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Agenda

• Overview of Random Variate Generation
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• Experimental Results
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Probability distributions over the real line

Continuous

Discrete

Mixed

if flip(0.5):
    return Poisson(7)
else:
    return Normal(0,1)
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Probability distributions over the real line

https://rovusa.com/visual-guides-summaries-tables-models-list-and-useful-addenda/relationship-among-probability-distributions/ (reused with permission)
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Probability distributions are central to many fields

• Robotics   Probabilistic Robotics    (Thrun et al. 2005)

• Computational Statistics Random Variate Generation   (Devroye 1986)

• Operations Research  Simulation Techniques in Operations Research (Harling 1958)

• Statistical Physics  Monte Carlo Methods in Statistical Physics (Binder 1986)

• Financial Engineering Monte Carlo Methods in Financial Engineering (Glasserman 2003)

• Machine Learning  An Intro to MCMC for Machine Learning  (Andrieu+ 2003)

• Systems Biology  Monte Carlo Methods in Biology  (Manly 1991)

• Scientific Computing  Monte Carlo Strategies in Scientific Computing (Liu 2001)

• Software Engineering  Statistical Methods in Software Engineering (Singpurwalla+ 1999)

• Programming Languages Foundations of Probabilistic Programming (Barthe+ 2020)

we need reliable software abstractions and programming 

interfaces for interacting with probability distributions
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Computing with probability distributions

A probability measure 𝜇 over ℝ is a set function   

      𝜇 𝐴 ∈ 0,1   𝐴 ⊂ ℝ (measurable)

Operations of Interest

• Generate a random variate  𝑋 ∼ 𝜇

• Compute cumulative probabilities 𝐹 𝑥 ≔ 𝜇(−∞, 𝑥]   (𝑥 ∈ ℝ)

• Compute survival probabilities 𝑆 𝑥 ≔ 𝜇(𝑥, ∞)   (𝑥 ∈ ℝ)

• Compute quantiles   𝑄 𝑢 ≔  inf 𝑥 ∈ ℝ ∣ 𝑢 ≤ 𝐹 𝑥 𝑢 ∈ 0,1

6



Computing with probability distributions

Theorem: The quantities 𝜇, 𝑋, 𝐹, 𝑆, 𝑄 are all mathematically equivalent 

representations of a probability distribution over ℝ.

Examples of theoretical relationships

• 𝐹 𝑥 = Pr(𝑋 ≤ 𝑥)   “left-tail probability”

• 𝑆(𝑥) = Pr(𝑋 > 𝑥)    “right-tail probability”

• 𝑆 𝑥 = 1 − 𝐹(𝑥)    “additivity and normalization of measure”

• 𝑋 =
𝐷

𝑄 𝑈 , 𝑈 ∼ Uniform 0,1   “inverse-transform theorem”

• 𝜇 𝐴 = Pr 𝑈 ∈ 𝑋−1 𝐴    “pushforward measure”    
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Computing with probability distributions

Theorem: The quantities 𝜇, 𝑋, 𝐹, 𝑆, 𝑄 are all mathematically equivalent 

representations of a probability distribution over ℝ.

Does not hold in real-world software! (ℝ ≠ 𝔽)
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Failures of the real RAM model of computation

In the GNU Scientific Library, for the exponential distribution:

• The numerical CDF 𝐹 𝑥 = 1 at 𝑥 ≈ 17.33 -expm1(-x)
• The random variate 𝑋 can be as high as ≈ 22.18! -log1p(-uniform())
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Failures of the real RAM model of computation

In the GNU Scientific Library, for the exponential distribution:

• The numerical CDF 𝐹 𝑥 = 1 at 𝑥 ≈ 17.33 -expm1(-x)
• The random variate 𝑋 can be as high as ≈ 22.18! -log1p(-uniform())

we found dozens of bug reports

in widely used random variate

libraries about such inconsistencies

NumPy issues/17007 np.random.geometric(10**-20) returns negative values

PyTorch issues/2257  CPU torch.exponential_function may generate 0 which can cause downstream NaN
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Failures of the real RAM model of computation

In the GNU Scientific Library, for the exponential distribution:

• The numerical CDF 𝐹 𝑥 = 1 at 𝑥 ≈ 17.33 -expm1(-x)
• The random variate 𝑋 can be as high as ≈ 22.18! -log1p(-uniform())

we found dozens of bug reports

in widely used random variate

libraries about such inconsistencies

These problems also impact

• Differential privacy (Mironov 2012)

• Cryptography (Follath 2014)
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Numerical approximations do not “commute”

15



Numerical approximations do not “commute”
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This work: Automatically synthesizing generators

this work
17



Example: Implementing a Gaussian distribution

We can also reuse CDF/SF implementations from existing libraries
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Example: A correct uniform over all floats in (0,1)

Traditional Method (Dividing Integers)

• covers <1% of floats, many gaps

• may have incorrect probabilities

• bit patterns have undesirable properties

• see also Goualard (2020)

1 double unif_gen(){
2   i = rand();
3   return i / (RAND_MAX+1.0);
4 }
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Example: A correct uniform over all floats in (0,1)

Proposed Method (Synthesize from CDF)

• covers 100% of floats (incl. subnormals)

• guarantees correctly rounded probabilities

• automated (custom solutions exist)

26

1 double unif_cdf(double x) {
2   if      (x<0)  {return 0;}
3   else if (x<=1) {return x;}
4   else           {return 1;}
5 }
6
7 GENERATE_FROM_CDF(unif_cdf)



Comparison of Traditional and Proposed Approach

Traditional Approach Proposed Approach

Automation
separate implementations

of the CDF, SF, QF, and RVG

automatically synthesize the 

RVG (and QF/SF) given CDF spec

Coherence CDF/SF/QF/RVG all disagree CDF/SF/QF/RVG all agree

Entropy highly wasteful of random bits information-theoretically optimal cost

Analyzability
output distribution of the RVG

is intractable to compute

output distribution of the RVG

exactly matches its formal spec

Accuracy covers narrower range of values covers broader range of values
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The random bit model of computation

Infinite-Precision Model

Finite-Precision Model

Entropy

Source

Entropy

Source

Random Variable

𝑋: 0,1 → ℝ

Random Variate

𝑋: 0,1 ∗ → 0,1 𝑛

“infinitely precise”

uniform real number

stream of i.i.d. fair bits

(getrandom Linux syscall)

𝑈
0.57236123 …

𝐵1 𝐵2 𝐵3 𝐵4 …
0 1 1 0 …

𝑥 ∈ ℝ

𝑥 ∈ 0,1 𝑛

real number

𝑛-bit string in some

number format
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DDG trees: A universal computational model

Suppose the target distribution 𝑝 = 𝑝1, … , 𝑝𝑛  is discrete

Every computable RVG is a discrete distribution generating (DDG) tree 𝑇:

1. start at the root node

2. get a new random bit: if 0 go left, else go right

3. if reach a leaf node, return its label, else goto 2

 

start

0 1

0 1

0 1

1 10 10

0 1

0

𝑝 = 1/6, … , 1/6

𝑋 001 = 1 𝑋 101 = 5 

𝑋 010 = 2 𝑋 110 = 6 

𝑋 011 = 3 𝑋 000𝑏 = 𝑋 𝑏  

𝑋 100 = 4 𝑋 111𝑏 = 𝑋 𝑏  
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Properties of DDG trees

• The output distribution of a DDG tree 𝑇 is determined by leaf labels:

𝑃𝑇 𝑖 ≔ ෍

𝑙∈leaves 𝑇

2−depth 𝑙 ⋅ 𝕀 label 𝑙 = 𝑖

• The entropy cost of a DDG tree 𝑇 is the average no. of consumed flips

𝐶𝑇 ≔ ෍

𝑙∈leaves(𝑇)

2−depth 𝑙 ⋅ depth(𝑙)
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Entropy-optimal DDG trees

Goal For a distribution 𝑝 = 𝑝1, … , 𝑝𝑛 , construct a DDG tree 𝑇∗ such that

• 𝑇∗ has output distribution 𝑝   𝑃𝑇∗ ≡ 𝑝

• 𝑇∗ has minimal possible entropy cost 𝐶𝑇∗ = min
𝑇

𝐶𝑇  | 𝑃𝑇 = 𝑝
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Entropy-optimal DDG trees

Goal For a distribution 𝑝 = 𝑝1, … , 𝑝𝑛 , construct a DDG tree 𝑇∗ such that

• 𝑇∗ has output distribution 𝑝   𝑃𝑇∗ ≡ 𝑝

• 𝑇∗ has minimal possible entropy cost 𝐶𝑇∗ = min
𝑇

𝐶𝑇  | 𝑃𝑇 = 𝑝

Gives a constructive procedure for building entropy-optimal DDG trees!

Theorem (Knuth & Yao 1976)

Let 𝑝𝑖 = 𝑝𝑖0. 𝑝𝑖1𝑝𝑖2𝑝𝑖3 … 2 be the binary expansions of the 𝑝𝑖 𝑖 ∈ 𝑛 . 

𝑇∗ has a leaf with label 𝑖 at depth 𝑗 if and only if 𝑝𝑖𝑗 = 1 (i ∈ 𝑛 , 𝑗 ≥ 0).
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Technical challenges with entropy-optimal DDG trees

Challenge 1 Even if 𝑛 is small, 𝑇 can have exponential depth

   (Saad et al., POPL 2020)

Challenge 2 The RVG 𝑋: 0,1 ∗ → 0,1 𝑘 has 𝑛 = 2𝑘 outcomes, so

  𝑇 ≥ 2𝑘. For distribution over 64-bit floats, 𝑛 = 264

Cannot hope to explicitly construct the entire DDG tree

Theorem (Knuth & Yao 1976)

Let 𝑝𝑖 = 𝑝𝑖0. 𝑝𝑖1𝑝𝑖2𝑝𝑖3 … 2 be the binary expansions of the 𝑝𝑖 𝑖 ∈ 𝑛 . 

𝑇∗ has a leaf with label 𝑖 at depth 𝑗 if and only if 𝑝𝑖𝑗 = 1.

35



Key idea: Binary-coded probability distribution

Any distribution over ℝ is a CDF 𝐹: ℝ → [0,1]

Binary-Coded Probability Distribution

alternative representation 𝑝: 0,1 ∗ → 0,1

• 𝑝 𝜀 = 1

• 𝑝 𝑏0 + 𝑝 𝑏1 = 𝑝 𝑏 , ∀𝑏 ∈ 0,1 ∗ 

𝑝 encodes 𝐹 as a sequence of discrete

probability distributions over 0,1 𝑛, 𝑛 ≥ 0

0,1 ∗ encodes recursive partitions of ℝ
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Drawing bits from a binary-coded distribution

Given a binary-coded probability distribution

𝑝: 0,1 ∗ → [0,1], generate random bits

 𝐵1𝐵2𝐵3 … 𝐵𝑛 ∼ 𝑝 

Can map 𝐵1 … 𝐵𝑛 to a point/interval of ℝ
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Drawing bits from a binary-coded distribution

Given a binary-coded probability distribution

𝑝: 0,1 ∗ → [0,1], generate random bits

 𝐵1𝐵2𝐵3 … 𝐵𝑛 ∼ 𝑝 

Can map 𝐵1 … 𝐵𝑛 to a point/interval of ℝ

Also works if 0,1 𝑛 is any binary-number format

44

𝑛 = 0

𝑛 = 1

𝑛 = 2

𝑛 = 3

Integers Rationals

Unsigned Integer Fixed Point

Sign and Magnitude Floating Point

Two’s Complement Posits



Drawing bits from a binary-coded distribution

Given a binary-coded probability distribution

𝑝: 0,1 ∗ → [0,1], generate random bits

 𝐵1𝐵2𝐵3 … 𝐵𝑛 ∼ 𝑝 

Naïve Baseline (Conditional Bit Sampling)

• 𝐵1 ∼ Bernoulli(𝑝 1 ) 

• 𝐵2|𝐵1 ∼ Bernoulli
𝑝 𝐵11

𝑝 𝐵1

• 𝐵3|𝐵1, 𝐵2 ∼ Bernoulli
𝑝 𝐵1𝐵21

𝑝 𝐵1𝐵2

• …

Highly suboptimal in space, runtime, entropy

45
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Contribution 1: Space-time-entropy optimal generator

Given a binary-coded probability distribution

𝑝: 0,1 ∗ → [0,1], generate random bits

 𝐵1𝐵2𝐵3 … 𝐵𝑛 ∼ 𝑝 

Optimal Method (Our Method)

Lazily explores an entropy-optimal tree

Correctness proof leverages analytic

properties of unit interval 0,1 ⊂ ℝ

Optimal in space, time, and entropy
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Contribution 1: Space-time-entropy optimal generator
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Contribution 2: Efficient floating-point implementation

But a numerical CDF 𝐹: 0,1 𝑛 → 𝔽 ∩ 0,1  has floating-point probabilities!

48

1 double cdf_squared(double x) {
2  if      (x<0)  {return 0;}
3  else if (x<=1) {return x*x;}
4  else           {return 1;}
5 }

𝑭 𝒙 = 𝒙𝟐

𝑭 𝒙 = cdf_squared(x)



Contribution 2: Efficient floating-point implementation

But a numerical CDF 𝐹: 0,1 𝑛 → 𝔽 ∩ 0,1  has floating-point probabilities!

We give an exact floating-point

generator for 𝑝: 0,1 ∗ → 𝔽
✓ uses fast integer arithmetic

✓ uses same precision level as 𝐹

Technical challenge

• 𝑓1, 𝑓2 ∈ 𝔽 ⇏ 𝑓2  −ℝ 𝑓1 ∈ 𝔽
• Need binary expansion of 𝑓2  −ℝ 𝑓1

49

1 double cdf_squared(double x) {
2  if      (x<0)  {return 0;}
3  else if (x<=1) {return x*x;}
4  else           {return 1;}
5 }

𝑭 𝒙 = 𝒙𝟐

𝑭 𝒙 = cdf_squared(x)



Contribution 3: Extended accuracy with survival functions

Cumulative probabilities in 𝔽
𝐹 𝑥  are inaccurate near 1

Tail probabilities in 𝔽: use a

survival function 𝑆 𝑥 = 1 − 𝐹(𝑥)

Combine the two functions into a

dual distribution function

50

standard_rayleigh_cdf = lambda t: -math.expm1(-t*t/2)  [3.5 × 10−162, 8.65]
standard_rayleigh_sf  = lambda t: math.exp(-t*t/2) 1.05 × 10−8, 38.6

Combined Representation       [3.5 × 10−162, 38.6]



Contribution 3: Extended accuracy with survival functions

Can represent twice as many values without increasing precision

We give an entropy-optimal generator for any DDF (see paper for details)
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Research Questions

• Question 1 How do bits/variate and variates/sec compare to GSL?

• Question 2 How does accuracy compare to GSL?

• Question 3 What is the overhead of extended accuracy generation?
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Q1: Performance in bits/variates and variates/sec

54

GSL = GNU Scientific Library

CBS = Naïve Baseline Generator

OPT = Optimal Generator

bits/variate (lower = better)

OPT 1x–3x better than CBS

OPT 3x–142x better than GSL



Q1: Performance in bits/variates and variates/sec
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GSL = GNU Scientific Library

CBS = Naïve Baseline Generator

OPT = Optimal Generator

bits/variate (lower = better)

OPT 1x–3x better than CBS

OPT 3x–142x better than GSL

variates/sec (higher = better)

OPT 1x–9x faster than CBS

OPT 2x–35x slower than GSL

 (median 6x)



Q2: Accuracy of generated variates

56

GSL GNU Scientific Library

CDF Cumulative Distribution Function

SF Survival Function

DDF Dual Distribution Function

Key Takeaways

DDF vs GSL  up to 1035x wider

   coverage of range

DDF vs CDF/SF fixes asymmetries

   in the tail accuracy



Q2: Accuracy of generated variates

57

GSL GNU Scientific Library

CDF Cumulative Distribution Function

SF Survival Function

DDF Dual Distribution Function

Key Takeaways

DDF vs GSL  GSL is often

   intractable to

   analyze



Q3: Overhead of extended accuracy generation

Minimal overhead for OPT, high overhead for CBS (Naïve Baseline)
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Future Work

60

formally verify that a 

numerical CDF

𝐹: 0,1 𝑛 → 𝔽 is valid

integrate as primitives an 

end-to-end verified PPL

reduce performance gap 

with (ad-hoc) GSL 

generators

parallel / vectorized 

implementation

quantify theoretical error 

between numerical and 

analytic CDF

applications in differential 

privacy, cryptography, etc.



Main Contributions

https://github.com/probsys/librvg

• Precise formulation of synthesizing exact

generators given a numerical specification

• Space-time-entropy optimal generation

for arbitrary distributions over ℝ

• Exact implementation in any finite-precision

number format (integer, fixed-point, float, posit)

• Extended-accuracy generators that coherently

combine a numerical CDF and SF

• Improvements over GNU Scientific Library

generators https://github.com/probsys/librvg 
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