goto 2

start

0 1

0 1

0 1

1 10 10

0 1

0

𝑝 = 1/6, … , 1/6

𝑋 001 = 1 𝑋 101 = 5

𝑋 010 = 2 𝑋 110 = 6

𝑋 011 = 3 𝑋 000𝑏 = 𝑋 𝑏

𝑋 100 = 4 𝑋 111𝑏 = 𝑋 𝑏

31

Properties of DDG trees

• The output distribution of a DDG tree 𝑇 is determined by leaf labels:

𝑃𝑇 𝑖 ≔ ෍

𝑙∈leaves 𝑇

2−depth 𝑙 ⋅ 𝕀 label 𝑙 = 𝑖

• The entropy cost of a DDG tree 𝑇 is the average no. of consumed flips

𝐶𝑇 ≔ ෍

𝑙∈leaves(𝑇)

2−depth 𝑙 ⋅ depth(𝑙)

32

Entropy-optimal DDG trees

Goal For a distribution 𝑝 = 𝑝1, … , 𝑝𝑛 , construct a DDG tree 𝑇∗ such that

• 𝑇∗ has output distribution 𝑝 𝑃𝑇∗ ≡ 𝑝

• 𝑇∗ has minimal possible entropy cost 𝐶𝑇∗ = min
𝑇

𝐶𝑇 | 𝑃𝑇 = 𝑝

33

Entropy-optimal DDG trees

Goal For a distribution 𝑝 = 𝑝1, … , 𝑝𝑛 , construct a DDG tree 𝑇∗ such that

• 𝑇∗ has output distribution 𝑝 𝑃𝑇∗ ≡ 𝑝

• 𝑇∗ has minimal possible entropy cost 𝐶𝑇∗ = min
𝑇

𝐶𝑇 | 𝑃𝑇 = 𝑝

Gives a constructive procedure for building entropy-optimal DDG trees!

Theorem (Knuth & Yao 1976)

Let 𝑝𝑖 = 𝑝𝑖0. 𝑝𝑖1𝑝𝑖2𝑝𝑖3 … 2 be the binary expansions of the 𝑝𝑖 𝑖 ∈ 𝑛 .

𝑇∗ has a leaf with label 𝑖 at depth 𝑗 if and only if 𝑝𝑖𝑗 = 1 (i ∈ 𝑛 , 𝑗 ≥ 0).

34

Technical challenges with entropy-optimal DDG trees

Challenge 1 Even if 𝑛 is small, 𝑇 can have exponential depth

 (Saad et al., POPL 2020)

Challenge 2 The RVG 𝑋: 0,1 ∗ → 0,1 𝑘 has 𝑛 = 2𝑘 outcomes, so

 𝑇 ≥ 2𝑘. For distribution over 64-bit floats, 𝑛 = 264

Cannot hope to explicitly construct the entire DDG tree

Theorem (Knuth & Yao 1976)

Let 𝑝𝑖 = 𝑝𝑖0. 𝑝𝑖1𝑝𝑖2𝑝𝑖3 … 2 be the binary expansions of the 𝑝𝑖 𝑖 ∈ 𝑛 .

𝑇∗ has a leaf with label 𝑖 at depth 𝑗 if and only if 𝑝𝑖𝑗 = 1.

35

Key idea: Binary-coded probability distribution

Any distribution over ℝ is a CDF 𝐹: ℝ → [0,1]

Binary-Coded Probability Distribution

alternative representation 𝑝: 0,1 ∗ → 0,1

• 𝑝 𝜀 = 1

• 𝑝 𝑏0 + 𝑝 𝑏1 = 𝑝 𝑏 , ∀𝑏 ∈ 0,1 ∗

𝑝 encodes 𝐹 as a sequence of discrete

probability distributions over 0,1 𝑛, 𝑛 ≥ 0

0,1 ∗ encodes recursive partitions of ℝ

38

Key idea: Binary-coded probability distribution

Any distribution over ℝ is a CDF 𝐹: ℝ → [0,1]

Binary-Coded Probability Distribution

alternative representation 𝑝: 0,1 ∗ → 0,1

• 𝑝 𝜀 = 1

• 𝑝 𝑏0 + 𝑝 𝑏1 = 𝑝 𝑏 , ∀𝑏 ∈ 0,1 ∗

𝑝 encodes 𝐹 as a sequence of discrete

probability distributions over 0,1 𝑛, 𝑛 ≥ 0

0,1 ∗ encodes recursive partitions of ℝ

39

𝑛 = 0

Key idea: Binary-coded probability distribution

Any distribution over ℝ is a CDF 𝐹: ℝ → [0,1]

Binary-Coded Probability Distribution

alternative representation 𝑝: 0,1 ∗ → 0,1

• 𝑝 𝜀 = 1

• 𝑝 𝑏0 + 𝑝 𝑏1 = 𝑝 𝑏 , ∀𝑏 ∈ 0,1 ∗

𝑝 encodes 𝐹 as a sequence of discrete

probability distributions over 0,1 𝑛, 𝑛 ≥ 0

0,1 ∗ encodes recursive partitions of ℝ

40

𝑛 = 0

𝑛 = 1

Key idea: Binary-coded probability distribution

Any distribution over ℝ is a CDF 𝐹: ℝ → [0,1]

Binary-Coded Probability Distribution

alternative representation 𝑝: 0,1 ∗ → 0,1

• 𝑝 𝜀 = 1

• 𝑝 𝑏0 + 𝑝 𝑏1 = 𝑝 𝑏 , ∀𝑏 ∈ 0,1 ∗

𝑝 encodes 𝐹 as a sequence of discrete

probability distributions over 0,1 𝑛, 𝑛 ≥ 0

0,1 ∗ encodes recursive partitions of ℝ

41

𝑛 = 0

𝑛 = 1

𝑛 = 2

Key idea: Binary-coded probability distribution

Any distribution over ℝ is a CDF 𝐹: ℝ → [0,1]

Binary-Coded Probability Distribution

alternative representation 𝑝: 0,1 ∗ → 0,1

• 𝑝 𝜀 = 1

• 𝑝 𝑏0 + 𝑝 𝑏1 = 𝑝 𝑏 , ∀𝑏 ∈ 0,1 ∗

𝑝 encodes 𝐹 as a sequence of discrete

probability distributions over 0,1 𝑛, 𝑛 ≥ 0

0,1 ∗ encodes recursive partitions of ℝ

42

𝑛 = 0

𝑛 = 1

𝑛 = 2

𝑛 = 3

Drawing bits from a binary-coded distribution

Given a binary-coded probability distribution

𝑝: 0,1 ∗ → [0,1], generate random bits

 𝐵1𝐵2𝐵3 … 𝐵𝑛 ∼ 𝑝

Can map 𝐵1 … 𝐵𝑛 to a point/interval of ℝ

43

𝑛 = 0

𝑛 = 1

𝑛 = 2

𝑛 = 3

Drawing bits from a binary-coded distribution

Given a binary-coded probability distribution

𝑝: 0,1 ∗ → [0,1], generate random bits

 𝐵1𝐵2𝐵3 … 𝐵𝑛 ∼ 𝑝

Can map 𝐵1 … 𝐵𝑛 to a point/interval of ℝ

Also works if 0,1 𝑛 is any binary-number format

44

𝑛 = 0

𝑛 = 1

𝑛 = 2

𝑛 = 3

Integers Rationals

Unsigned Integer Fixed Point

Sign and Magnitude Floating Point

Two’s Complement Posits

Drawing bits from a binary-coded distribution

Given a binary-coded probability distribution

𝑝: 0,1 ∗ → [0,1], generate random bits

 𝐵1𝐵2𝐵3 … 𝐵𝑛 ∼ 𝑝

Naïve Baseline (Conditional Bit Sampling)

• 𝐵1 ∼ Bernoulli(𝑝 1)

• 𝐵2|𝐵1 ∼ Bernoulli
𝑝 𝐵11

𝑝 𝐵1

• 𝐵3|𝐵1, 𝐵2 ∼ Bernoulli
𝑝 𝐵1𝐵21

𝑝 𝐵1𝐵2

• …

Highly suboptimal in space, runtime, entropy

45

𝑛 = 0

𝑛 = 1

𝑛 = 2

𝑛 = 3

Contribution 1: Space-time-entropy optimal generator

Given a binary-coded probability distribution

𝑝: 0,1 ∗ → [0,1], generate random bits

 𝐵1𝐵2𝐵3 … 𝐵𝑛 ∼ 𝑝

Optimal Method (Our Method)

Lazily explores an entropy-optimal tree

Correctness proof leverages analytic

properties of unit interval 0,1 ⊂ ℝ

Optimal in space, time, and entropy

46

Contribution 1: Space-time-entropy optimal generator

47

Contribution 2: Efficient floating-point implementation

But a numerical CDF 𝐹: 0,1 𝑛 → 𝔽 ∩ 0,1 has floating-point probabilities!

48

1 double cdf_squared(double x) {
2 if (x<0) {return 0;}
3 else if (x<=1) {return x*x;}
4 else {return 1;}
5 }

𝑭 𝒙 = 𝒙𝟐

𝑭 𝒙 = cdf_squared(x)

Contribution 2: Efficient floating-point implementation

But a numerical CDF 𝐹: 0,1 𝑛 → 𝔽 ∩ 0,1 has floating-point probabilities!

We give an exact floating-point

generator for 𝑝: 0,1 ∗ → 𝔽
✓ uses fast integer arithmetic

✓ uses same precision level as 𝐹

Technical challenge

• 𝑓1, 𝑓2 ∈ 𝔽 ⇏ 𝑓2 −ℝ 𝑓1 ∈ 𝔽
• Need binary expansion of 𝑓2 −ℝ 𝑓1

49

1 double cdf_squared(double x) {
2 if (x<0) {return 0;}
3 else if (x<=1) {return x*x;}
4 else {return 1;}
5 }

𝑭 𝒙 = 𝒙𝟐

𝑭 𝒙 = cdf_squared(x)

Contribution 3: Extended accuracy with survival functions

Cumulative probabilities in 𝔽
𝐹 𝑥 are inaccurate near 1

Tail probabilities in 𝔽: use a

survival function 𝑆 𝑥 = 1 − 𝐹(𝑥)

Combine the two functions into a

dual distribution function

50

standard_rayleigh_cdf = lambda t: -math.expm1(-t*t/2) [3.5 × 10−162, 8.65]
standard_rayleigh_sf = lambda t: math.exp(-t*t/2) 1.05 × 10−8, 38.6

Combined Representation [3.5 × 10−162, 38.6]

Contribution 3: Extended accuracy with survival functions

Can represent twice as many values without increasing precision

We give an entropy-optimal generator for any DDF (see paper for details)

51

Agenda

• Overview of Random Variate Generation

• Technical Approach

• Experimental Results

• Future Work

52

Research Questions

• Question 1 How do bits/variate and variates/sec compare to GSL?

• Question 2 How does accuracy compare to GSL?

• Question 3 What is the overhead of extended accuracy generation?

53

Q1: Performance in bits/variates and variates/sec

54

GSL = GNU Scientific Library

CBS = Naïve Baseline Generator

OPT = Optimal Generator

bits/variate (lower = better)

OPT 1x–3x better than CBS

OPT 3x–142x better than GSL

Q1: Performance in bits/variates and variates/sec

55

GSL = GNU Scientific Library

CBS = Naïve Baseline Generator

OPT = Optimal Generator

bits/variate (lower = better)

OPT 1x–3x better than CBS

OPT 3x–142x better than GSL

variates/sec (higher = better)

OPT 1x–9x faster than CBS

OPT 2x–35x slower than GSL

 (median 6x)

Q2: Accuracy of generated variates

56

GSL GNU Scientific Library

CDF Cumulative Distribution Function

SF Survival Function

DDF Dual Distribution Function

Key Takeaways

DDF vs GSL up to 1035x wider

 coverage of range

DDF vs CDF/SF fixes asymmetries

 in the tail accuracy

Q2: Accuracy of generated variates

57

GSL GNU Scientific Library

CDF Cumulative Distribution Function

SF Survival Function

DDF Dual Distribution Function

Key Takeaways

DDF vs GSL GSL is often

 intractable to

 analyze

Q3: Overhead of extended accuracy generation

Minimal overhead for OPT, high overhead for CBS (Naïve Baseline)

58

Agenda

• Overview of Random Variate Generation

• Technical Approach

• Experimental Results

• Future Work

59

Future Work

60

formally verify that a

numerical CDF

𝐹: 0,1 𝑛 → 𝔽 is valid

integrate as primitives an

end-to-end verified PPL

reduce performance gap

with (ad-hoc) GSL

generators

parallel / vectorized

implementation

quantify theoretical error

between numerical and

analytic CDF

applications in differential

privacy, cryptography, etc.

Main Contributions

https://github.com/probsys/librvg

• Precise formulation of synthesizing exact

generators given a numerical specification

• Space-time-entropy optimal generation

for arbitrary distributions over ℝ

• Exact implementation in any finite-precision

number format (integer, fixed-point, float, posit)

• Extended-accuracy generators that coherently

combine a numerical CDF and SF

• Improvements over GNU Scientific Library

generators https://github.com/probsys/librvg

61

https://github.com/probsys/librvg

	Slide 1: Random Variate Generation with Formal Guarantees
	Slide 2: Agenda
	Slide 3: Probability distributions over the real line
	Slide 4: Probability distributions over the real line
	Slide 5: Probability distributions are central to many fields
	Slide 6: Computing with probability distributions
	Slide 7: Computing with probability distributions
	Slide 8: Computing with probability distributions
	Slide 9: Computing with probability distributions
	Slide 10: Failures of the real RAM model of computation
	Slide 11: Failures of the real RAM model of computation
	Slide 12: Failures of the real RAM model of computation
	Slide 15: Numerical approximations do not “commute”
	Slide 16: Numerical approximations do not “commute”
	Slide 17: This work: Automatically synthesizing generators
	Slide 22: Example: Implementing a Gaussian distribution
	Slide 23: Example: Implementing a Gaussian distribution
	Slide 24: Example: Implementing a Gaussian distribution
	Slide 25: Example: A correct uniform over all floats in (0,1)
	Slide 26: Example: A correct uniform over all floats in (0,1)
	Slide 27: Comparison of Traditional and Proposed Approach
	Slide 28: Agenda
	Slide 29: The random bit model of computation
	Slide 31: DDG trees: A universal computational model
	Slide 32: Properties of DDG trees
	Slide 33: Entropy-optimal DDG trees
	Slide 34: Entropy-optimal DDG trees
	Slide 35: Technical challenges with entropy-optimal DDG trees
	Slide 38: Key idea: Binary-coded probability distribution
	Slide 39: Key idea: Binary-coded probability distribution
	Slide 40: Key idea: Binary-coded probability distribution
	Slide 41: Key idea: Binary-coded probability distribution
	Slide 42: Key idea: Binary-coded probability distribution
	Slide 43: Drawing bits from a binary-coded distribution
	Slide 44: Drawing bits from a binary-coded distribution
	Slide 45: Drawing bits from a binary-coded distribution
	Slide 46: Contribution 1: Space-time-entropy optimal generator
	Slide 47: Contribution 1: Space-time-entropy optimal generator
	Slide 48: Contribution 2: Efficient floating-point implementation
	Slide 49: Contribution 2: Efficient floating-point implementation
	Slide 50: Contribution 3: Extended accuracy with survival functions
	Slide 51: Contribution 3: Extended accuracy with survival functions
	Slide 52: Agenda
	Slide 53: Research Questions
	Slide 54: Q1: Performance in bits/variates and variates/sec
	Slide 55: Q1: Performance in bits/variates and variates/sec
	Slide 56: Q2: Accuracy of generated variates
	Slide 57: Q2: Accuracy of generated variates
	Slide 58: Q3: Overhead of extended accuracy generation
	Slide 59: Agenda
	Slide 60: Future Work
	Slide 61: Main Contributions

