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Generating random variates is a fundamental operation in diverse areas of computer science and is supported

in almost all modern programming languages. Traditional software libraries for random variate generation

are grounded in the idealized “Real-RAM” model of computation, where algorithms are assumed to be able to

access uniformly distributed real numbers from the unit interval and compute with infinite-precision real

arithmetic. These assumptions are unrealistic, as any software implementation of a Real-RAM algorithm on a

physical computer can instead access a stream of individual random bits and computes with finite-precision

arithmetic. As a result, existing libraries have few theoretical guarantees in practice. For example, the actual

distribution of a random variate generator is generally unknown, intractable to quantify, and arbitrarily

different from the desired distribution; causing runtime errors, unexpected behavior, and inconsistent APIs.

This article introduces a new approach to principled and practical random variate generation with formal

guarantees. The key idea is to first specify the desired probability distribution in terms of a finite-precision

numerical program that defines its cumulative distribution function (CDF), and then generate exact random

variates according to this CDF. We present a universal and fully automated method to synthesize exact

random variate generators given any numerical CDF implemented in any binary number format, such as

floating-point, fixed-point, and posits. The method is guaranteed to operate with the same precision used to

specify the CDF, does not overflow, avoids expensive arbitrary-precision arithmetic, and exposes a consistent

API. The method rests on a novel space-time optimal implementation for the class of generators that attain the

information-theoretically optimal Knuth and Yao entropy rate, consuming the least possible number of input

random bits per output variate. We develop a random variate generation library using our method in C and

evaluate it on a diverse set of “continuous” and “discrete” distributions, showing competitive runtime with the

state-of-the-art GNU Scientific Library while delivering higher accuracy, entropy efficiency, and automation.

CCS Concepts: • Mathematics of computing→ Random number generation; Probability and statistics; Infor-
mation theory; Mathematical software; Discretization; • Theory of computation→ Probabilistic computation.
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1 Introduction
The purpose of a random variate generation algorithm is to produce random numbers that adhere

to a specified probability distribution. These distributions can be discrete, such as the Poisson

distribution over the natural numbers, or continuous, like the Gaussian distribution over the real

numbers. A fundamental result of probability theory establishes that, in purely mathematical terms,

any random variate generator corresponds to a function that takes as input a real number 𝑢 ∈ [0, 1]
drawn uniformly at random from the unit interval and returns as output a real number 𝑥 ∈ R (Fig. 1,

top row). Software libraries for random variate generation use this insight to develop numerical
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𝑋 : [0, 1] → RUniform( [0, 1]) real number

Entropy Source

𝑥 ∈ RInfinite

Precision Random Variate Generator Output

𝑋 : {0, 1}∗ ⇀ {0, 1}𝑛Bernoulli(1/2) i.i.d. bit stream 𝑥 ∈ {0, 1}𝑛Finite

Fig. 1. Random variate generation with infinite-precision (Real-RAM) and finite-precision computation.

algorithms, whose correctness properties rest on a fictitious “Real-RAM” computer that can perform

infinitely precise computation over real numbers in constant time [13; §1.1 Assumptions I—III].

Key Challenges. The Real-RAM model was introduced in Shamos’s 1978 dissertation [56] on

computational geometry and adopted in Devroye’s 1986 random variate generation book [13] for its

conceptual simplicity. However, this model fails to characterize the error and complexity properties

of software that executes on finite-precision hardware, as cautioned by von Neumann in 1951:

Anyonewho considers arithmeticmethods of producing random digits is, of course, in a state of sin. . . If
one considers arithmetic methods in detail, it is quickly found that the critical thing about them is
the very obscure, very imperfectly understood behavior of round-off errors in mathematics. . .One
might as well admit that one can prove nothing, because the amount of theoretical information
about the statistical properties of the round-off mechanism is nil. —Von Neumann [65]

A modern illustration of these problems can be found in differentially private algorithms [21] that

use random numbers to obfuscate sensitive datasets, such as the 2020 US Census [1]. Mironov [42]

demonstrates that floating-point effects in the Laplace random variate generator from existing

software libraries can entirely destroy the real-world privacy guarantees of algorithms that are

otherwise differentially private under the Real-RAM assumption. Similar issues arise in areas such

as lattice-based cryptography [11, 17, 20, 22, 35, 51], where developers of secure protocols need

more-realistic computational models than Real RAM that enable them to rigorously characterize

(a) the approximation error on a finite-precision computer, to establish security guarantees;

(b) the required register size needed for a given accuracy level, to design efficient hardware;

(c) the entropy consumption per output variate, to predict runtime and avoid side channel attacks.

This Work. This article introduces a theoretically principled and practical approach to random

variate generation grounded in a finite-precision model of computation (Fig. 1, bottom row). On the

input side, a random variate generator has lazy access to a stream of independent unbiased random

bits. It returns as output a finite 𝑛-bit string that represents a number in some binary encoding,

computed using finite-precision arithmetic and finite memory. An immediate consequence of this

model is that the generator can produce at most 2
𝑛
distinct outputs, each with a rational probability.

Our approach to random variate generation begins with a formal specification of the desired

probability distribution of the random variates. This specification takes the form of a numerical

program that implements a cumulative distribution function (CDF) 𝐹 . For any finite-precision

number 𝑥 that can be represented on the computer, 𝐹 (𝑥) computes the probability that the random

variate is less than or equal to 𝑥 . Given such a CDF, our technique automatically synthesizes a

random variate generator that is guaranteed to exactly match 𝐹 . This generator is also guaranteed

to be entropy-optimal—it draws the information-theoretically least number of random bits on the

input side to produce an output, achieving the optimal entropy rate from Knuth and Yao [37].

Figure 2 compares our approach to existing random variate generation software libraries. First

consider the idealized Real-RAM model (Fig. 2a). Every probability measure has multiple equivalent

representations in terms of a unique cumulative distribution function (CDF), survival function

(SF), quantile function (QF), or infinite collection of identically distributed random variables (i.e.,

measurable functions from [0, 1] into R). Figure 2b shows the approach in standard software

libraries, which provide numerical programs for the CDF, SF, QF, and random variate generator(s)
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Fig. 2. Overview of the standard and proposed approaches to random variate generation software libraries.

that approximate the corresponding Real-RAM functions. The resulting diagram, however, does not

“commute” (red cross marks in Fig. 2b)—due to numerical errors, each of these numerical programs

actually defines a different probability measure, creating an inconsistent API for what was originally

a single coherent probability measure in the infinite-precision Real RAM model. Further, the actual

output distributions of the implemented random variate generators are generally intractable to

compute, making it difficult to formally characterize their properties such as approximation error or

expected runtime. Figure 2c shows the proposed approach, where the desired probability measure is

first specified using a numerical program that computes its CDF. This CDF is then used to synthesize

an exact random variate generator and related functions. The resulting API for the implemented

probability measure is mathematically coherent, perfectly mirroring the Real-RAM equivalences.

Contributions. This article makes the following contributions.

(C1) Formulation of exact random variate generation using finite precision. We rigorously

formulate the problem of generating exact random variates given a finite-precision implementation

of a CDF. This approach is fundamentally different from existing libraries (Fig. 2). It guarantees a

coherent API for the cumulative distribution, survival, and quantile functions of the implemented

generator that all agree with one another. It also enables the fully automatic construction of a

random variate generator given a formal specification of the desired probability distribution, and

allows for strong theoretical guarantees on exactness, entropy optimality, and practical efficiency.

(C2) Exact and optimal random variate generators for binary-coded distributions (§4).
We present a sound and entropy-optimal algorithm (Theorem 4.6) for generating random variates

given any binary-coded probability distribution, which is a universal mathematical representation

for probability measures over R. This algorithm improves upon a method described in Knuth and

Yao [37]: it obtains optimal space-time complexity by exploiting properties of binary expansions of

real numbers that govern the structure of entropy-optimal generators (Theorems 4.2 and 4.4).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 152. Publication date: June 2025.



152:4 Feras A. Saad and Wonyeol Lee

(C3) Exact and optimal random variate generators in finite precision (§5).We specialize the

universal algorithm for binary-coded probability distributions to soundly generate exact random

variates given a finite-precision implementation of a CDF over any binary number format (e.g.,

floating-point, fixed-point, posits; Theorem 5.17). This algorithm is information-theoretically opti-

mal and highly efficient in software: it is guaranteed to require the same precision as the given CDF

(Theorem 5.16) and uses fast integer arithmetic instead of expensive arbitrary-precision arithmetic.

(C4) Extended-accuracy random variate generators that combine both CDF and SF (§6).
We present an extension of the method from §5 that achieves higher accuracy, especially in the tails

of a probability distribution, using a principled combination of a finite-precision CDF and survival

function (SF) implementation (Theorem 6.3). This algorithm enjoys the same theoretical guarantees

as before, while being able to represent twice as many outcomes as compared to only a CDF or SF.

(C5) Implementation and empirical evaluations (§7). We develop and evaluate a random

variate generation library using our methods in C. The results show that, as compared to the state-

of-the-art GNU Scientific Library [24], our generators are (i) more entropy-efficient, consuming

2.6x–142x fewer random bits per output variate; (ii) more representative of the ideal distribution

range, covering up to 10
35
x wider intervals; and (iii) more automated and amenable to program

analysis, having known output distributions. The results also show that the extended-accuracy

methods in §6 incur negligible overhead in entropy and runtime over the original versions in §5.

2 Overview
2.1 Mathematical Representations of Probability Distributions
Let 𝜆 denote the Lebesgue measure and B(R) the Borel sigma-algebra. Every probability measure 𝜇

over R (e.g., Gaussian, Gamma, Poisson, etc.) has multiple equivalent mathematical representations:

PM Probability Measure 𝜇 : B (R) → [0, 1] (2.1)

RV Random Variable 𝑋 : ( [0, 1],B ([0, 1])) → (R,B (R)) (2.2)

CDF Cumulative Distribution Function 𝐹 (𝑥) B 𝜇 ((−∞, 𝑥]) C Pr(𝑋 ≤ 𝑥), 𝑥 ∈ R (2.3)

SF Survival Function 𝑆 (𝑥) B Pr(𝑋 > 𝑥) = 1 − 𝐹 (𝑥), 𝑥 ∈ R (2.4)

QF Quantile Function 𝑄 (𝑢) B inf{𝑥 ∈ R | 𝑢 ≤ 𝐹 (𝑥)}, 𝑢 ∈ [0, 1] . (2.5)

Figure 2a shows the correspondences among (2.1)–(2.5) under the Real-RAM model of computation.

There is a bijection between the spaces of PM, CDF, SF, QF; and a surjection between these spaces

and the space RV. We denote these correspondences as 𝜇 ∼ {𝐹𝜇, 𝑆𝜇, 𝑄𝜇, 𝑋𝜇}, 𝐹 ∼ {𝜇𝐹 , 𝑆𝐹 , 𝑄𝐹 , 𝑋𝐹 },
𝑆 ∼ {𝜇𝑆 , 𝐹𝑆 , 𝑄𝑆 , 𝑋𝑆 }, 𝑄 ∼ {𝜇𝑄 , 𝐹𝑄 , 𝑆𝑄 , 𝑋𝑄 }, 𝑋 ∼ {𝜇𝑋 , 𝐹𝑋 , 𝑆𝑋 , 𝑄𝑋 }. The RV is the only non-unique

representation—infinitely many random variables (understood as measurable mappings from

the underlying probability space [0, 1] into R) can have the same distribution, i.e., 𝑋 ≠ 𝑋 ′ but
𝜇𝑋 (𝐴) B 𝜆(𝑋 −1 (𝐴)) = 𝜆(𝑋 ′−1 (𝐴)) C 𝜇𝑋 ′ (𝐴) for all 𝐴 ∈ B (R). Random variables 𝑋 ≠ 𝑋 ′ that
disagree on positive measure sets suggest different random variate generation strategies for 𝜇.

Example 2.1. The following random variables all have a standard Gaussian distribution over R:

𝑋1 (𝜔) = inf

{
𝑥 ∈ R | 𝜔 ≤

∫ 𝑥
−∞

𝑒
− 𝑡

2

2√
2𝜋

d𝑡

}
, 𝑋2 (𝜔) =

√︁
−2 ln𝑢1 (𝜔)

1/cos(2𝜋𝑢2 (𝜔))
, 𝑋3 (𝜔) = lim

𝑛→∞

∑𝑛
𝑖=1
𝑢𝑖 (𝜔 )−𝑛/2√
𝑛/12

,

where {𝑢𝑖 (𝜔)}∞𝑖=1
denote countablymany i.i.d. uniform numbers on [0, 1] “split” from𝜔 (Remark 3.2).

These functions describe different implementations of Gaussian random variate generators: the

inverse transformmethod𝑋1, Box-Muller transform𝑋2, and central limit approximation𝑋3. Listing 2

(lines 2–5) lists four Gaussian random variate generators from the GNU Scientific Library. «
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Lst 1. Implementing an exponential probability distribution in C.

1 // Typical random variate generators for the "uniform" distribution over unit interval.
2 double uniform (){ return (( double)rand ()) / (RAND_MAX + 1);} // 𝑈 ∼ Uniform( [0, 1) )
3 double uniform_pos (){ double u; do {u=uniform ();} while (u==0); return u;} // 𝑈 ∼ Uniform( (0, 1) )
4

5 // Cumulative distribution (CDF), survival (SF), & quantile (QF) function implementations.
6 double exp_cdf (double x, double s) {return x <= 0 ? 0 : -expm1(-x/s);} // 𝐹 (𝑥 ; 𝑠 ) = 1 − 𝑒−𝑥/𝑠
7 double exp_sf (double x, double s) {return x <= 0 ? 1 : exp(-x/s);} // 𝑆 (𝑥 ; 𝑠 ) = 𝑒−𝑥/𝑠
8 double exp_qf (double u, double s) {return -s * log1p(-u);} // 𝑄 (𝑢; 𝑠 ) = −𝑠 ln(1 − 𝑢 )
9

10 // TRADITIONAL APPROACH: Implement ad-hoc random variate generators.
11 double exp_generate (double s) {return exp_qf(uniform(), s);} // 𝑄 (𝑈 ; 𝑠 )
12 double exp_generate_alt (double s) {return -s * log(uniform_pos ());} // 𝑄 (1 −𝑈 ; 𝑠 )
13

14 // THIS WORK: Exact random variate generators given a formal CDF and/or SF specification.
15 GENERATE_FROM_CDF (exp_cdf , 1.0);
16 GENERATE_FROM_SF (exp_sf , 1.0);
17 GENERATE_FROM_DDF (exp_cdf , exp_sf , 1.0);

2.2 Traditional Software Implementations of Probability Distributions
This section illustrates problemswith the approach in traditional random variate generation libraries

(e.g., [24, 33, 48, 60, 64]) that provide interfaces for (2.1)–(2.5) as shown schematically in Fig. 2b. We

present a small
1
but realistic example for the Exponential(𝑠) distribution (Listing 1) to highlight

some issues with finite-precision numerical implementations of idealized Real-RAM algorithms.
2

Problems with Uniform Source. Lines 2–3 of Listing 1 show common [50] numerical approxi-

mations of a uniform variable in [0, 1], which serves as the primitive source of randomness for

random variate generation (cf. Fig. 1 and (2.2)). The uniform function calls rand, which returns an

integer between 0 and RAND_MAX, and divides the result by RAND_MAX + 1 to give a float in [0, 1);
uniform_pos returns a float in (0, 1) by rejection sampling. Issues with generators of this sort are

well-documented in the literature: Goualard [28, 29] and Lemire [38] explore these drawbacks in

detail. For example, while including or omitting endpoints {0, 1} is of no consequence in Real RAM,

these values have nonzero probability when using finite precision, causing many downstream

errors depending on the implementation.
3
Moreover, typical implementations of uniform return

a paltry 10
−7
%–7% of all representable floating-point numbers in [0, 1] (Prop. B.1), which further

limits the accuracy of random variate generator algorithms that invoke these functions.
4

Inconsistencies in the CDF, SF, QF. Lines 6–8 of Listing 1 show numerically stable implementations

of (2.3)–(2.5). Let us explore some inconsistencies among these representations. First consider

exp_cdf and exp_sf. These functions formally define distributions over floats (Remark 5.11), but

they have entirely different properties. When s = 1, the former’s range (i.e., support) contains floats

within [7.01× 10
−46, 17.33] and the latter [2.98× 10

−8, 103.97]. Now consider exp_cdf and exp_qf.
If u is the float immediately before 1, then the return value of exp_qf(u,1) is 16.635 whereas the

exact𝑢-quantile of exp_cdf(·,1) is 16.230, yielding a large absolute error exceeding 0.405. Relative

errors are also large: if u is the float immediately after 0, then the return value of exp_qf(u,1) is

twice larger than the exact 𝑢-quantile of exp_cdf(·,1). Many similar issues can be surfaced.

Inconsistencies in the Generators. Lines 11–12 of Listing 1 show two exponential random variate

generators, 𝑄 (𝑈 ) and 𝑄 (1 − 𝑈 ), based on the inverse-transform method (Prop. 3.4). However,

exp_generate is not consistent with the distribution specified by exp_cdf because it calls into

1
Library implementations of random variate generators and associated functions can span 100s of lines of code, e.g., [59, 61].

2
A cursory inspection of three widely used Python libraries (NumPy [33], SciPy [64], PyTorch [48]) surfaced ∼90 user-

reported issues in the random variate generation algorithms, almost all related to numerical error, shown in Appendix F.

3
This specific issue arises in the PyTorch exponential generator, see https://github.com/pytorch/pytorch/issues/22557

4
An extensive discussion of this challenge among developers is found in https://github.com/pytorch/pytorch/issues/16706
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Lst 2. Using high-quality cumulative distribution and survival function implementations from the GNU

Scientific Library (GSL) to automatically generate “Gaussian” variates (only function signatures are shown).

1 // GSL: Existing random variate generators for Gaussian distribution (renamed for clarity ).
2 double gsl_ran_gaussian_inverse_cdf (const gsl_rng *r, double sigma);
3 double gsl_ran_gaussian_box_muller (const gsl_rng *r, double sigma);
4 double gsl_ran_gaussian_ziggurat (const gsl_rng *r, double sigma);
5 double gsl_ran_gaussian_ratio_method (const gsl_rng *r, double sigma);
6

7 // GSL: Numerical implementations of various distribution functions.
8 double gsl_cdf_gaussian_P (double x, double sigma); // Cumulative Dist. Function (CDF)
9 double gsl_cdf_gaussian_Q (double x, double sigma); // Survival Function (SF)
10 double gsl_cdf_gaussian_P_inv(double u, double sigma); // Quantile Function (QF)
11

12 // THIS WORK: Exact random variate generators given a numerical CDF and/or SF specification.
13 GENERATE_FROM_CDF (gsl_cdf_gaussian_P , 5.0);
14 GENERATE_FROM_SF (gsl_cdf_gaussian_Q , 5.0);
15 GENERATE_FROM_DDF (gsl_cdf_gaussian_P , gsl_cdf_gaussian_Q , 5.0);

exp_qf, which is itself not consistent with exp_cdf. Supposing that RAND_MAX = 2
32 − 1, the output

of exp_generate lies in the range [0, 22.18] when s = 1, which is again different from the ranges

of both exp_cdf and exp_sf. Further, exp_generate is also not consistent with the distribution

specified by exp_qf even though it directly invokes it, because uniform does not cover all floats
in [0, 1]. The exp_generate_alt function has similar inconsistencies, with the additional caveat

that implementing𝑄 (1−𝑈 ) requires using uniform_pos instead of uniform, because log(0.) may

return -inf, nan, or even a domain error, depending on the language (cf. Footnote 3).

2.3 This Work: Exact Random Variate Generators from Formal Specifications
Lines 15–17 of Listing 1 show the approach to random variate generation introduced in this work,

which is based on coherent implementations of (2.1)–(2.5). The GENERATE_FROM_CDF expression
takes the name of any numerical CDF implementation (i.e., exp_cdf) and values of distributional

parameters (i.e., s is 1.0), and returns a random floating-point number x precisely with cumulative

probability cdf(x). An alternate generator is GENERATE_FROM_SF, which returns xwith cumulative

probability 1 −R exp_sf(x), where the subtraction is exact (i.e., no floating-point rounding error).

These generators reflect the fact that exp_cdf and exp_sf define different distributions. We also

have an extended-accuracy generator, GENERATE_FROM_DDF, which combines the exp_cdf and

exp_sf specifications into a single coherent generator. Recall that, for s = 1, the former has range

[7.01 × 10
−46, 17.33] and the latter [2.98 × 10

−8, 103.97], so neither is globally more precise than

the other. The output of this generator agrees with exp_cdf below its median, where the CDF is

more precise, and agrees with exp_sf above its median, where the SF is more precise. Its largest

value (103.97) is 4.7x higher than that of exp_generate (22.18), giving higher coverage of (0,∞).
These generators do not use ad-hoc floating-point approximations of random uniform reals (e.g.,

uniform or uniform_pos in lines 2 and 3 of Listing 1) as the primitive unit of entropy. Instead,

they operate directly over individual random bits from streams such as rand() (which provides

pseudorandom bits) or /dev/urandom (which provides cryptographically secure random bits). For

example, using our framework, implementing a uniform that guarantees 100% coverage of all floats

in (0, 1] or [0, 1) (cf. Footnote 4; Table 3 in Appendix B) is just a matter of specifying the CDF:

// Uniform over all doubles in (0,1]

double cdf_uniform_round_up(double x) {

if (isnan(x)) { return 1 }

return min(max(x, 0), 1);

}

GENERATE_FROM_CDF(cdf_uniform_round_up );

// Uniform over all doubles in [0,1)

double cdf_uniform_round_dn(double x) {

double z = nextafter(x, INFINITY );

return cdf_uniform_round_up(z);

}

GENERATE_FROM_CDF(cdf_uniform_round_dn );

These functions specify the exact distributions of a random variate obtained by correctly rounding an

infinitely precise real𝑈 ∼ Uniform( [0, 1]) to the next and previous IEEE-754 double-precision float,
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respectively. While highly specialized random variate generation algorithms for these challenging

types of uniform distributions over floats exist in the literature [8, 15, 29, 30, 66], using our approach,

exact generators are automatically obtained by specifying a desired CDF, which is often more

straightforward than implementing the generator and extends directly to nonuniform distributions.

The generators described in this work are also entropy-optimal (Theorem 4.6), i.e., they consume

the information-theoreticallyminimal number of random bits from the entropy source to generate an

output. They incur no additional floating-point error with respect to the CDF or SF implementation,

and avoid arbitrary-precision arithmetic (Theorem 5.16). It is also straightforward to compute exact

quantiles (Algorithm E9) of these generators without using approximate implementations (e.g.,

exp_qf on line 8 of Listing 1) that have no theoretical relationship to the implemented generator.

Listing 2 shows how our random variate generation algorithms (lines 13–15) interoperate with

existing software such as the GNU Scientific Library (GSL) by reusing high-quality CDF and/or SF

implementations (lines 8–9). The built-in GSL Gaussian generators (lines 2–5) often have complex

implementations spanning hundreds of lines of code, and each specify different output distributions

which are all intractable to estimate. Indeed, any GSL random variate generator that makes just two

(or more) calls to uniform is already intractable to analyze. In contrast, our generators (lines 13–15)

have known output distributions that match the specified CDF or SF. They are also automatically

synthesized from these specifications, requiring no additional implementation code. The view

taken by our approach is to first develop high-quality CDF and/or SF implementations that provide

transparent formal specifications of the desired distribution the random variates should follow.

This specification can be carefully debugged for numerical problems or other errors (e.g., those in

Appendix F), after which we automatically synthesize exact generators that match the specification.

3 Preliminaries
Definition 3.1. A random variable 𝑋 : [0, 1] → R is a Borel measurable map from the unit interval

into the reals. We may equivalently write 𝑋 : {0, 1}N → R, where 𝑋 (𝑢1𝑢2 . . . ) B 𝑋
(∑∞

𝑖=1
𝑢𝑖2
−𝑖 )

.

The distribution of a random variable 𝑋 is the probability measure 𝜇𝑋 over (R,B(R)) such that

𝜇𝑋 (𝐴) B 𝜆(𝑋 −1 (𝐴)) C Pr(𝑋 ∈ 𝐴), where 𝐴 ∈ B(R) is an event and 𝜆 the Lebesgue measure. «

Remark 3.2. Defining the domain of a random variable to be [0, 1] (instead of say ∪∞𝑛=0
[0, 1]𝑛)

is made without loss of generality. A single uniformly distributed real 𝜔 B (0.𝜔1𝜔2 . . .)2 ∈ [0, 1]
can be “split” into a countably infinite number of i.i.d. uniform numbers (𝑢1 (𝜔), 𝑢2 (𝜔), . . .) where
𝑢𝑛 (𝜔) B (0.𝜔𝑝𝑛𝜔𝑝2

𝑛
𝜔𝑝3

𝑛
. . . )2 for 𝑛 ≥ 1, with 𝑝1 < 𝑝2 < 𝑝3 < . . . an enumeration of the primes. «

Definition 3.3. A cumulative distribution function (CDF) 𝐹 : R → [0, 1] is a right-continuous
monotone mapping such that lim𝑥→−∞ 𝐹 (𝑥) = 0 and lim𝑥→∞ 𝐹 (𝑥) = 1. A survival function (SF)

𝑆 : R→ [0, 1] is a mapping such that 𝑆 (𝑥) = 1 − 𝐹 (𝑥) for some CDF 𝐹 . A quantile function (QF)

𝑄 : [0, 1] → R is a mapping such that 𝑄 (𝑢) = inf{𝑥 ∈ R | 𝑢 ≤ 𝐹 (𝑥)} for some CDF 𝐹 . «

Proposition 3.4 (Billingsley [5; Theorems 12.4, 14.1]). Let ( [0, 1],B([0, 1]), 𝜆) be the standard
probability space. Each random variable 𝑋 : [0, 1] → R has a unique CDF 𝐹𝑋 B Pr(𝑋 ≤ 𝑥) =
𝜆(𝑋 −1 (−∞, 𝑥]). Each CDF 𝐹 : R→ [0, 1] is in 1-1 correspondence with a unique probability measure
𝜇𝐹 on (R,B(R)). There exist infinitely many random variables 𝑋𝐹 on ( [0, 1],B([0, 1]), 𝜆) that are
identically distributed as 𝜇𝐹 , e.g., 𝑋𝐹 (𝜔) = 𝑄𝐹 (𝑈 (𝜔)) where𝑈 ∼ Uniform( [0, 1]). «

For a probability measure 𝜇 over R, the CDF representation 𝐹𝜇 is ideal for specification: it
concisely describes 𝜇 in terms of a univariate real function. On the other hand, a random variable

representation 𝑋𝜇 is ideal for generation: it describes a procedure for producing 𝜇-distributed

random variates. We next define random-variate generators, which are computable, finite-resource

analogues of random variables that do not require infinite memory or computation over the reals.
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10

0 1

1

0 1

𝑋 : {0, 1}∗ ⇀ {0, 1}
{0 ↦→ 1, 10 ↦→ 0, 11 ↦→ 1}

1

0

0 1

0 1

𝑋 : {0, 1}∗ ⇀ {0, 1}
{1 ↦→ 1, 01 ↦→ 0, 00𝑏 ↦→ 𝑋 (𝑏)}

0010

0 1

0100

0 1

0 1

𝑋 : {0, 1}∗ ⇀ {0, 1}2
{00 ↦→ 00, 01 ↦→ 01, 10 ↦→ 10, 11 ↦→ 00}

Fig. 3. Three random variate generators represented as discrete distribution generating (DDG) trees. The 0/1

labels along the edges are omitted from the tree diagrams going forward.

Definition 3.5. A random variate generator 𝑋 : {0, 1}∗ ⇀ {0, 1}𝑛 is a partial map from the set of

all finite-length binary strings to 𝑛-bit binary strings such that the following two conditions hold:

Prefix-Free: 𝑢 ∈ dom(𝑋 ) =⇒ 𝑢{0, 1}+ ∉ dom(𝑋 ); Exhaustive:

∑
𝑢∈dom(𝑋 ) 2

−|𝑢 | = 1. « (3.1)

Proposition 3.6. A random variate generator 𝑋 describes a random variable 𝑋𝛾 : [0, 1] → R over
at most 2

𝑛 values, where Pr(𝑋𝛾 = 𝑥) = ∑
𝑢∈dom(𝑋 ) 2

−|𝑢 |1[𝛾 (𝑋 (𝑢)) = 𝑥] for any 𝛾 : {0, 1}𝑛 → R. «

Def. 3.5 corresponds to the “discrete distribution generating” (DDG) trees from Knuth and Yao

[37; Section 2]. Any random variate generator can be drawn as a tree where leaves have labels in

{0, 1}𝑛 and branches correspond to the decision on the next 0 or 1 input bit (Fig. 3).

Definition 3.7. The entropy cost of a random variate generator 𝑋 is a random variable 𝐶 over N
measuring the number of bits consumed, with Pr(𝐶 = 𝑐) = ∑

𝑢∈dom(𝑋 ) 1[|𝑢 | = 𝑐]2−𝑐 for 𝑐 ≥ 0. «

Definition 3.8. A concise binary expansion of a real number 𝑥 is a binary representation that does

not end in an infinite string of 1s. Binary expansions hereon are always concise. «

Theorem 3.9 (Knuth and Yao [37]). Let 𝑝 B {ℓ1 ↦→ 𝑝1, . . . , ℓ𝑚 ↦→ 𝑝𝑚} be a discrete probability
distribution over𝑚 ≥ 1 outcomes ℓ1, . . . , ℓ𝑚 . Write the binary expansions as 𝑝𝑖 = (𝑝𝑖0 .𝑝𝑖1𝑝𝑖2 . . . )2 for
𝑖 = 1, . . . ,𝑚. A random variate generator 𝑋 for 𝑝 has minimal expected entropy cost E[𝐶] (i.e., it is
“entropy-optimal”) if and only if its DDG tree contains exactly 𝑝𝑖 𝑗 leaf nodes labeled ℓ𝑖 at depth 𝑗 ≥ 0.
Further, 𝐻 (𝑝) ≤ E[𝐶] < 𝐻 (𝑝) + 2, where 𝐻 (𝑝) B ∑𝑚

𝑖=1
−𝑝𝑖 log

2
(𝑝𝑖 ) is the Shannon entropy of 𝑝 . «

Example 3.10. In Fig. 3, the first two DDG trees show entropy-optimal generators for 𝑝 = {0 ↦→
(0.01)2, 1 ↦→ (0.11)2} and 𝑝 = {0 ↦→ (0.01)2, 1 ↦→ (0.10)2}. The third DDG tree is an entropy-

suboptimal generator for 𝑝 = {00 ↦→ (0.10)2, 01 ↦→ (0.01)2, 10 ↦→ (0.01)2}. «

4 Exact Random Variate Generators for Binary-Coded Probability Distributions
Since the size of a DDG tree is lower bounded by the number𝑚 of discrete outcomes, explicitly

constructing entropy-optimal DDG trees using Theorem 3.9 is computationally intractable whenever

𝑚 is combinatorially large. For example, a discrete distribution with full support over all IEEE-754

double-precision floats has𝑚 = 2
64
outcomes. To address this challenge, we introduce binary-coded

probability distributions, which are a universal mathematical representation for lazily describing

any computable probability measure over the reals. This powerful abstraction lets us develop

entropy-optimal random variate generation algorithms that avoid the combinatorial explosion in

the DDG tree size. The “idealized” algorithms in this section will be specialized in §5 and §6 to obtain

efficient software implementations of random variate generators on finite-precision computers.

Definition 4.1. A binary-coded probability distribution is a map 𝑝 : {0, 1}∗ → [0, 1] such that

𝑝 (𝜀) = 1 and 𝑝 (𝑏1 . . . 𝑏 𝑗 ) = 𝑝 (𝑏1 . . . 𝑏 𝑗0) + 𝑝 (𝑏1 . . . 𝑏 𝑗1) for all 𝑗 ≥ 1 and 𝑏1, . . . , 𝑏 𝑗 ∈ {0, 1}. «

A binary-coded probability distribution 𝑝 defines a family of discrete probability distributions

𝑝𝑛 B {𝑏 ↦→𝑝 (𝑏) | 𝑏 ∈ {0, 1}𝑛} (4.1)

over {0, 1}𝑛 (𝑛 ≥ 0). For example, 𝑝 (00) = 0.5; 𝑝 (01) = 0.2;𝑝 (10) = 0.1;𝑝 (11) = 0.2 defines the

distributions 𝑝1 B {0 ↦→ 0.7, 1 ↦→ 0.3}, 𝑝2 B {00 ↦→ 0.5, 01 ↦→ 0.2, 10 ↦→ 0.1, 11 ↦→ 0.2}.
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0
. . .

Original Tree (𝐵1 )

1
0

1

01
. . .

Refined Tree (𝐵1𝐵2 )

(a) Refining a node into a leaf. After refinement,

01 is returned using zero additional flips.

1
0

1

0
. . .

Original Tree (𝐵1 )

1
0

11100
. . .

Refined Tree (𝐵1𝐵2 )

(b) Refining a node into a subtree. After refinement, 10

or 11 is returned using one additional flip.

Fig. 4. Dynamically refining the leaves of an optimal DDG tree for lazy random variate generation.
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Binary-coded probability distributions also correspond to

probability measures over {0, 1}N ≡ R [6; Lemma 7.1.2]. The

plot to the right shows this idea for a CDF 𝐹 over [1, 3]. Each bi-
nary string 𝑏 defines an interval [𝑥1 (𝑏), 𝑥2 (𝑏)] ⊂ [1, 3], where
𝑝 (𝑏) = 𝐹 (𝑥2 (𝑏)) − 𝐹 (𝑥1 (𝑏)) is its probability under 𝐹 , e.g.,

𝑝 (01) = 𝐹 (8/4) − 𝐹 (6/4). The same idea holds for unbounded

domains, by using binary-coded partitions of R [37; §3].

4.1 Entropy-Suboptimal Generation
Before considering optimal algorithms, an entropy-suboptimal

baseline for generating a random string (𝐵1, 𝐵2, . . . ) ∼𝑝 is

conditional bit sampling [58; §II.B]. This method generates

one bit at a time by using the chain rule of probability, i.e.,

𝐵1 ∼Bernoulli(𝑝 (1)), 𝐵2 |𝐵1 ∼Bernoulli(𝑝 (𝐵11)/𝑝 (𝐵1)), etc.

However, as generating each 𝐵𝑛 requires roughly two random bits in expectation (Appendix A.1),

conditional bit sampling is entropy-inefficient, consuming roughly 2𝑛 more bits than an entropy-

optimal sampler for generating a length-𝑛 bit string in the worst case (Prop. A.3). A second challenge

is the high computational cost of computing the conditional probabilities during generation. The

conditional bit sampling baseline is presented and analyzed in Appendix A; and evaluated in §7.

4.2 Entropy-Optimal Generation
Our approach to efficiently sampling from a binary-coded probability distribution 𝑝 is based on

the idea of lazily refining a DDG tree. The key idea is as follows: we first generate 𝐵1 using an

entropy-optimal DDG tree 𝑇1 for {0 ↦→ 𝑝 (0), 1 ↦→ 𝑝 (1)}, which corresponds to arriving at a leaf

node 𝑥 at𝑇1. Rather than generated by 𝐵2 |𝐵1 as in the chain rule (§4.1), 𝐵2 is instead determined by

expanding a subtree under the leaf node 𝑥 of 𝑇1. This subtree is a fragment of an entropy-optimal

DDG tree𝑇2 for {00 ↦→ 𝑝 (00), 01 ↦→ 𝑝 (01), 10 ↦→ 𝑝 (10), 11 ↦→ 𝑝 (11)}. Repeating this process allows
us to efficiently explore a single, linear-memory path without building an exponentially large DDG

tree 𝑇𝑛 over {0, 1}𝑛 . Figure 4 shows two examples of refinement, where diagrams labeled “Original

Tree” show an entropy-optimal DDG tree 𝑇1 for 𝐵1 ∼ Bernoulli(2/3). Blue arrowed edges show a

random execution path. When halting at a leaf (red) in the Original Tree (i.e., 𝐵1 = 𝑏1 is determined),

the leaf is refined into a new subtree whose leaves are outcomes of 𝐵1𝐵2 with 𝐵1 = 𝑏1. The refined

subtree could be a leaf (Fig. 4a) or branch (Fig. 4b) node. While exactly one leaf in 𝑇1 is refined in a

given execution, refining every leaf of 𝑇1 produces an entropy-optimal tree 𝑇2 for 𝐵1𝐵2.

Algorithm 1 presents an entropy-optimal generator for a binary-coded probability distribution 𝑝

that uses refinement to efficiently traverse an infinite-size DDG tree. The algorithm itself recurses

infinitely, generating a fresh bit of the random stream 𝑏 ∼ 𝑝 at each step. At the 𝑛th recursive

call, the leaf node selected in the optimal tree for 𝑝𝑛−1 over {0, 1}𝑛−1
is refined into an optimal
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Algorithm 1 Optimal Generation

Input: Binary-coded probability distribution

𝑝 : {0, 1}∗ → [0, 1], cf. Def. 4.1
String 𝑏 ∈ {0, 1}∗ generated so far

#Flips ℓ ≥ 0 consumed so far

Output: Random bitstream 𝑏 drawn from 𝑝 ,

i.e., 𝑏1 . . . 𝑏𝑛 ∼ 𝑝𝑛 (𝑛 ≥ 0)
1: function GenOpt(𝑝 , 𝑏 = 𝜀, ℓ = 0)

2: if [𝑝 (𝑏0)]ℓ = 1 ∧ [𝑝 (𝑏1)]ℓ = 0 ⊲ Leaf
3: return GenOpt(𝑝, 𝑏0, ℓ) ⊲ 0
4: if [𝑝 (𝑏0)]ℓ = 0 ∧ [𝑝 (𝑏1)]ℓ = 1 ⊲ Leaf
5: return GenOpt(𝑝, 𝑏1, ℓ) ⊲ 1
6: while true do ⊲ Refine Subtree
7: 𝑥 ← RandBit(); ℓ ← ℓ + 1

8: if 𝑥 = 0 ∧ [𝑝 (𝑏0)]ℓ = 1 ⊲ Leaf
9: return GenOpt(𝑝,𝑏0, ℓ) ⊲ 0
10: if 𝑥 = 1 ∧ [𝑝 (𝑏1)]ℓ = 1 ⊲ Leaf
11: return GenOpt(𝑝,𝑏1, ℓ) ⊲ 1

(a) A binary-coded probability distribution 𝑝 unrolled to

four bits, giving a discrete distribution over {0, 1}4.
0000 ↦→ 6

137
0001 ↦→ 12

137
0010 ↦→ 13

137
0011 ↦→ 9

137

0100 ↦→ 10

137
0101 ↦→ 12

137
0110 ↦→ 6

137
0111 ↦→ 1

137

1000 ↦→ 1

137
1001 ↦→ 2

137
1010 ↦→ 13

137
1011 ↦→ 8

137

1100 ↦→ 14

137
1101 ↦→ 13

137
1110 ↦→ 7

137
1111 ↦→ 10

137




(b) A trace of Algorithm 1 on the distribution 𝑝 from (a).

Recur. RandBit𝑥

Level Probabilities 1 0 1 1 0 Output 𝑏

0

𝑝 (0) =
69

137
= 0. 1 0 0 0 0

𝑝 (1) =
68

137
= 0. 0 1 1 1 1 1

1

𝑝 (10) =
24

137
= 0. 0 0 1 0 1 0

𝑝 (11) =
44

137
= 0. 0 1 0 1 0

2

𝑝 (100) =
3

137
= 0. 0 0 0 0 0

𝑝 (101) =
21

137
= 0. 0 0 1 0 0 1

3

𝑝 (1010) = 13

137
= 0. 0 0 0 1 1 0

𝑝 (1011) = 8

137
= 0. 0 0 0 0 1

1

1

1

1
. . .

0

Original Tree (𝐵1)

1

10

1

1
. . .

0

Refined Tree (𝐵1𝐵2)

1

10

1

1
. . .

0

Original Tree (𝐵1𝐵2)

1

101

1

1
. . .

0

Refined Tree (𝐵1𝐵2𝐵3)

1

101

1

1
. . .

0

Original Tree (𝐵1𝐵2𝐵3)

1

10111010

10101

1
. . .

0

Refined Tree (𝐵1𝐵2𝐵3𝐵4)

1

10111010

10101

1
. . .

0

Original Tree (𝐵1𝐵2𝐵3𝐵4)

. . .

Recursion

Level 0:

Recursion

Level 1:

Recursion

Level 2:

Recursion

Level 3:

Refine

Refine

Refine

(c) DDG trees that Algorithm 1 explores for the example trace in (b).

Fig. 5. Entropy-optimal generation for a binary-coded probability distribution 𝑝 : {0, 1}∗ → [0, 1]. In
Algorithm 1, the parameter𝑏 (defaulted to the empty string, 𝜀) denotes a string that stores the bits generated so

far, and ℓ counts the number of calls to RandBit. The notation [𝑧]𝑖 denotes the 𝑖th bit in 𝑧 = (𝑧0 .𝑧1𝑧2𝑧3 . . .)2 ∈
[0, 1]. In the sample trace (b), a blue bit denotes a RandBit that creates a new recursive call; a yellow bit

indicates the selected leaf in the DDG tree; and a pink bit is the label of that leaf, which is appended to 𝑏.

Gray bits are not visited in this execution, as the algorithm lazily explores a single path through the DDG tree.
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subtree for 𝑝𝑛 . Lines 2–5 occur when the refined subtree is a leaf (cf. Fig. 4a). Lines 6–11 occur

when the refined subtree is not a leaf (cf. Fig. 4b). The trees are such that a leaf labeled 0 (resp. 1) is

always a left (resp. right) child, which is visited when 𝑥 = 0 (resp. 𝑥 = 1). The algorithm is readily

implementable using lazy computation with guarded recursive calls (Listing 3 in Appendix C).

Figure 5b shows an example trace of Algorithm 1 on input 𝑝 from Fig. 5a. Figure 5c shows how

this example trace corresponds to a lazy exploration of an infinite-size optimal DDG tree. Each row

shows the original tree to be explored at the start of each recursive call and the refined tree to be

explored at the next recursion. For the original trees (Fig. 5c, left column), black edges and nodes

show the subtree to be explored at the current recursion level. Inactive paths that were considered

previously are shown in gray. Blue edges and red-boxed nodes denote the edges and leaves explored

and chosen by Algorithm 1, using the outputs of RandBit from Fig. 5b. For refined trees (Fig. 5c,

right column), red edges and red-labeled nodes denote the outcome of refining the red-boxed node

in the original tree on the left, which will be explored at the next recursion. Algorithm 1 only ever

constructs the blue edges and red-boxed nodes in Fig. 5c: the rest are shown for illustration.

The following results formally justify the correctness and entropy-optimality of Algorithm 1.

Theorem 4.2. Let 𝑧, 𝑥,𝑦 ∈ [0, 1] satisfy 𝑧 = 𝑥 + 𝑦. Suppose ℓ ≥ 0 is any index such that 𝑧ℓ = 1

and 𝑧 𝑗 = 0 for all 𝑗 > ℓ , where 𝑧 = (𝑧0.𝑧1𝑧2 . . .)2, 𝑥 = (𝑥0.𝑥1𝑥2 . . .)2 and 𝑦 = (𝑦0.𝑦1𝑦2 . . .)2 are concise
binary expansions. The binary expansions of 𝑥 and 𝑦 match exactly one of the following patterns:[

0 1

1 0

] [
0

0

]∞
(Pattern 4.2.1)

+

[
𝑥ℓ . . . 𝑥ℓ ′ . . .

𝑦ℓ . . . 𝑦ℓ ′ . . .

]
=

[
0 1

0 1

] [
0 1

1 0

]∗ [
1

1

] [
0

0

]∞
(Pattern 4.2.2)[

0 1

0 1

] [
0 1

1 0

]∗
(Pattern 4.2.3)

= 𝑧ℓ . . . 𝑧ℓ ′ . . . = 1 0 . . . 0 . . .


(4.2)

Here, each pattern is written in the style of regular expressions: [𝑅 | 𝑅′] denotes either 𝑅 or 𝑅′, [𝑅]∗
denotes zero or more occurrences of 𝑅, and [𝑅]∞ denotes the infinite occurrences of 𝑅. «

Corollary 4.3. When refining the deepest node in an entropy-optimal DDG tree with label 𝑏 at a
level ℓ , there are three mutually exclusive and collectively exhaustive possibilities (where 𝑥,𝑦 ∈ {0, 1}):

Original Tree

𝑏
. . . ℓ

Refined Tree

(Leaf)

𝑏𝑥. . . ℓ

Refined Tree

(Finite Subtree)

𝑏𝑥
𝑏𝑦. . .

𝑏0𝑏1

. . .
ℓ

Refined Tree

(Infinite Subtree)

𝑏𝑥
𝑏𝑦. . .

. . .
ℓ

Refine

(By Pattern 4.2.3)(By Pattern 4.2.2)(By Pattern 4.2.1)
«

Theorem 4.4. Let 𝑧, 𝑥,𝑦 ∈ [0, 1] satisfy 𝑧 = 𝑥 + 𝑦. Suppose 0 ≤ ℓ < ℓ ′ are two indexes such that
𝑧ℓ = 1, 𝑧ℓ ′ = 1 and 𝑧 𝑗 = 0 for ℓ + 1 ≤ 𝑗 ≤ ℓ ′ − 1, where 𝑧 𝑗 , 𝑥 𝑗 and 𝑦 𝑗 are defined as in Theorem 4.2. The
binary expansions of 𝑥 and 𝑦 between locations ℓ and ℓ ′ match exactly one of three possible patterns:[

0 1

1 0

] [
0

0

]ℓ ′−ℓ−1
[
0 0 1

0 1 0

]
(Pattern 4.3.1)

+

[
𝑥ℓ . . . 𝑥ℓ ′

𝑦ℓ . . . 𝑦ℓ ′

]
=

[
0 1

0 1

] [
0 1

1 0

]ℓ ′−ℓ−1
[
1

1

]
(Pattern 4.3.2)[

0 1

0 1

] [
0 1

1 0

]𝑘1
[
1

1

] [
0

0

]𝑘2
[
0 0 1

0 1 0

]
where 𝑘1 + 𝑘2 = ℓ ′ − ℓ − 2

(Pattern 4.3.3)

= 𝑧ℓ . . . 𝑧ℓ ′ = 1 0 . . . 0 1 «


(4.3)
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Corollary 4.5. Consider the process of refining a node labeled 𝑏 at level ℓ in an entropy-optimal
DDG tree, such that there also exists a node labeled 𝑏 at some level ℓ ′ > ℓ . There exists an entropy-
optimal refinement scheme such that

Optimal DDG Tree

. . .

𝑏. . .

. . .𝑏

𝑏 ℓ

ℓ̄

ℓ ′
ℓ ′′

• If the binary expansions satisfy [𝑝 (𝑏0)]ℓ [𝑝 (𝑏1)]ℓ ∈ {01, 10}, then the node
𝑏 at level ℓ is refined into a leaf node.
• If [𝑝 (𝑏0)]ℓ [𝑝 (𝑏1)]ℓ ∈ {00, 11}, then the node 𝑏 at level ℓ is refined into a
subtree that terminates with a pair of nodes labeled (𝑏0, 𝑏1) at some level
ℓ ′′ ∈ [ℓ + 1, ℓ ′]. All levels of this subtree above ℓ ′′ have precisely one node.
• If [𝑝 (𝑏0)]ℓ [𝑝 (𝑏1)]ℓ ∈ {11}, then the corresponding nodes in the DDG tree
labeled 𝑏0 and 𝑏1 correspond to leaves of the subtree obtained by refining a
previous node labeled 𝑏 at some previous level ℓ̄ < ℓ . Therefore, these bits at
location ℓ can be ignored when refining the node 𝑏 at level ℓ . «

Theorem 4.6. Let 𝑝 : {0, 1}∗ → [0, 1] be a binary-coded probability distribution. For each 𝑛 ∈ N,
Algorithm 1 generates a string 𝐵1 . . . 𝐵𝑛 ∼ 𝑝𝑛 (stored as a prefix of 𝑏) and is entropy-optimal for 𝑝𝑛 . «

Theorem 4.6 states the entropy-optimality—and, a fortiori, the soundness—of Algorithm 1. This

result rests on two number theoretic properties (Theorems 4.2 and 4.4) for binary expansions of

real numbers. Cors. 4.3 and 4.5 demonstrate what these theorems imply about the structure of

refined entropy-optimal DDG trees explored by Algorithm 1, which are used to prove Theorem 4.6.

Theorem 4.2 and Cor. 4.3 justify the correctness of Algorithm 1 when the current node is the deepest

leaf in the tree with label 𝑏. Pattern 4.2.1 corresponds to the early exit in lines 2–5, which do not

require any new flips. Patterns 4.2.2 and 4.2.3 correspond to the while-loop, showing there will

always be precisely one leaf node at each iteration. Therefore, each iteration exits with probability

1/2, and the while-loop terminates almost surely. Theorem 4.4 and Cor. 4.5 justify the correctness

when the current node is not the deepest leaf labeled 𝑏. Pattern 4.3.1 corresponds to the early exit

in lines 2–5. Patterns 4.3.2 and 4.3.3 correspond to the while-loop, whose number of iterations is

bounded by the number of levels in the tree until reaching the next leaf labeled 𝑏.

Remark 4.7. Algorithm 1 can be viewed as an optimized version of the original Knuth and Yao

method that achieves optimal space-time complexity for refining entropy-optimal DDG trees.

• Knuth and Yao [37; page 384] describe a nondeterministic procedure for refining entropy-

optimal DDG trees. The Knuth and Yao method explicitly constructs a full DDG tree at each

refinement step. When refining a leaf node 𝑥 with label 𝑏 at level ℓ , the method

(i) performs a preprocessing step that refines all the leaf nodes labeled 𝑏 above ℓ ; then

(ii) expands all the possible execution paths starting from the new subtree rooted at 𝑥 .

Each such refinement step takes 𝑂 (ℓ ′) time and creates 𝑂 (ℓ ′) leaf nodes, where ℓ ′ is the
height of a resulting DDG tree. Therefore, the Knuth and Yao method requires 𝑂 (𝑘2) time

and 𝑂 (𝑘2) space to construct a refined entropy-optimal DDG tree of height 𝑘 .

• Algorithm 1 is a more efficient method that does not explicitly construct full DDG trees. It

(i) performs no preprocessing (i.e, avoids refining leaf nodes higher up in the tree); and

(ii) lazily explores only a single path down the subtree rooted at 𝑥 .

Algorithm 1 requires 𝑂 (𝑘) time and 𝑂 (1) space to explore a single path in a refined entropy-

optimal DDG tree of height 𝑘 ; achieving optimal space-time complexity. Cors. 4.3 and 4.5

enable this optimality, by identifying a class of refined entropy-optimal DDG trees that have

certain “nice” properties which Algorithm 1 exploits for efficient and lazy exploration.

The Knuth and Yao algorithm is nondeterministic: it can construct any refined entropy-optimal

DDG tree [37; page 385]. In contrast, Algorithm 1 is deterministic: it can explore only some of these
trees, because not every refined entropy-optimal DDG tree satisfies Cor. 4.5 (cf. Fig. 6). «
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Original Tree

0

0

01

Refined Tree

(Possibility 1)

01

01

0100

00

001

Refined Tree

(Possibility 2)

0100

01

0100

001

Refined Tree

(Possibility 3)

0100

0100

0100

1

Fig. 6. Three possible DDG tree refinements for outcome 0 in a binary-coded probability distribution with

𝑝 (0) = (0.111)2, 𝑝 (1) = (0.001)2, and 𝑝 (00) = 𝑝 (01) = (0.0111)2. The nondeterministic method of Knuth and

Yao [37] can explore any of these possibilities, with 𝑂 (𝑘2) space and time complexity for building a depth-𝑘

refined tree. The deterministic method in Algorithm 1, based on Cors. 4.3 and 4.5, deterministically refines a

path in a tree whose structure follows that of Possibility 3, with 𝑂 (𝑘) time and 𝑂 (1) space complexity.

5 Exact Random Variate Generators for Numerical Cumulative Distribution Functions
This section describes an implementation of Algorithm 1 for exact random variate generation using

finite-precision computation. The main algorithm, presented in §5.3, rests on two connections. The

first (in §5.1) is between binary strings and a novel unifying abstraction for finite-precision binary

number formats (Def. 5.2). The second (in §5.2) is between binary-coded probability distributions

(Def. 4.1) and numerical implementations of cumulative distribution functions (Def. 5.10).

5.1 Finite-Precision Binary Number Formats
Definition 5.1. The set of extended reals is defined by

−

R B R ∪ {−∞, +∞,⊥}, where ⊥ denotes

some “special” value (e.g., NaN in floating-point formats). A strict linear order <−R over
−

R is given

by 𝑥 <−R 𝑥
′
and −∞ <−R 𝑥 <−R +∞ <−R ⊥ for all 𝑥, 𝑥 ′ ∈ R with 𝑥 <R 𝑥

′
; i.e., ⊥ is the largest value. A

weak linear order ≤−R over
−

R is defined as usual: 𝑥 ≤−R 𝑥 ′ if and only if 𝑥 = 𝑥 ′ or 𝑥 <−R 𝑥
′
. «

Definition 5.2. A binary number format B B (𝑛,𝛾B, 𝜙B) is a 3-tuple:
• 𝑛 ≥ 1 is an integer indicating the number of binary digits in each bit string 𝑏 ∈ {0, 1}𝑛 ;
• 𝛾B : {0, 1}𝑛 →−

RB is a mapping from 𝑛-bit strings onto a subset
−

RB ⊂
−

R of computable reals;

• 𝜙B : {0, 1}𝑛 → {0, 1}𝑛 is a bijection such that 𝑏 <dict 𝑏
′
implies 𝛾B (𝜙B (𝑏)) ≤−R 𝛾B (𝜙B (𝑏′)),

where <dict denotes the dictionary (i.e., lexicographic) ordering on {0, 1}𝑛 . «

With slight abuse of notation, the set
−

RB of reals in Def. 5.2 is sometimes also denoted by B.

Remark 5.3. For a binary number format B, the bijection 𝜙B defines an ordering <B on {0, 1}𝑛 .
In particular, equipping the domain of 𝜙B with the dictionary ordering <dict gives a strict linear

order <B over {0, 1}𝑛 and a weak linear order over
−

RB ⊂
−

R:

𝜙B (0𝑛) <B 𝜙B (0𝑛−1
1) <B · · · <B 𝜙B (1𝑛−1

0) <B 𝜙B (1𝑛), (5.1)

𝛾B (𝜙B (0𝑛)) ≤−R 𝛾B (𝜙B (0𝑛−1
1)) ≤−R · · · ≤−R 𝛾B (𝜙B (1𝑛−1

0)) ≤−R 𝛾B (𝜙B (1𝑛)). (5.2)

The predecessor and successor of a non-extremal value 𝑏 ∈ {0, 1}𝑛 under ordering (5.1) are denoted
by predB (𝑏) and succB (𝑏). Similarly, predB (𝑥) and succB (𝑥) for 𝑥 ∈

−

RB are used for (5.2). «

Example 5.4 (Integer Formats: Unsigned U𝑛 , Sign-MagnitudeM𝑛 , and Two’s-Complement T𝑛).
U𝑛 B (𝑛,𝛾U𝑛 , 𝜙U𝑛 ) 𝛾U𝑛 (𝑏𝑛−1 . . . 𝑏0) B

∑𝑛−1

𝑗=0
2
𝑗𝑏 𝑗 𝜙U𝑛 (𝑏𝑛−1 . . . 𝑏0) B 𝑏𝑛−1 . . . 𝑏0

M𝑛 B (𝑛 + 1, 𝛾M𝑛
, 𝜙M𝑛

) 𝛾M𝑛
(𝑠𝑏𝑛−1 . . . 𝑏0) B (−1)𝑠 ×∑𝑛−1

𝑗=0
2
𝑗𝑏 𝑗 𝜙M𝑛

(0𝑏1 . . . 𝑏𝑛) B 1
¯𝑏1 . . . ¯𝑏𝑛

𝜙M𝑛
(1𝑏1 . . . 𝑏𝑛) B 0𝑏1 . . . 𝑏𝑛

T𝑛 B (𝑛 + 1, 𝛾T𝑛 , 𝜙T𝑛 ) 𝛾T𝑛 (𝑠𝑏𝑛−1 . . . 𝑏0) B −𝑠2𝑛 +
∑𝑛−1

𝑗=0
2
𝑗𝑏 𝑗 𝜙T𝑛 (0𝑏1 . . . 𝑏𝑛) B 1𝑏1 . . . 𝑏𝑛

𝜙T𝑛 (1𝑏1 . . . 𝑏𝑛) B 0𝑏1 . . . 𝑏𝑛
«
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Example 5.5 (Fixed-Point Formats). The unsigned fixed-point format U𝑚𝑛 B (𝑛,𝛾U𝑚𝑛 , 𝜙U𝑚𝑛 ) (pa-
rameterized by offset 𝑚 ∈ Z) has 𝛾U𝑚𝑛 (𝑏𝑛−1 . . . 𝑏0) B 2

−𝑚𝛾U𝑛 (𝑏𝑛−1 . . . 𝑏0) and 𝜙U𝑚𝑛 B id. The

sign-magnitudeM𝑚𝑛 and two’s-complement T𝑚𝑛 fixed-point formats are defined analogously. «

Example 5.6 (Floating-Point Formats [34]). The IEEE-754 floating-point format F𝐸𝑚 B (1 + 𝐸 +
𝑚,𝛾F𝐸𝑚 , 𝜙F𝐸𝑚 ) is comprised of 𝑛-bit strings, where 𝐸 ≥ 1 is the number of exponent bits,𝑚 ≥ 1 the

number of mantissa bits, and the leading bit is a sign bit. Letting𝑏𝐸 B 2
𝐸−1−1 be the “exponent bias”,

𝛾F𝐸𝑚 (𝑠0
𝐸 𝑓1 . . . 𝑓𝑚) B (−1)𝑠 (0.𝑓1 . . . 𝑓𝑚)2 × 2

1−𝑏𝐸 , 𝛾F𝐸𝑚 (𝑠1
𝐸 𝑓1 . . . 𝑓𝑚) B ⊥, (5.3)

𝛾F𝐸𝑚 (𝑠𝑒𝐸 . . . 𝑒1 𝑓1 . . . 𝑓𝑚) B (−1)𝑠 (1.𝑓1 . . . 𝑓𝑚)2 × 2
(𝑒𝐸 ...𝑒1 )2−𝑏𝐸 , 𝛾F𝐸𝑚 (𝑠1

𝐸
0
𝑚) B (−1)𝑠∞. (5.4)

There are two bit-string representations for 0 ∈ −R, 00
𝐸+𝑚

and 10
𝐸+𝑚

, which are referred to as positive

zero and negative zero, respectively. The bijection 𝜙F𝐸𝑚 is similar to that of the sign-magnitude

formatM𝑛 , with an offset to ensure that all strings mapping to ⊥ are maximal
5
:

𝜙F𝐸𝑚 (𝑏0𝑏1 . . . 𝑏𝑛−1) B
{
𝜙M𝐸+𝑚

(
(𝑏0𝑏1 . . . 𝑏𝑛−1)2 + (2𝑚 − 1)

)
if 𝑏0 . . . 𝑏𝑛−1 ≤dict 11

𝐸
0
𝑚

𝑏0𝑏1 . . . 𝑏𝑛−1 otherwise. «

(5.5)

Example 5.7. The following diagram is an example format B, corresponding to F1

1
in Example 5.6.

({0, 1}3,<
dict
)

000 001 010 011 100 101 110 111

110 101 100 000 001 010 011 111

({0, 1}3,<B )

(−R,<−R )

𝜙B

𝛾B

−∞ -1 0 1 +∞ ⊥
«

Proposition 5.8. The ordering <F𝐸𝑚 induced by 𝜙F𝐸𝑚 (5.5) guarantees that 𝛾F𝐸𝑚 : ({0, 1}𝑛, <F𝐸𝑚 ) →
(−R, <−R) is monotonic. That is, for any distinct 𝑏,𝑏′ ∈ {0, 1}1+𝐸+𝑚 such that 𝛾F𝐸𝑚 ({𝑏, 𝑏

′}) ∉ {{0}, {⊥}},
the following are equivalent: 𝜙−1

F𝐸𝑚
(𝑏) <dict 𝜙

−1

F𝐸𝑚
(𝑏′) ⇐⇒ 𝑏 <F𝐸𝑚 𝑏′ ⇐⇒ 𝛾F𝐸𝑚 (𝑏) <−R 𝛾F𝐸𝑚 (𝑏

′) . «

Example 5.9 (Posit Format [49]). The posit format P𝑛 B (𝑛,𝛾P𝑛 , 𝜙P𝑛 ) is comprised of 𝑛-bit strings

(𝑛 ≥ 3). The first bit 𝑠 is the sign field. The next 𝑘 + 1 bits form a variable-length regime field

(1 ≤ 𝑘 ≤ 𝑛 − 2) where 𝑏1 = · · · = 𝑏𝑘 , 𝑏𝑘+1 = ¯𝑏1. The next two bits 𝑒1𝑒0 form an exponent field. The

last bits 𝑓1 . . . 𝑓𝑚 form a fraction field. The real mapping has 𝛾P𝑛 (00
𝑛−1) B 0, 𝛾P𝑛 (10

𝑛−1) B −∞, and

𝛾P𝑛 (𝑠𝑏1 . . . 𝑏𝑘𝑏𝑘+1𝑒1𝑒0 𝑓1 . . . 𝑓𝑚) B
(
(1−3𝑠)+(0.𝑓1 . . . 𝑓𝑚)2

)
2
(1−2𝑠 ) · (4(−𝑘 (1−𝑏1 )+(𝑘−1)𝑏1 )+(𝑒1𝑒0 )2+𝑠 ). (5.6)

If the 𝑛-bit field is not wide enough to represent some exponent or fraction bits, these bits are zero.

The mapping 𝜙P𝑛 B 𝜙T𝑛 is identical to that of the two’s-complement format from Example 5.4. «

5.2 Finite-Precision Cumulative Distribution Functions
Definition 5.10. Let B= (𝑛,𝛾B, 𝜙B) be any binary number format and 𝐸,𝑚 the parameters of a

floating-point format F𝐸𝑚 . A finite-precision cumulative distribution function 𝐹 : {0, 1}𝑛 → F𝐸𝑚∩ [0, 1]
over B is a nondecreasing mapping with 𝐹 (𝜙B (1𝑛)) = 1 and 𝑏 <B 𝑏

′ =⇒ 𝐹 (𝑏) ≤ 𝐹 (𝑏′). A finite-
precision survival function 𝑆 : {0, 1}𝑛 → F𝐸𝑚 ∩ [0, 1] over B is a nonincreasing mapping with

𝑆 (𝜙B (1𝑛)) = 0 and 𝑏 <B 𝑏
′ =⇒ 𝑆 (𝑏′) ≤ 𝑆 (𝑏). «

Lines 6–7 of Listing 1 show examples of a finite-precision CDF and SF, respectively. While

Def. 5.10 assumes that 𝐹 returns IEEE-754 floats, formats such as fixed-points (Example 5.5) and

posits (Example 5.9) are also possible. The next remarks state properties of a finite-precision CDF.

5
The IEEE-754 floating-point standard treats NaN (⊥) bit patterns as unordered, whereas (5.5) treats them all identically and

as a maximal element to obtain a well-defined CDF. Alternative orderings of these bit patterns are possible.
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Remark 5.11. Every finite-precision CDF 𝐹 defines a discrete distribution 𝑃𝐹 : {0, 1}𝑛 → [0, 1],
where 𝑃𝐹 (𝑏) B 𝐹 (𝑏) − 𝐹 (predB (𝑏)), with the convention that 𝐹 (predB (𝜙B (0𝑛))) B 0. Recall that

directly constructing an entropy-optimal DDG tree for 𝑃𝐹 is infeasible if it has Θ(2𝑛) leaves. «

Remark 5.12. Every finite-precision CDF 𝐹 : {0, 1}𝑛 → F𝐸𝑚 ∩ [0, 1] over a binary number format

B can be lifted to a CDF 𝐹 :
−

R → [0, 1] over −R, where 𝐹 (𝑥) B 𝐹 (rndB,↓ (𝑥)) and rndB,↓ (𝑥) B
max<B {𝑏 ∈ {0, 1}𝑛 | 𝛾B (𝑏) ≤−R 𝑥}. Remark 5.3 confirms 𝐹 is monotonic and right-continuous. «

The next result connects binary-coded probability distributions (Def. 4.1) with finite-precision

CDFs (Def. 5.10), which enables the finite-precision specialization of Algorithm 1 in §5.3.

Proposition 5.13. Let 𝐹 : {0, 1}𝑛 → F𝐸𝑚 ∩ [0, 1] be a CDF over the unsigned integer format U𝑛
and 𝑃𝐹 the corresponding discrete distribution from Remark 5.11. The function 𝑝𝐹 : {0, 1}∗ → [0, 1]
defined below is a binary-coded probability distribution that satisfies 𝑝𝐹 (𝑏) = 𝑃𝐹 (𝑏) for all 𝑏 ∈ {0, 1}𝑛 :

𝑝𝐹 (𝑏) B 𝐹 (𝑏1
𝑛−|𝑏 | ) −R 𝐹 ((𝑏0

𝑛−|𝑏 | )−) (𝑏 ∈ {0, 1}≤𝑛), (5.7)

𝑝𝐹 (𝑏𝑏′) B 𝑝𝐹 (𝑏)1[𝑏′ = 0 . . . 0] (𝑏 ∈ {0, 1}𝑛 ;𝑏′ ∈ {0, 1}+), (5.8)

where 𝑥− B pred
dict
(𝑥) for any 𝑥 ∈ {0, 1}𝑛 \ {0𝑛}, with the convention that 𝐹 ((0𝑛)−) B 0. «

Proposition 5.14. Let 𝐹 : {0, 1}𝑛 → F𝐸𝑚 ∩ [0, 1] be a CDF over a number format B = (𝑛,𝛾B, 𝜙B).
Then 𝐹 B 𝐹 ◦ 𝜙B is a CDF over the unsigned integer format U𝑛 = (𝑛, (·)2, id) from Example 5.4. «

Corollary 5.15. Let 𝐹 : {0, 1}𝑛 → F𝐸𝑚∩[0, 1] be a CDF over a number formatB = (𝑛,𝛾B, 𝜙B). Then
a random variate 𝑋 ∼ 𝐹 can be generated by first drawing 𝑍 ∼ 𝐹 ◦ 𝜙B and setting 𝑋 ← 𝜙B (𝑍 ). «

5.3 Finite-Precision Random Variate Generation Algorithms
§5.1 and §5.2 provide all the necessary ingredients for soundly implementing Algorithm 1 using

finite-precision computation, as shown in Algorithm 2. The only required parameter is the CDF

𝐹 : {0, 1}𝑛 → F𝐸𝑚 ∩ [0, 1] over a binary number format B. The remaining parameters have default

values and are used only by recursive calls, where: 𝑏 stores the bit string generated so far; ℓ stores

the number of calls to RandBit, i.e., the current level in the underlying DDG tree; 𝑓0, 𝑓1 store the

subtrahend and minuend in the probability 𝑝𝐹 (𝑏) = 𝐹 (𝜙B (𝑏1
𝑛−|𝑏 | )) −R 𝐹 (𝜙B ((𝑏0

𝑛−|𝑏 | )−)) (5.7).
We now describe Algorithm 2 in detail. Lines 2–3 show the base case, where the 𝑛-bit string 𝑏

(in the unsigned integer format) has been generated from 𝐹 ◦ 𝜙B, and then projected to the target

format B using the map 𝜙B, based on Prop. 5.14 and Cor. 5.15. Line 5 computes the cumulative

probability 𝑓2 of the “midpoint” string 𝑏′, which splits the interval defined by the the current string

𝑏 in half (based on (5.7)), i.e., 𝑓2 −R 𝑓0 (resp. 𝑓1 −R 𝑓2) is the probability that the next bit is 0 (resp. 1).

Lines 6–9 are optimizations for when one of these probabilities is zero, so the refined subtree must

be a leaf. Lines 12–18 occur when the refined subtree is a leaf (mirroring lines 2–5 of Algorithm 1).

Lines 19–26 occur when the refined subtree is a not leaf (mirroring lines 6–11 of Algorithm 1).

In lines 10 and 11, a main implementation challenge is extracting the binary expansions of

𝑓2 −R 𝑓0 and 𝑓1 −R 𝑓2 in such a way that avoids expensive arbitrary-precision arithmetic on the one

hand and rounding errors from a direct floating-point subtraction on the other hand. Whereas the

2Sum/Fast2Sum [44] methods can be used to compute the exact round-off error from a floating-point

subtraction, they are not applicable here, as the goal is to extract the individual bits of the difference.

Algorithms 3 and 4 provide an efficient solution using fast integer arithmetic. For 𝑥, 𝑥 ′ ∈ F𝐸𝑚 ∩ [0, 1],
Algorithm 3 computes a compact representation of 𝑥 −R 𝑥 ′ as described in (5.9) of Theorem 5.16.

Lines 2–8 extract the exponent and significand of 𝑥 and 𝑥 ′ (i.e., 𝑒 , 𝑓 , 𝑒′, 𝑓 ′), and lines 9–10 decompose

𝑓 ′ into two parts to align the binary expansions of 𝑥 and 𝑥 ′. Lines 11–17 then compute a tuple of

integers and booleans that encode 𝑥 −R 𝑥 ′. For this tuple and ℓ ≥ 1, Algorithm 4 outputs the ℓ-th bit

of 𝑥 −R 𝑥 ′ based on the encoding scheme shown in (5.9). Theorem 5.16 establishes the correctness

of Algorithms 3 and 4, and the guarantee that all intermediate values fit in a single machine word.
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Algorithm 2 Entropy-Optimal Generation

Input: CDF 𝐹 : {0, 1}𝑛 → F𝐸𝑚 ∩ [0, 1]
over number format B = (𝑛,𝛾B, 𝜙B)
String 𝑏 ∈ {0, 1}≤𝑛 ; #Flips ℓ ≥ 0;

Floats 𝑓0, 𝑓1 ∈ F𝐸𝑚 ∩ [0, 1]
Output: Exact random variate 𝑋 ∼ 𝐹
1: function Opt(𝐹 , 𝑏=𝜀, ℓ=0, 𝑓0=0, 𝑓1=1)

2: if |𝑏 | = 𝑛 ⊲ Base Case
3: return 𝜙B (𝑏) ⊲ String in Format B

4: 𝑏′ ← 𝑏01
𝑛−|𝑏 |−1

5: 𝑓2 ← 𝐹 (𝜙B (𝑏′))
6: if 𝑓2 = 𝑓1 ⊲ Leaf
7: return Opt(𝐹, 𝑏0, ℓ, 𝑓0, 𝑓2) ⊲ 0
8: if 𝑓2 = 𝑓0 ⊲ Leaf
9: return Opt(𝐹, 𝑏1, ℓ, 𝑓2, 𝑓1) ⊲ 1

10: 𝛽0 ← ExtractBitPreproc1(𝑓2, 𝑓0)
11: 𝛽1 ← ExtractBitPreproc1(𝑓1, 𝑓2)
12: if ℓ > 0

13: 𝑎0 ← ExtractBit(𝛽0, ℓ) ⊲ [𝑓2 −R 𝑓0]ℓ
14: 𝑎1 ← ExtractBit(𝛽1, ℓ) ⊲ [𝑓1 −R 𝑓2]ℓ
15: if 𝑎0 = 1 ∧ 𝑎1 = 0 ⊲ Leaf
16: return Opt(𝐹 , 𝑏0, ℓ , 𝑓0, 𝑓2) ⊲ 0
17: if 𝑎0 = 0 ∧ 𝑎1 = 1 ⊲ Leaf
18: return Opt(𝐹 , 𝑏1, ℓ , 𝑓2, 𝑓1) ⊲ 1

19: while true do ⊲ Refine Subtree
20: 𝑥 ← RandBit(); ℓ ← ℓ + 1

21: 𝑎0 ← ExtractBit(𝛽0, ℓ) ⊲ [𝑓2 −R 𝑓0]ℓ
22: 𝑎1 ← ExtractBit(𝛽1, ℓ) ⊲ [𝑓1 −R 𝑓2]ℓ
23: if 𝑥 = 0 ∧ 𝑎0 = 1 ⊲ Leaf
24: return Opt(𝐹 , 𝑏0, ℓ , 𝑓0, 𝑓2) ⊲ 0
25: if 𝑥 = 1 ∧ 𝑎1 = 1 ⊲ Leaf
26: return Opt(𝐹 , 𝑏1, ℓ , 𝑓2, 𝑓1) ⊲ 1

Algorithm 3 Preprocessing for ExtractBit

Input: 𝑥, 𝑥 ′ ∈ F𝐸𝑚 ∩ [0, 1], 0 < 𝑥 −R 𝑥 ′ < 1

Output: (𝑛1, 𝑛2, 𝑛hi, 𝑛lo, 𝑏1, 𝑏2, 𝑔hi, 𝑔lo)
1: function ExtractBitPreproc1(𝑥 , 𝑥 ′)
2: (𝑠 𝑒𝐸 . . . 𝑒1 𝑓1 . . . 𝑓𝑚)F𝐸𝑚 ← 𝑥

3: (𝑠′ 𝑒′
𝐸
. . . 𝑒′

1
𝑓 ′
1
. . . 𝑓 ′𝑚)F𝐸𝑚 ← 𝑥 ′

4: 𝑒 ← (𝑒𝐸 . . . 𝑒1)2; 𝑒′ ← (𝑒′𝐸 . . . 𝑒′1)2
5: 𝑒 ← 𝑒 − (2𝐸−1 − 1) + 1[𝑒 = 0]
6: 𝑒′ ← 𝑒′ − (2𝐸−1 − 1) + 1[𝑒′ = 0]
7: 𝑓 ← (1 𝑓1 . . . 𝑓𝑚)2 − (1[𝑒 = 0] ≪𝑚)
8: 𝑓 ′ ← (1 𝑓 ′

1
. . . 𝑓 ′𝑚)2 − (1[𝑒′ = 0] ≪𝑚)

9: 𝑓 ′
hi
← 𝑓 ′ ≫ min{𝑒 − 𝑒′, 𝐸 +𝑚}

10: 𝑓 ′
lo
← 𝑓 ′ & ((1 ≪ min{𝑒 − 𝑒′,𝑚 + 1}) − 1)

11: 𝑛1 ← −𝑒 − 1 + 1[𝑥 = 1]
12: 𝑛2 ← max{(𝑒 − 𝑒′) − (𝑚 + 1), 0}
13: 𝑛hi ←𝑚 + 1 − 1[𝑥 = 1]
14: 𝑛lo ← min{𝑒 − 𝑒′,𝑚 + 1}
15: 𝑏1 ← 0; 𝑏2 ← 1[𝑓 ′

lo
> 0]

16: 𝑔hi ← 𝑓 − 𝑓 ′
hi
− 𝑏2; 𝑔lo ← (𝑏2 ≪ 𝑛lo) − 𝑓 ′

lo

17: return (𝑛1, 𝑛2, 𝑛hi, 𝑛lo, 𝑏1, 𝑏2, 𝑔hi, 𝑔lo)
Algorithm 4 Extract Binary Digit

Input: 𝛽B(𝑛1, 𝑛2, 𝑛hi, 𝑛lo, 𝑏1, 𝑏2, 𝑔hi, 𝑔lo), ℓ≥1;

where𝑛1, 𝑛2, 𝑛hi, 𝑛lo ≥ 0, 𝑏1, 𝑏2 ∈ {0, 1},
0 ≤ 𝑔hi < 2

𝑛
hi , 0 ≤ 𝑔lo < 2

𝑛
lo

are from ExtractBitPreproc1(𝑥, 𝑥 ′)
Output: ℓ-th bit of 𝑥 −R 𝑥 ′ in binary expansion

1: function ExtractBit(𝛽, ℓ)

2: if ℓ ≤ 𝑛1 return 𝑏1

3: if ℓ ≤ 𝑛1 + 𝑛hi return 𝑔hi, ℓ−𝑛1

4: if ℓ ≤ 𝑛1 + 𝑛hi + 𝑛2 return 𝑏2

5: if ℓ ≤ 𝑛1 + 𝑛hi + 𝑛2 + 𝑛lo

6: return 𝑔lo, ℓ−(𝑛1+𝑛hi
+𝑛2 )

7: return 0

Theorem 5.16. Suppose 𝑥, 𝑥 ′ ∈ F𝐸𝑚 satisfy 0 < 𝑥 −R 𝑥 ′ < 1, and consider any integer ℓ ≥ 1. Let
𝛽 = (𝑛1, 𝑛2, 𝑛hi, 𝑛lo, 𝑏1, 𝑏2, 𝑔hi, 𝑔lo) be the output of ExtractBitPreproc1(𝑥, 𝑥 ′) (Algorithm 3), and let
𝑏′ be the output of ExtractBit(𝛽, ℓ) (Algorithm 4). Then,

𝑥 −R 𝑥 ′ =
(
0. 𝑏1 . . . 𝑏1

𝑛1 bits

𝑔hi

𝑛
hi
bits

𝑏2 . . . 𝑏2

𝑛2 bits

𝑔lo

𝑛
lo
bits

)
2

(5.9)

and 𝑏′ is the ℓ-th digit of 𝑥 −R 𝑥 ′ in binary expansion. Also, all intermediate values appearing in both
algorithms are representable as (1 + 𝐸 +𝑚)-bit signed integers. «

The next result establishes the entropy-optimality (and, in turn, soundness) of Algorithm 2,

combining Theorem 4.6 (correctness of the infinite version), Theorem 5.16 (correctness of bit
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extraction), Prop. 5.13 (correspondence of CDF and binary-coded probability distribution), and

Prop. 5.14 and Cor. 5.15 (generation over U𝑛 followed by transformation through 𝜙B).

Theorem 5.17. If 𝐹 : {0, 1}𝑛 → F𝐸𝑚 ∩ [0, 1] is a CDF over a binary number format B = (𝑛,𝛾B, 𝜙B),
then Opt(𝐹 ) (Algorithm 2) is an entropy-optimal random variate generator that returns a string
𝑥 ∈ {0, 1}𝑛 in the format B with cumulative probability 𝐹 (𝑥). «

The worst-case entropy cost of Algorithm 2 is 2
𝐸−1 +𝑚 − 2 bits, which is the index location of a

nonzero bit in the binary expansion of the smallest nonzero probability in F𝐸𝑚 . This observation
implies that Algorithm 2 halts, because all the probabilities are dyadic rationals. The next result

establishes a more useful upper bound for Algorithm 2 in terms of its expected entropy cost.

Theorem 5.18. The expected entropy cost of Algorithm 2 is at most𝑚 + 2 − 2
−2

𝐸−1+3 bits. «

6 Extended-Accuracy Generation by Leveraging Numerical Survival Functions
Algorithm 2 from §5 requires a finite-precision CDF 𝐹 , which computes floating-point probabilities

of intervals [−∞, 𝑥] in the “left” tail of the distribution. Recall, however, that floats have “high-

precision” near 0 as compared to 1, i.e., there are roughly 2
𝐸−1

more floats in [0, 0.5) as compared

to [0.5, 1). As a result, 𝐹 more accurately represents the left tail [−∞, 𝑥] (probabilities near 0), as
compared to the right tail [𝑥,∞] (probabilities near 1). To achieve high-accuracy floating-point

probabilities in the right tail, we can combine 𝐹 with a finite-precision survival function 𝑆 (Def. 5.10).
For example, the Rayleigh distribution has the theoretical range [0,∞) and CDF 𝐹 (𝑡) = 1−𝑒−𝑡2/2

.

Typical floating-point implementations of the CDF and SF correspond to the following ranges:

standard_rayleigh_cdf = lambda t: -math.expm1(-t*t/2) {[3.50 × 10
−162, 8.65] (6.1)

standard_rayleigh_sf = lambda t: math.exp(-t*t/2) {[1.05 × 10
−8 , 38.60] (6.2)

Eqs. (6.1) and (6.2) show that the combined range [3.5 × 10
−162, 38.60] of these complimentary

specifications is far more accurate than using only the CDF or SF. Another illustrative example is

symmetric distributions. Consider the CDF (gsl_cdf_gaussian_P) and SF (gsl_cdf_gaussian_Q)
of a Gaussian from the GSL (Listing 2). For sigma = 1, the theoretical range is (−∞,∞), but the
floating-point ranges are [−37.52, 8.29] and [−8.29, 37.52], respectively.
In the infinite-precision Real-RAM model, the CDF 𝐹 and SF 𝑆 of a random variable 𝑋 can be

combined by using the following property, which holds for every real “cutoff-point” 𝑡∗ ∈ R:
Pr(𝑋 ≤ 𝑡) = (1 − 1[𝑡 ≥ 𝑡∗])𝐹 (𝑡) + 1[𝑡 ≥ 𝑡∗] (1 − 𝑆 (𝑡)) (𝑡 ∈ R). (6.3)

Combining 𝐹 and 𝑆 as in (6.3) must be done with caution in the finite-precision setting, because

(1−𝑆 (𝑡)) ∉ F𝐸𝑚 for many values of 𝑡 ∈ B. We address this challenge by introducing a DDF (Def. 6.1),

which is a combined representation for (𝐹 (𝑡), 1−𝑆 (𝑡)) that avoids an explicit inexact floating-point

subtraction. The key idea is to use 𝐹 and 𝑆 to represent the left and right tails, respectively, of the

distribution, with a cutoff point 𝑏∗ ∈ B that is the exact median of 𝐹 .

Definition 6.1. A finite-precision dual distribution function (DDF) over a binary number format

B = (𝑛,𝛾B, 𝜙B) is a mapping 𝐺 : {0, 1}𝑛 → {0, 1} ×
(
F𝐸𝑚 ∩ [0, 1/2]

)
such that 𝐺∗ (𝜙B (1𝑛)) = 1 and

𝑏 <B 𝑏
′ =⇒ 𝐺∗ (𝑏) ≤𝐺∗ (𝑏′), where 𝐺∗ : {0, 1}𝑛→ [0, 1] is defined by 𝐺∗ (𝑏) B (1 − 𝑑) 𝑓 + 𝑑 (1 − 𝑓 )

for 𝑏 ∈ {0, 1}𝑛 and (𝑑, 𝑓 ) B 𝐺 (𝑏). «

Remark 6.2. A finite-precision CDF 𝐹 returning floating-point probabilities in F𝐸𝑚 can represent a

distribution with at most (2𝐸−1−1)2𝑚 outcomes, while a finite-precision DDF𝐺 can represent twice
as many outcomes. The representable probabilities are always integer multiples of 2

−(2𝐸−1+𝑚−2)
. «

Theorem 6.3. Let 𝐹 be a CDF and 𝑆 a SF over a binary number format B, such that 𝑆 (𝑏∗) < 1/2 for
some cutoff 𝑏∗ B Quantile(𝐹, succF𝐸𝑚

(0.5)) ∈ {0, 1}𝑛 . A sound DDF 𝐺 over B satisfying Def. 6.1 is
𝐺 (𝑏) B (0, 𝐹 (𝑏)) if 𝑏 <B 𝑏

∗, 𝐺 (𝑏) B (1, 𝑆 (𝑏)) if 𝑏 ≥B 𝑏∗ (𝑏 ∈ {0, 1}𝑛). « (6.4)
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𝐹 (𝑥)

cumulative distribution function

(62 unique values)

𝑆 (𝑥)

survival function

(53 unique values)

dual distribution function (82 unique values)

𝐺 (𝑥) = 1[𝑥 < 𝑡∗]𝐹 (𝑥) + 1[𝑥 ≥ 𝑡∗] (1 − 𝑆 (𝑥))

𝛾B (𝑏∗)
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0.53125

≡ succF𝐸
4

(0.5)
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0.5

1
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15 unique

CDF values

18 unique

SF values

47 unique

CDF values

35 unique

SF values

Fig. 7. A dual distribution function 𝐺 combines a finite-precision cumulative distribution 𝐹 and survival

function 𝑆 to represent probabilities in the left tail (blue; below the median cutoff) and right tail (red; above

the median cutoff), respectively. This combination ensures that all explicitly represented floats lie in the

high-precision range [0, 1/2], which in turn supports more unique values for random variate generation.

Figure 7 shows a DDF for the exponential distribution (Listing 1). Colored dots show the selected

floating-point probabilities in [0, 0.5). Solid lines show the underlying real functions.

Algorithm 2 must be modified to soundly generate from a DDF𝐺 , which returns a pair 𝑐 = (𝑑, 𝑓 )
denoting 𝑓 if 𝑑 = 0 or 1 − 𝑓 if 𝑑 = 1, as described in Remark E.1 and Algorithm E15 of Appendix E.

Algorithm E9 gives a fast implementation of Quantile for any CDF, which is used to obtain

the cutoff 𝑏∗ in Theorem 6.3; and Algorithm E16 shows the quantile of a DDF. As compared to

heuristic methods such as exp_qf (Listing 1) or gsl_cdf_gaussian_Pinv (Listing 2), our quantile

computations are exact for the implemented random variate generator (cf. Fig. 2).

7 Evaluation
We implemented a C library (https://github.com/probsys/librvg) with all the algorithms described

in this article. Listings 1 and 2 shows examples of the programming interface, using the macros

GENERATE_FROM_(CDF|SF|DDF). Our evaluation [52] investigates the following research questions.

(Q1) How does the entropy-optimal method (Algorithm 2) compare to exact conditional bit sam-

pling [58; §II.B] (Algorithm A6) and the inexact GSL generators [24], in terms of (i) input bits

per output variate; and (ii) output variates per wall-clock second? (§7.1)

(Q2) How do the ranges of random variate generators specified by a finite-precision CDF, SF, and

DDF compare to one another, and to those of GSL generators? (§7.2)

(Q3) How large is the entropy and runtime overhead when using the extended-accuracy variants

of conditional bit sampling and entropy-optimal generators (Algorithms E14 and E15) that

use a DDF described in §6, instead of the original generators (Algorithms 2 and A6) described

in §5 that use a CDF? (§7.3)

7.1 (Q1) Input Entropy Rate and Output Generation Rate
Table 1 shows measurements for 18 representative “continuous” distributions and 6 representative

“discrete” distributions. The entropy source used in this experiment is a GSL pseudorandom number

generator (PRNG) that calls /dev/urandom to obtain 8 random bytes stored in a 64-bit word.

Input Entropy Rate. In terms of input bits/variate (lower is better), the conditional bit sampling

(CBS) baseline is 1x–3.1x more expensive than Algorithm 2 (OPT). An interesting finding is that

the optimal generator draws around 25 bits on average for the 18 “continuous” distributions, which

is two bits higher than the 23-bit mantissa in IEEE-754 single-precision format used to represent

the output of the CDF (cf. Theorem 5.18). This finding suggests that the GSL CDF implementations

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 152. Publication date: June 2025.

https://github.com/probsys/librvg


Random Variate Generation with Formal Guarantees 152:19

Table 1. Comparison of optimal generation (OPT, Algorithm 2) with two baselines: the GNU scientific library

(GSL [24]) and conditional bit sampling (CBS [58], Algorithm A6). CDF implementations used for OPT and

CBS are from the GSL (cf. Listing 2), which both generate exact random variates from the CDF. In terms of

Fig. 1: the bits/variate column reports the input entropy consumption rate (lower=better), and the variates/sec

column reports the output random variate generation rate (higher=better).
†
=“discrete” distribution.

Distribution Method Bits/Variate Variates/Sec Distribution Method Bits/Variate Variates/Sec
Beta(5, 5) GSL 262.80 5.01 × 10

5
Gumbel2(1, 5) GSL 64.00 1.37 × 10

6

CBS 52.10 2.80 × 10
4

CBS 49.26 4.58 × 10
4

OPT 24.98 5.42 × 10
4

OPT 24.99 1.72 × 10
5

Binomial(.2, 100)
†

GSL 224.79 4.98 × 10
5

Hypergeom(5, 20, 7)
†

GSL 447.99 3.05 × 10
5

CBS 15.76 3.15 × 10
4

CBS 6.25 1.09 × 10
5

OPT 5.11 3.62 × 10
4

OPT 3.01 1.42 × 10
5

Cauchy(7) GSL 64.00 1.36 × 10
6

Laplace(2) GSL 64.00 1.46 × 10
6

CBS 51.45 4.84 × 10
4

CBS 47.83 5.04 × 10
4

OPT 25.00 2.21 × 10
5

OPT 25.00 2.87 × 10
5

ChiSquare(13) GSL 64.00 1.24 × 10
6

Logistic(.5) GSL 64.00 1.39 × 10
6

CBS 47.43 2.65 × 10
4

CBS 48.80 4.69 × 10
4

OPT 24.99 5.19 × 10
4

OPT 24.97 2.04 × 10
5

Exponential(15) GSL 64.00 1.39 × 10
6

Lognormal(1, 1) GSL 163.02 7.11 × 10
5

CBS 48.56 4.61 × 10
4

CBS 49.27 4.10 × 10
4

OPT 24.98 2.33 × 10
5

OPT 24.98 1.87 × 10
5

ExpPow(1, .5) GSL 197.03 5.97 × 10
5

NegBinomial(.71, 18)
†

GSL 665.83 2.17 × 10
5

CBS 47.31 3.57 × 10
4

CBS 12.54 4.01 × 10
4

OPT 25.01 8.67 × 10
4

OPT 4.69 4.60 × 10
4

Fdist(5, 2) GSL 268.95 4.70 × 10
5

Pareto(3,2) GSL 64.00 1.41 × 10
6

CBS 51.45 2.63 × 10
4

CBS 45.92 5.35 × 10
4

OPT 25.00 6.29 × 10
4

OPT 24.99 2.30 × 10
5

Flat(-7, 3) GSL 64.00 1.45 × 10
6

Pascal(1, 5)
†

GSL 195.59 5.00 × 10
5

CBS 43.52 5.66 × 10
4

CBS 0.00 3.13 × 10
4

OPT 24.98 4.83 × 10
5

OPT 0.00 2.09 × 10
5

Gamma(.5, 1) GSL 198.26 6.24 × 10
5

Poisson(71)
†

GSL 697.22 1.90 × 10
5

CBS 57.00 1.40 × 10
4

CBS 18.32 2.07 × 10
4

OPT 25.01 1.80 × 10
4

OPT 6.19 2.31 × 10
4

Gaussian(15) GSL 162.73 7.55 × 10
5

Rayleigh(11) GSL 64.00 1.44 × 10
6

CBS 46.41 4.95 × 10
4

CBS 48.52 5.08 × 10
4

OPT 25.00 2.33 × 10
5

OPT 24.99 2.17 × 10
5

Geometric(.4)
†

GSL 64.00 1.38 × 10
6

Tdist(5) GSL 279.77 4.39 × 10
5

CBS 6.06 2.03 × 10
5

CBS 49.56 2.65 × 10
4

OPT 3.78 3.29 × 10
5

OPT 25.02 4.90 × 10
4

Gumbel1(1,1) GSL 64.00 1.41 × 10
6

Weibull(2, 3) GSL 64.00 1.39 × 10
6

CBS 50.29 4.80 × 10
4

CBS 55.35 4.11 × 10
4

OPT 25.00 2.36 × 10
5

OPT 24.97 1.48 × 10
5

are close to the maximum entropy distributions identified by Theorem 5.18. The GSL generators

are 2.6x–142x more expensive in terms of bits/variate as compared to OPT. For Pascal(1,5), a

deterministic distribution, the GSL draws 195.59 bits/variate, whereas OPT uses zero. These large

differences in entropy cost highlight fundamental inefficiencies of Real-RAM algorithms in the GSL.

Even though a single infinitely precise uniform random variable in [0, 1] contains the same amount

of entropy as countably many such variates (Remark 3.2), this cost equivalence does not hold

in finite-precision implementations, where each “floating-point” uniform requires many random

bits (e.g., 32, 53, 64; Remark B.2). The GSL generators that require 64 bits/variate (e.g., Cauchy,

Geometric, Pareto, Weibull) always use exactly one floating-point uniform. The more expensive

GSL generators use rejection sampling or special relationships between random variables (e.g., Beta

is a ratio of Gammas; NegBinomial uses a Gamma and Poisson) further driving up the entropy cost.

Output Generation Rate. In terms of output variates/sec (higher is better), OPT is 1.1x–8.5x faster

than CBS. Both methods evaluate the CDF 𝐹 the same number of times per output variate. The

runtime of CBS is driven by the high overhead of computing conditional probabilities for the chain
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rule, which requires expensive arbitrary-precision arithmetic. A main cost of OPT is extracting bits

from exact differences of floats using Algorithms 3 and 4. The GSL generators deliver the fastest

output generation rate (2.14x–34.6x higher, median 6.4x) as they do not compute 𝐹 , but offer no

formal guarantees (§2.2) and lower accuracy (§7.2) as compared to OPT. While entropy cost gives a

theoretically precise runtime measure through the DDG tree formalism, wall-clock is dictated by

many implementation details (e.g., caching, parallelism, vectorization, PRNG cost, CDF evaluation

cost, programming language, etc.) that could be further optimized in our prototype.

7.2 (Q2) Output Range of Random Variate Generators
Table 2 shows a comparison of the min–max output range for GSL generators and those specified

formally by a finite-precision CDF/SF (§5) and DDF (§6), for 13 distributions. The theoretical ranges

of these distributions are shown in the first column. We identify several takeaways:

• The output range of a GSL generator is often close to that of a finite-precision CDF or SF, but

always inferior to the range of the extended-accuracy DDF (which is up to 10
35
x wider).

• For symmetric distributions (Cauchy, Laplace, Logistic, Gaussian, Tdist), the finite-precision DDF

fixes the asymmetry in CDF and SF, by ensuring identical ranges below and above the median.

• For distributions over nonnegative numbers (Exponential, Gumbel2, Pareto, Rayleigh, Weibull,

Gamma), the DDF extends the output range by many orders of magnitude, combining the CDF to

represent values near 0 and SF to represent values away from zero.

• The output ranges of our generators can be quickly obtained (using, e.g., Algorithm E9) in

microseconds. In contrast, finding the range of a GSL generator requires dozens of seconds in

certain cases that can be enumerated (i.e., the algorithm draws a single 32-bit floating-point uniform)

and cannot be done in cases that draw two or more floating-point uniforms (e.g., Gamma, Gaussian,

and Tdist). It is impractical to enumerate the CDF of a GSL generator in all cases.

7.3 (Q3) Runtime Overhead of Extended-Accuracy Generators
Figure 8 shows the overhead of using the extended-accuracy algorithms described in §6 in terms of

bits/variate and variates/sec, for both conditional bit sampling (Algorithms A6 and E14) and optimal

generation (Algorithms 2 and E15). The bits/variate ratios are slightly above one in most cases

because a DDF can represent twice as many outcomes compared to a CDF (Remark 6.2), and in turn

higher-entropy distributions. The variates/sec ratios for conditional bit sampling are 0.51x–0.85x

(average=0.63x). This high overhead arises from the larger number of machine words needed to

compute ratios of probabilities using arbitrary-precision arithmetic. The variates/sec ratios using

the optimal generators are 0.40x–1.28x (average=1.00x). The only substantial slowdown (0.40x) is on

the degenerate Pascal(1,5) distribution. The DDF algorithms have a (statistically significant) higher

output generation rate than the CDF algorithms in 10/24 cases. In summary, the extended-accuracy

generators incur minimal overhead compared to their lower-accuracy counterparts.

8 Related Work
Random variate generation has been traditionally grounded in the idealized Real-RAM model of

computation [13, 45–47]: §2.2 demonstrates several challenges with this approach. Our approach

deviates from this tradition in two ways—(i) it is based on a realistic model of the finite-precision

computer on which the algorithms execute; and (ii) random variate generators are automatically

synthesized from numerical programs specifying the CDF or SF—enabling Contributions (C2)–(C5).

DDG Trees. Our approach builds on the discrete distribution generating (DDG) tree formalism

of Knuth and Yao [37]. Contribution (C2) improves on their original method for lazy DDG explo-

ration [37; pp 384–385] by giving a deterministic algorithm that is space-time optimal (Remark 4.7);
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Table 2. Comparison of random variate generators from the GNU Scientific Library (GSL) and exact random

variate generators for a finite-precision cumulative distribution function (CDF), survival function (SF), or a

combination of the two (DDF) on 13 probability distributions. The random variate range shows the minimum

and maximum values of the output of each generator. Intervals visualized on a log scale.

Distribution Method Random Variate Range Analysis Time

Cauchy(1) GSL −1.37 × 10
9

1.37 × 10
9

41 s

(−∞,∞) CDF −4.54 × 10
44

1.07 × 10
7 <50 µs

SF −1.07 × 10
7

4.54 × 10
44 <50 µs

DDF −4.54 × 10
44

4.54 × 10
44 <50 µs

Exponential(1) GSL 0.00 22.18 36 s

(0,∞) CDF 7.01 × 10
−46

17.33 <50 µs

SF 2.98 × 10
−8

103.97 <50 µs

DDF 7.01 × 10
−46

103.97 <50 µs

Flat(.1, 3.14) GSL 0.10 3.14 19 s

(.1, 3.14) CDF 0.10 3.14 <50 µs

SF 0.10 3.14 <50 µs

DDF 0.10 3.14 <50 µs

Gumbel1(1,1) GSL −3.10 22.18 67 s

(−∞,∞) CDF −4.64 17.33 <50 µs

SF −2.85 103.97 <50 µs

DDF −4.64 103.97 <50 µs

Gumbel2(1, 1) GSL 4.51 × 10
−2

4.29 × 10
9

19 s

(0,∞) CDF 9.62 × 10
−3

3.36 × 10
7 <50 µs

SF 5.77 × 10
−2

1.43 × 10
45 <50 µs

DDF 9.62 × 10
−3

1.43 × 10
45 <50 µs

Laplace(1) GSL −21.49 21.49 48 s

(−∞,∞) CDF −103.28 16.64 <50 µs

SF −16.64 103.28 <50 µs

DDF −103.28 103.28 <50 µs

Logistic(1) GSL −22.18 22.18 39 s

(−∞,∞) CDF −103.97 17.33 <50 µs

SF −17.33 103.97 <50 µs

DDF −103.97 103.97 <50 µs

Pareto(3, 2) GSL 2.00 3.25 × 10
3

61 s

(2,∞) CDF 2.00 6.45 × 10
2 <50 µs

SF 2.00 2.25 × 10
15 <50 µs

DDF 2.00 2.25 × 10
15 <50 µs

Rayleigh(1) GSL 2.20 × 10
−5

6.66 35 s

(0,∞) CDF 3.74 × 10
−23

5.89 <50 µs

SF 2.44 × 10
−4

14.42 <50 µs

DDF 3.74 × 10
−23

14.42 <50 µs

Weibull(1, 1) GSL 0.00 22.18 92 s

(0,∞) CDF 7.01 × 10
−46

17.33 <50 µs

SF 2.98 × 10
−8

103.97 <50 µs

DDF 7.01 × 10
−46

103.97 <50 µs

Gamma(.5, 1) GSL — unknown — ∞
(0,∞) CDF 3.86 × 10

−91
15.36 <50 µs

SF 6.98 × 10
−16

101.09 <50 µs

DDF 3.86 × 10
−91

101.09 <50 µs

Gaussian(0, 1) GSL — unknown — ∞
(−∞,∞) CDF −14.17 5.42 <50 µs

SF −5.42 14.17 <50 µs

DDF −14.17 14.17 <50 µs

Tdist(1) GSL — unknown — ∞
(−∞,∞) CDF −4.54 × 10

44
1.07 × 10

7 <50 µs

SF −1.07 × 10
7

4.54 × 10
44 <50 µs

DDF −4.54 × 10
44

4.54 × 10
44 <50 µs

whereas Contributions (C3)–(C5) go beyond the work of Knuth and Yao [37]. Many existing DDG

algorithms for discrete distributions require enumerating the target probabilities [16, 35, 51, 53, 54],

which is intractable for the class of finite-precision probability distributions that we consider.

Finite Precision. Several works have introduced finite-precision generators for specific distri-

butions (e.g., Laplace [26, 42], exponential [62], uniform [8, 28, 29, 41], Gaussian [27, 67]). This

work introduces general methods that are not specific to any particular distribution. Derflinger
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Fig. 8. Ratio of bits/variate (lower=better) and variates/sec (higher=better) using the DDF specification (§6)

versus the CDF specification (§5) of the 24 target probability distributions from Table 1. CBS compares

Algorithm E14/Algorithm A6. Optimal compares Algorithm E15/Algorithm 2.

et al. [12] describe an approximate generation method given a numerical implementation of a

probability density function, although its theoretical guarantees only hold under the Real-RAM

model [12; Remark 9]. Uyematsu and Li [63] give an implementation of the (entropy-suboptimal)

Han and Hoshi [32] algorithm using integer arithmetic, which requires very high precision. Fore

example, given 𝑛-bit floating-point probabilities in F𝐸𝑚 , the Uyematsu and Li [63] method requires

2
𝐸 + 2𝑚 − 1 ≫ 𝑛 bits of precision for the integer arithmetic to be exact (e.g., 2151 bits for 64-bit

floats). In contrast, our work builds on the (entropy-optimal) Knuth and Yao [37] method and

requires integer arithmetic with exactly 𝑛 B 1 + 𝐸 +𝑚 bits of precision, matching the precision

level used to specify the numerical CDF implementation (e.g., 64 bits for 64-bit floats).

Arbitrary Precision. Devroye and Gravel [14] present universal generation algorithms that re-

quire arbitrary-precision arithmetic (e.g., MPFR [23] or GMP [31]). Specialized arbitrary-precision

generators for the discrete Gaussian distribution have been widely studied [9, 18, 19, 36], given its

prominence in cryptography and differential privacy. In contrast to this line of work, our method

uses finite- instead of arbitrary-precision, retaining high performance and predictability of runtime

and memory. A promising direction is to develop finite-precision CDF, SF, or DDF specifications

that meet the accuracy requirements for these applications, which could be implemented using

numerical libraries for approximating real functions with error guarantees [7, 10, 39, 40, 57, 68].

Probabilistic Programming. Several probabilistic programming languages and solvers use the

CDF to form discrete approximations of continuous probability distributions [4, 25, 55, 69]. The

denotational semantics of these systems adopt the infinite-precision Real-RAM model, which does

not comport with their actual operational semantics on a finite-precision computer. The resulting

systems offer no correctness or exactness guarantees for the machine implementation. Bagnall

et al. [2] develop formally verified generators for discrete probabilistic programs with loops and

conditioning using arbitrary-precision rational arithmetic, and use it to implement exact generators

for the discrete Laplace and Gaussian distributions. A promising idea along this direction is to build

a probabilistic programming language that instead uses the exact finite-precision random variate

generators described in §4–§6, as the basic probabilistic primitives with formal guarantees.

9 Conclusion
As the role of probability in computer science continues to grow [3, 43], there is a growing need

for random variate generation methods with well-characterized behavior. We hope this work lays

a foundation for a new class of random variate generators that are equipped with theoretical

guarantees while delivering improvements in automation, accuracy, and entropy consumption.
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Data-Availability Statement
A C library with all the algorithms described in this article is available at https://github.com/

probsys/librvg. A reproduction package for the evaluation in §7 is available on Zenodo [52].
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A Conditional Bit Sampling: A Baseline for Exact Random Variate Generation
This appendix describes conditional bit sampling [58; §II.B] a baseline method for generating a

random string from any binary-coded probability distribution (Def. 4.1). Whereas the original

presentation of this method in Sobolewski and Payne [58] used the Real-RAM model, the presen-

tation of conditional bit sampling in this appendix uses the DDG formalism and finite-precision

computation, which gives new insights on its behavior. Appendix A.1 discusses the general case.

Appendix A.2 shows how to implement this baseline given a finite-precision CDF.

A.1 Generation from a Binary-Coded Probability Distribution
Conditional bit sampling a joint distribution of (𝐵1, . . . , 𝐵𝑛) uses the chain rule of probability, i.e.,

it generates 𝐵1, then 𝐵2 | 𝐵1, then 𝐵3 | 𝐵1, 𝐵2, and so on.

Proposition A.1. Let 𝑝 : {0, 1}∗ → [0, 1] be a binary-coded probability distribution. For each
𝑛 ∈ N. The following process generates a random string 𝐵1 . . . 𝐵𝑛 ∼ 𝑝𝑛 :

𝐵1 ∼ Bernoulli(𝑝 (1)); 𝐵 𝑗 ∼ Bernoulli

[
𝑝 (𝐵1 . . . 𝐵 𝑗−11)
𝑝 (𝐵1 . . . 𝐵 𝑗−1)

]
( 𝑗 = 2, . . . , 𝑛). « (A.1)

Proof. By induction. The base case is obvious. Assume the proposition holds for any integer

𝑛 − 1. Put (𝑏1, . . . , 𝑏𝑛−1) so that 𝑝 (𝑏1, . . . , 𝑏𝑛−1) > 0. Then

Pr

(
∩𝑛−1

𝑖=1
{𝐵𝑖 = 𝑏𝑖 }, 𝐵𝑛 = 𝑏𝑛

)
(A.2)

= Pr

(
𝐵𝑛 = 𝑏𝑛 | ∩𝑛−1

𝑖=1
{𝐵𝑖 = 𝑏𝑖 }

)
Pr

(
∩𝑛𝑖=1
{𝐵𝑖 = 𝑏𝑖 }

)
(A.3)

=

[
𝑝 (𝑏1 . . . 𝑏𝑛−11)
𝑝 (𝑏1 . . . 𝑏𝑛−1)

]𝑏𝑛 [
1 − 𝑝 (𝑏1 . . . 𝑏𝑛−11)

𝑝 (𝑏1 . . . 𝑏𝑛−1)

]
1−𝑏𝑛
· 𝑝 (𝑏1 . . . 𝑏𝑛−1) (A.4)

=

[
𝑝 (𝑏1 . . . 𝑏𝑛−11)
𝑝 (𝑏1 . . . 𝑏𝑛−1)

]𝑏𝑛 [
𝑝 (𝑏1 . . . 𝑏𝑛−1) − 𝑝 (𝑏1 . . . 𝑏𝑛−11)

𝑝 (𝑏1 . . . 𝑏𝑛−1)

]
1−𝑏𝑛
· 𝑝 (𝑏1 . . . 𝑏𝑛−1) (A.5)

= [𝑝 (𝑏1 . . . 𝑏𝑛−11)]𝑏𝑛 [𝑝 (𝑏1 . . . 𝑏𝑛−10)]1−𝑏𝑛 (A.6)

= 𝑝𝑛 (𝑏1 . . . 𝑏𝑛). (A.7)

□

Optimal Bernoulli Generation. In the Real-RAM model, a random variable 𝑋 ∼ Bernoulli(𝑝) can
be defined using the inverse-transform method: 𝑋 (𝜔) B 1[𝜔 ∈ (0, 𝑝]] . To arrive at a random

variate generator for Bernoulli(𝑝) based on Def. 3.5, consider generating 𝐾 ∼ Geometric(1/2) and
then setting 𝑋 ← 𝑝𝐾 , where 𝑝 = (0.𝑝1𝑝2 . . . )2 ∈ (0, 1). The proof of correctness is direct:

Pr(𝑋 = 1) = ∑∞
𝑘=1

Pr(𝑋 = 1|𝐾 = 𝑘) Pr(𝐾 = 𝑘) = ∑∞
𝑘=1

1[𝑝𝑘 = 1]1/2𝑘 =
∑∞
𝑘=1

𝑝𝑘/2𝑘 = 𝑝, (A.8)

Pr(𝑋 = 0) = ∑∞
𝑘=1

Pr(𝑋 = 0|𝐾 = 𝑘) Pr(𝐾 = 𝑘) = ∑∞
𝑘=1
(1 − 1[𝑝𝑘 = 1])1/2𝑘 = 1 − 𝑝. (A.9)

The expected entropy cost of this method is two bits for generating 𝐾 . Lumbroso [41; Appendix B]

proves this method is entropy-optimal, but their proof assumes implicitly that 𝑝 is not a dyadic

rational. If 𝑝 = 𝑘/2𝑚 is a dyadic rational for odd 𝑘 , this method is suboptimal because the bits

(𝑝𝑚+1, 𝑝𝑚+2, . . . ) are zero, and so 𝐾 need not be generated beyond𝑚. In particular, it suffices to

generate 𝐾 ← min(𝑚,𝐾 ′) where 𝐾 ′ ∼ Geometric(1/2), and then set 𝑋 ← 𝑝𝐾 if 𝐾 < 𝑚 and

𝑋 ← RandBit otherwise. The expected entropy cost is then∑𝑚−1

𝑖=1
𝑖2−𝑖 + (𝑚 − 1)2−(𝑚−1)︸                               ︷︷                               ︸

𝐾 ′

+ 2
1−𝑚︸︷︷︸

RandBit

= 2 − 2
2−𝑚 + 2

1−𝑚 = 2 − 2
1−𝑚 . (A.10)
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(a) Conditional Bit Sampling (Algorithm A5)
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(b) Optimal Generation (Algorithm 1)

Fig. 9. DDG trees of random variate generators for the discrete distribution 𝑝2 in (A.11). In (a), dashed lines

show the DDG tree for 𝐵1; solid lines show DDG trees for 𝐵2 |𝐵1=0 (left subtree) and 𝐵2 |𝐵1=1 (right subtree).

Composing Optimal Bernoulli Generators. Algorithm A5 presents a random variate generator

for a binary-coded probability distribution 𝑝 based on Prop. A.1 and (A.8) and (A.9). The RandBit

primitive returns the next unbiased random bit from the i.i.d. bit stream (Fig. 1, bottom). Each

recursive step of Algorithm A5 is entropy-optimal for the Bernoulli(𝑝 (𝑏0)/𝑝 (𝑏)) distribution.
However, the following example shows that a sequence of 𝑛 generations (A.1) is not entropy-

optimal for 𝑝𝑛 .

Example A.2. Consider a binary-coded probability distribution 𝑝 such that

𝑝 (0) = 1/3, 𝑝 (1) = 2/3, 𝑝 (00) = 2/15, 𝑝 (01) = 3/15, 𝑝 (10) = 7/15, 𝑝 (11) = 3/15. (A.11)

Following (A.1), generating 𝐵1𝐵2 ∼ 𝑝2 via 𝐵1 ∼ Bernoulli(2/3) and 𝐵2 | 𝐵1 ∼ Bernoulli(3/(5+5𝐵1))
consumes 4 bits on average (Fig. 9a). However, an entropy-optimal generator for 𝑝2 constructed

from the binary expansions of (𝑝 (00), 𝑝 (01), 𝑝 (10), 𝑝 (11)) consumes 3.2 bits on average (Fig. 9b):
𝑝 (00)
𝑝 (01)
𝑝 (10)
𝑝 (11)

 =


2/15

3/15

7/15

3/15

 = 0.


0 0 1 0

0 0 1 1

0 1 1 1

0 0 1 1

𝑁 = (0 · 1 · 1/21) + (1 · 2 · 1/22) + (4 · 3 · 1/23)
+ (3 · 4 · 1/24) + (1 · (4 + 𝑁 ) · 1/24)

=⇒ 𝑁 = 3.2 bits « (A.12)

The next proposition establishes bounds on the entropy gap between the conditional bit sampling

and optimal generators in Algorithms 1 and A5. It shows that this gap could be zero, or very large.

Proposition A.3. For a binary-coded probability distribution 𝑝 , let 𝐶opt

𝑛 (𝑝) and 𝐶cbs

𝑛 (𝑝) denote
the entropy costs of Algorithms 1 and A5, respectively, up until generating an 𝑛-bit string. There exist
binary-coded distributions 𝑝 and 𝑝′ and an arbitrarily small constant 𝜀 > 0 such that

E[𝐶cbs

𝑛 (𝑝)] − E[𝐶
opt

𝑛 (𝑝)] = 0; E[𝐶cbs

𝑛 (𝑝′)] − E[𝐶
opt

𝑛 (𝑝′)] = 2𝑛 − 2 − 𝜀. « (A.13)

Proof. For the first equality, suppose 𝑝 is such that each distribution 𝑝 𝑗 is uniform distribution

over {0, 1} 𝑗 ( 𝑗 = 1, . . . , 𝑛), so their entropies satisfy 𝐻 (𝑝 𝑗 ) = 𝑗 . Since conditional bit sampling using

Bernoulli makes a coin flip with dyadic weight 1/2 at each step, it consumes 1 bit per step on

average for a total of 𝑛 bits, matching the entropy-optimal generator.

For the second equality, consider a distribution 𝑝′ such that 𝑝′𝑛 has 2
𝑛 − 1 outcomes of probability

𝜀 ≪ 2
−𝑛

and one outcome has probability 𝛾 B 1− (2𝑛 − 1)𝜀. The cost𝐶opt

𝑛 of the optimal generator

satisfies

𝐻 (𝑝′𝑛) ≤ E[𝐶
opt

𝑛 (𝑝′𝑛)] ≤ 𝐻 (𝑝′𝑛) + 2 =⇒ E[𝐶opt

𝑛 (𝑝′𝑛)] ≤ 𝜀 log
2
(1/𝜀) + 𝛾 log

2
(𝛾−1) + 2 ≈ 2. (A.14)

For conditional bit sampling, the average cost

E[𝐶cbs

𝑛 ] = 𝑇𝑛 (𝑛) = 2𝑛 − 2𝜀
(
𝑛2
𝑛−1 + 1 − 2

𝑛
)
≈ 2𝑛 (A.15)
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(a) Example binary-coded probability distribution 𝑝 unrolled to the first four bits.

0000 ↦→ 6

137
0001 ↦→ 12

137
0010 ↦→ 13

137
0011 ↦→ 9

137
0100 ↦→ 10

137
0101 ↦→ 12

137
0110 ↦→ 6

137
0111 ↦→ 1

137

1000 ↦→ 1

137
1001 ↦→ 2

137
1010 ↦→ 13

137
1011 ↦→ 8

137
1100 ↦→ 14

137
1101 ↦→ 13

137
1110 ↦→ 7

137
1111 ↦→ 10

137

{ }
Algorithm A5 Conditional Bit Sampling

1: function GenCBS(𝑝 , 𝑏 = 𝜀)

2: if 𝑝 (𝑏0) = 𝑝 (𝑏) ⊲ Leaf
3: return GenCBS(𝑝, 𝑏0) ⊲ 0
4: if 𝑝 (𝑏1) = 𝑝 (𝑏) ⊲ Leaf
5: return GenCBS(𝑝 , 𝑏1) ⊲ 1
6: for 𝑖 = 1, 2, . . . do ⊲ Refine Subtree
7: 𝑥 ← RandBit()
8: if 𝑥 = 0 ∧ [𝑝 (𝑏0)/𝑝 (𝑏)]𝑖 = 1 ⊲ Leaf
9: return GenCBS(𝑝,𝑏0) ⊲ 0
10: if 𝑥 = 1 ∧ [𝑝 (𝑏1)/𝑝 (𝑏)]𝑖 = 1 ⊲ Leaf
11: return GenCBS(𝑝,𝑏1) ⊲ 1

(b) Example trace of Algorithm A5 on 𝑝 from Fig. 10a.

Recur. RandBit𝑥

Level Probabilities 1 0 1 1 0 1 1 Output 𝑏

0

𝑝 (0) =
69

137
= 0. 1 0 0 0 0 0 0

𝑝 (1) =
68

137
= 0. 0 1 1 1 1 1 1 1

1

𝑝 (10)
𝑝 (1) =

6

17
= 0. 0 1 0 1

𝑝 (11)
𝑝 (1) =

11

17
= 0. 1 0 1 0 1

2

𝑝 (110)
𝑝 (11) =

27

44
= 0. 1 0 0 0

𝑝 (111)
𝑝 (11) =

17

44
= 0. 0 1 1

3

𝑝 (1100)
𝑝 (110) =

14

27
= 0. 1 0

𝑝 (1101)
𝑝 (110) =

13

27
= 0. 0 1 1

Fig. 10. Conditional bit sampling algorithm for any binary-coded probability distribution 𝑝 : {0, 1}∗ → [0, 1]
using the chain rule. Refer to the caption of Fig. 5 for details.

is the value of the following recurrence at 𝑇𝑛 (𝑛):
𝑇𝑛 (1) = 2, 𝑇𝑛 (𝑘) = 2 + (𝑘 − 1)𝑐𝑛 (𝑘) +𝑇𝑛 (𝑘 − 1) (1 − 𝑐𝑛 (𝑘)) (2 ≤ 𝑘 ≤ 𝑛),

where 𝑐𝑛 (𝑘) B
2
𝑘−1𝜀

(2𝑘 − 1)𝜀 + 𝛾
.

(A.16)

To justify (A.16), in the base case (𝑘 = 1) the distribution 𝑝2 over {0, 1}1 is non-uniform which

requires 2 bits. For the inductive case, there are 2
𝑘
outcomes in total, where (2𝑘 −1) have probability

𝜀 and one outcome has probability 𝛾 . Conditional bit sampling uses two bits to flip a coin with

weight 𝑐𝑛 (𝑘), which chooses between the 2
𝑘−1

equal-probability outcomes (after which 𝑘 − 1 flips

are needed) and the remaining 2
𝑘−1

outcomes (after which 𝑇𝑛 (𝑘 − 1) flips are needed). □

A.2 Finite-Precision Implementation
The Bernoulli function in Algorithm A7 defines an entropy-optimal random variate generator for

Bernoulli(𝑖/𝑘) bit with rational weights, based on (A.8) and (A.9). The structure of this algorithm

mirrors that of Algorithm A8, which extracts the concise binary expansion (0.𝑝1𝑝2 . . . )2 of a rational
probability 𝑝 = 𝑖/𝑘 ∈ (0, 1) based on the identity

𝑖/𝑘 =

{
1/2 + 1/2 · (2𝑖 − 𝑘)/𝑘 if 𝑘 ≤ 2𝑖

0 + 1/2 · (2𝑖/𝑘) if 2𝑖 < 𝑘.
(A.17)

The CBS function in Algorithm A6 implements Algorithm A5 by successively calling Bernoulli

on ratios of rational probabilities. At each recursive step, the string𝑏 ∈ {0, 1}≤𝑛 has been determined

so far. Following (5.7), the floats 𝑓0, 𝑓1 store the subtrahend and minuend in the probability 𝑝𝐹 (𝑏) =
𝐹 (𝜙B (𝑏1

𝑛−|𝑏 | ))−R𝐹 (𝜙B ((𝑏0
𝑛−|𝑏 | )−)); and the outcomes𝑏0 and𝑏1 have probabilities 𝑝𝐹 (𝑏0) = 𝑓2−𝑓0

and 𝑝𝐹 (𝑏1) = 𝑓1 − 𝑓2, respectively, where 𝑓2 B 𝐹 (𝜙B (𝑏′)) is the cumulative probability of the

“midpoint” string 𝑏′ ∈ {0, 1}𝑛 that lies between 𝑏0 and 𝑏1. ExactRatio is any algorithm that returns

integers (𝑖, 𝑘) such that 𝑖/𝑘 = (𝑓1 − 𝑓2)/(𝑓1 − 𝑓0). While these integers cannot be computed directly

using floating-point arithmetic and are not guaranteed to fit in a single 1 + 𝐸 +𝑚 bit machine word,
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the next results establish tight bounds on the finite buffer sizes needed to store 𝑖, 𝑘 , showing that

the method does not require arbitrary-precision arithmetic.

Theorem A.4. Suppose 𝐸 ≥ 1 and𝑚 ≥ 3. Given 𝑓0, 𝑓1, 𝑓2 ∈ F𝐸𝑚 ∩ [0, 1] with 𝑓0 ≠ 𝑓1, let 𝑖 (𝑓0, 𝑓1, 𝑓2)
and 𝑘 (𝑓0, 𝑓1, 𝑓2) be coprime integers such that 𝑖 (𝑓0, 𝑓1, 𝑓2)/𝑘 (𝑓0, 𝑓1, 𝑓2) = (𝑓1 − 𝑓2)/(𝑓1 − 𝑓0). Then

max

0≤ 𝑓0<𝑓2<𝑓1≤1

{⌈
1 + log

2
𝑖 (𝑓0, 𝑓1, 𝑓2)

⌉
+

⌈
1 + log

2
𝑘 (𝑓0, 𝑓1, 𝑓2)

⌉}
= 2 · (2𝐸−1 +𝑚 − 2) + 1. « (A.18)

Proof. Let 𝛿 B 2
𝐸−1 − 2 +𝑚 ≥ 2. Every 𝑥 ∈ [0, 1] ∩ F𝐸𝑚 is an integer multiple of the smallest

positive subnormal 2
−𝛿
. Then 2

𝛿 (𝑓1 − 𝑓2) and 2
𝛿 (𝑓1 − 𝑓0) are integers between 0 and 2

𝛿
. Put 𝑓0 = 0,

𝑓1 = 1, and 𝑓2 = 2
−𝛿
. Then (𝑓1− 𝑓2)/(𝑓1− 𝑓0) = (2𝛿 −1)/2𝛿 = 𝑖 (𝑓0, 𝑓1, 𝑓2)/𝑘 (𝑓0, 𝑓1, 𝑓2) form the largest

pair of coprime numbers in {0, . . . , 2𝛿 }. □

Corollary A.5. In Algorithm A6, ExactRatio returns integers 𝑖, 𝑘 each comprised of at most
2
𝐸−1 +𝑚− 1 bits, i.e., at most 5 (resp. 17) machine words on IEEE-754 single (resp. double) precision. «
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Algorithm A6 Conditional Bit Sampling

Input: CDF 𝐹 : {0, 1}𝑛 → F𝐸𝑚 ∩ [0, 1]
over number format B = (𝑛,𝛾B, 𝜙B)
String 𝑏 ∈ {0, 1}≤𝑛 ;
Floats 𝑓0, 𝑓1 ∈ F𝐸𝑚 ∩ [0, 1]

Output: Exact random variate 𝑋 ∼ 𝐹
1: function CBS(𝐹 , 𝑏=𝜀, 𝑓0=0, 𝑓1=1)

2: if |𝑏 | = 𝑛 ⊲ Base Case
3: return 𝛾B (𝜙B (𝑏)) ⊲ Number in−RB
4: 𝑏′ ← 𝑏01

𝑛−|𝑏 |−1
; 𝑓2 ← 𝐹 (𝜙B (𝑏′))

5: if 𝑓2 = 𝑓1 ⊲ Leaf
6: return CBS(𝐹, 𝑏0, 𝑓0, 𝑓2) ⊲ 0
7: if 𝑓2 = 𝑓0 ⊲ Leaf
8: return CBS(𝐹, 𝑏1, 𝑓2, 𝑓1) ⊲ 1
9: ⊲ 𝑖/𝑘 B (𝑓1 − 𝑓2)/(𝑓1 − 𝑓0)
10: (𝑖, 𝑘) ← ExactRatio(𝑓0, 𝑓2, 𝑓1)
11: 𝑧 ← Bernoulli(𝑖, 𝑘) ⊲ Refine Subtree
12: (𝑓 ′

0
, 𝑓 ′

1
) ← (𝑧 = 0) ? (𝑓0, 𝑓2):(𝑓2, 𝑓1)

13: return CBS(𝐹, 𝑏𝑧, 𝑓 ′
0
, 𝑓 ′

1
) ⊲ 𝑧

Algorithm A7 Optimal Bernoulli Generation

Input: Integers 𝑖, 𝑘 with 0 < 𝑖 < 𝑘

Output: Exact flip 𝑋 ∼ Bernoulli(𝑖/𝑘)
1: function Bernoulli(𝑖, 𝑘)

2: while true do
3: 𝑖 ← 2𝑖

4: if 𝑖 = 𝑘
5: return RandBit() ⊲ Dyadic
6:

7: else if 𝑖 > 𝑘
8: 𝑏 ← 1

9: 𝑖 ← 𝑖 − 𝑘
10: else
11: 𝑏 ← 0

12: if RandBit()
13: return 𝑏

Algorithm A8 Computing Binary Expansion

Input: Integers 𝑖, 𝑘 with 0 < 𝑖 < 𝑘

Output: Print concise binary expansion of 𝑖/𝑘
1: function BinaryExpansion(𝑖, 𝑘)

2: while true do
3: 𝑖 ← 2𝑖

4: if 𝑖 = 𝑘
5: print 1 ⊲ Dyadic
6: print 0 forever
7: else if 𝑖 > 𝑘
8: 𝑏 ← 1

9: 𝑖 ← 𝑖 − 𝑘
10: else
11: 𝑏 ← 0

12: print 𝑏
13:
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B Deferred Results in §2
This appendix studies the properties of random “uniform” floating-point numbers obtained by

dividing integers. Goualard [28] provide a survey and case study of these algorithms in practice.

Proposition B.1. Let F𝐸𝑚 be a floating-point format and rnd : R→ F𝐸𝑚∪{−∞, +∞} be its rounding
function in round-to-nearest-even mode. Then, for any integer ℓ ∈ [0, 2𝐸−1 − 2], the density of the set
{rnd (𝑖/2ℓ ) | 𝑖 ∈ {0, 1, . . . , 2ℓ − 1}} within the set (F𝐸𝑚 ∩ [0, 1]) of all floats in the unit interval is

2
ℓ

2
𝑚 (2𝐸−1 − 1) + 1

if ℓ ≤ 𝑚 + 1,
2
𝑚 (ℓ −𝑚 + 1) + 1

2
𝑚 (2𝐸−1 − 1) + 1

if ℓ > 𝑚 + 1. (B.1)

The same result holds for the set {rnd (rnd (𝑖)/rnd (2ℓ )) | 𝑖 ∈ {0, 1, . . . , 2ℓ − 1}}. «

Proof. Let 𝑆 B
{
𝑖/2ℓ | 𝑖 ∈

{
0, 1, . . . , 2ℓ − 1

}}
, and rnd (𝐴) B {rnd (𝑎) | 𝑎 ∈ 𝐴} be the rounding

of a set 𝐴 ⊆ R. Then, rnd (𝑆) ⊆ [0, 1] ∩ F𝐸𝑚 because 𝑆 ⊆ [0, 1] and {0, 1} ⊆ F𝐸𝑚 . Hence, for the first
claim, it suffices to show that |rnd (𝑆) |/

��[0, 1] ∩ F𝐸𝑚 ��
equals to (B.1).

First, we compute

��[0, 1] ∩ F𝐸𝑚 ��
:��[0, 1] ∩ F𝐸𝑚 �� = ��[0, 1) ∩ F𝐸𝑚 �� + 1 (B.2)

= (# binades in [0, 1)) · (# floats in each binade) + 1 (B.3)

= (2𝐸−1 − 1) · 2𝑚 + 1. (B.4)

Here, the number of binades in [0, 1) is 1 + (2𝐸−1 − 2) = 2
𝐸−1 − 1 for three reasons: [0, 𝜔) ∩ F𝐸𝑚

forms precisely one binade, where 𝜔 B 2
−2

𝐸−1+2
is the smallest positive normal float in F𝐸𝑚 ; the

smallest exponent in [𝜔, 1) is −2
𝐸−1 + 2; and the largest exponent in [𝜔, 1) is −1.

Next, we compute |rnd (𝑆) |. Suppose that ℓ ≤ 𝑚 + 1. Then, for each 𝑗 ∈ {0, . . . , ℓ − 1} and
𝑖 ∈ {2𝑗 , . . . , 2𝑗+1−1}, we have 𝑖 ·2−ℓ = (𝑖 ·2− 𝑗 ) ·2−ℓ+𝑗 ∈ F𝐸𝑚 because 1 ≤ 𝑖 ·2− 𝑗 < 2, 𝑖 is an (𝑚+1)-bit
unsigned integer (by 0 ≤ 𝑖 < 2

ℓ ≤ 2
𝑚+1

), and −ℓ + 𝑗 is greater than or equal to the exponent of 𝜔

(by −ℓ + 𝑗 ≥ −ℓ ≥ −2
𝐸−1 + 2). This and 0 ∈ F𝐸𝑚 imply rnd (𝑆) = 𝑆 and the desired result:

|rnd (𝑆) | = |𝑆 | = 2
ℓ . (B.5)

Now, suppose that ℓ > 𝑚 + 1. Consider the partition of 𝑆 = 𝑆1 ∪ 𝑆2 given by 𝑆1 B {𝑖 · 2−ℓ | 𝑖 ∈
{0, . . . , 2𝑚+1 − 1}} and 𝑆2 B {𝑖 · 2−ℓ | 𝑖 ∈ {2𝑚+1, . . . , 2ℓ − 1}}. Then, rnd (𝑆1) = 𝑆1 by the above

argument. For rnd (𝑆2), we claim that rnd (𝑆2) = [2−ℓ+𝑚+1, 1] ∩ F𝐸𝑚 . This subclaim immediately

implies the desired result:

|rnd (𝑆) | = |rnd (𝑆1) | + |rnd (𝑆2) | = |𝑆1 | +
��[2−ℓ+𝑚+1, 1] ∩ F𝐸𝑚 �� = 2

𝑚+1 + (ℓ −𝑚 − 1) · 2𝑚 + 1 (B.6)

where the first equality holds by rnd (𝑆1) ∩ rnd (𝑆2) = ∅ (since rnd (𝑆1) = 𝑆1 ⊆ [0, 2−ℓ+𝑚+1)). Hence,
it suffices to show the above subclaim. We prove this claim in three steps.

(1) We have rnd (𝑆2) ⊆ [2−ℓ+𝑚+1, 1] ∩ F𝐸𝑚 because 𝑆2 ⊆ [2−ℓ+𝑚+1, 1] and
{
2
−ℓ+𝑚+1, 1

}
⊆ F𝐸𝑚 ,

where 2
−ℓ+𝑚+1 ∈ F𝐸𝑚 is by −ℓ +𝑚 + 1 ≥ −ℓ ≥ −2

𝐸−1 + 2.

(2) We have rnd (𝑆2) ⊇ {1} because rnd ((2ℓ − 1)/2ℓ ) = rnd (1 − 2
−ℓ ) = 1, where the last equality

is by 1 ∈ F𝐸𝑚 , 2
−ℓ ≤ 1

2
2
−1−𝑚

, and the round-to-nearest-even mode of rnd (·).
(3) We show rnd (𝑆2) ⊇ [2−ℓ+𝑚+1, 1) ∩ F𝐸𝑚 . To prove this claim, we write [2−ℓ+𝑚+1, 1) ∩ F𝐸𝑚 as{

(1.𝑏1 . . . 𝑏𝑚)2 · 2−ℓ+𝑚+𝑗 | 𝑏1, . . . , 𝑏𝑚 ∈ {0, 1}, 𝑗 ∈ {1, . . . , ℓ −𝑚 − 1}
}
. (B.7)

Here, we have (1.𝑏1 . . . 𝑏𝑚)2 · 2−ℓ+𝑚+𝑗 = ((1𝑏1 . . . 𝑏𝑚)2 · 2𝑗 ) · 2−ℓ , where (1𝑏1 . . . 𝑏𝑚)2 · 2𝑗 ∈
[2𝑚+1, 2ℓ − 1] by𝑚 + 𝑗 ≥ 𝑚 + 1 and𝑚 + 1 + 𝑗 ≤ ℓ . Hence, [2−ℓ+𝑚+1, 1) ∩ F𝐸𝑚 ⊆ 𝑆2, implying

that [2−ℓ+𝑚+1, 1) ∩ F𝐸𝑚 ⊆ rnd (𝑆2).
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The subclaim is thus established, completing the proof of the first claim.

For the second claim, the proof is exactly the same because (i) rnd (2ℓ ) = 2
ℓ
by 0 ≤ ℓ ≤ 2

𝐸−1 − 2;

and (ii) the above proof used only those 𝑖 ∈ {0, . . . , 2ℓ − 1} such that 𝑖 = (1.𝑏1 . . . 𝑏𝑚)2 · 2𝑗 for some

𝑏1, . . . , 𝑏𝑚 ∈ {0, 1} and 𝑗 ∈ {0, . . . , ℓ − 1}, which satisfy rnd (𝑖) = 𝑖 . □

Remark B.2. Prop. B.1 describes a standard method [28] to generate a floating-point random

variate from Uniform( [0, 1]), and presents the proportion of floats in [0, 1] covered by this method.

We list some of the actual implementations of this method and show relevant details.

• In the GNU Standard C++ Library (libstdc++), the function std::generate_canonical()
generates a 64-bit float with ℓ = 64 and a 32-bit float with ℓ = 32 (when invoked with

std::mt19937),6 covering 1.27% of 64-bit floats in [0, 1] and 7.87% of 32-bit floats in [0, 1].
This function for 32-bit floats is similar to the first code on page 2 of Downey [15].

• In the GNU Scientific Library (GSL), the function gsl_rng_uniform() generates a 64-bit

float with ℓ = 32 (when invoked with gsl_rng_mt19937),7 covering only 9.32 × 10
−8
% of

64-bit floats in [0, 1]. This function corresponds to uniform() in Listing 1. The GSL, however,

does not provide a 32-bit version of this function.

• In Python and SciPy, the functions random.random() and scipy.stats.uniform.rvs()
generate a 64-bit float with ℓ = 53,

8
covering 0.20% of 64-bit floats in [0, 1]. The random

module and SciPy, however, do not provide a 32-bit version of this function.

• In NumPy and PyTorch, the functions numpy.Generator.random() and torch.rand() gen-

erate a 64-bit float with ℓ = 53 and a 32-bit float with ℓ = 24 (when invoked with numpy.
random.PCG64 for NumPy),

9
covering 0.20% of 64-bit floats in [0, 1] and 1.57% of 32-bit floats

in [0, 1], respectively. «

6
https://github.com/gcc-mirror/gcc/blob/releases/gcc-14.2.0/libstdc++-v3/include/bits/random.tcc#L3370

7
https://github.com/ampl/gsl/blob/v2.7.0/rng/mt.c#L127

8
Python: https://github.com/python/cpython/blob/v3.13.0/Modules/_randommodule.c#L191

SciPy: https://github.com/numpy/numpy/blob/v2.0.0/numpy/random/src/mt19937/mt19937.h#L58

9
NumPy (64-bit): https://github.com/numpy/numpy/blob/v2.0.0/numpy/random/_common.pxd#L69

NumPy (32-bit): https://github.com/numpy/numpy/blob/v2.0.0/numpy/random/src/distributions/distributions.c#L20

PyTorch: https://github.com/pytorch/pytorch/blob/v2.3.0/aten/src/ATen/core/TransformationHelper.h#L85
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Table 3. Comparison of coverage of floating-point numbers in the unit interval when generating “uniform”

random variates using exact generation from the CDF cdf_uniform_round_dn (Page 6 of main text) and the

usual division method [28]. Results are shown for the 8-bit binary number format F5

2
, i.e., 5 exponent bits and 2

mantissa bits, which contains 60 floats in the interval [0, 1). The ‘No. of Observed Samples’ column shows the

empirical frequency with which each float was observed in a sample of 10,000,000 random variates generated

using the exact and division method. The division method covers only 2/32 floats in the first 8 binades (left

table, 0 and 0.0039062500), whereas the exact method covers all floats with the correct frequencies. For 32-bit

or 64-bit floating-point systems, the division method covers an even smaller fraction of all the possible floats,

whereas the exact method retains 100% coverage.

No. of Observed Samples
Float Exact Method Division Method

0 0.0000000000000000 164 39385

1 0.0000152587890625 146 0

2 0.0000305175781250 173 0

3 0.0000457763671875 155 0

4 0.0000610351562500 145 0

5 0.0000762939453125 129 0

6 0.0000915527343750 166 0

7 0.0001068115234375 136 0

8 0.000122070312500 293 0

9 0.000152587890625 308 0

10 0.000183105468750 292 0

11 0.000213623046875 321 0

12 0.00024414062500 638 0

13 0.00030517578125 643 0

14 0.00036621093750 689 0

15 0.00042724609375 618 0

16 0.0004882812500 1197 0

17 0.0006103515625 1170 0

18 0.0007324218750 1175 0

19 0.0008544921875 1239 0

20 0.000976562500 2412 0

21 0.001220703125 2345 0

22 0.001464843750 2442 0

23 0.001708984375 2439 0

24 0.00195312500 4870 0

25 0.00244140625 4778 0

26 0.00292968750 4858 0

27 0.00341796875 4814 0

28 0.0039062500 9716 39080

29 0.0048828125 9657 0

30 0.0058593750 9801 0

31 0.0068359375 9872 0

No. of Observed Samples
Float Exact Method Division Method

32 0.007812500 19499 39273

33 0.009765625 19440 0

34 0.011718750 19771 39027

35 0.013671875 19797 0

36 0.01562500 38848 39205

37 0.01953125 39399 39012

38 0.02343750 39118 38920

39 0.02734375 38898 39177

40 0.0312500 78148 78228

41 0.0390625 77943 77833

42 0.0468750 77378 77494

43 0.0546875 78279 77863

44 0.062500 156466 156536

45 0.078125 156020 156099

46 0.093750 156554 155971

47 0.109375 156471 157199

48 0.12500 313092 312150

49 0.15625 313487 312113

50 0.18750 313109 311700

51 0.21875 311921 312760

52 0.2500 625607 625439

53 0.3125 625895 624591

54 0.3750 624381 626462

55 0.4375 624009 624240

56 0.500 1250741 1249658

57 0.625 1249698 1251008

58 0.750 1249268 1250410

59 0.875 1248962 1249167
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C Deferred Results in §4
Proposition 3.6. A random variate generator 𝑋 describes a random variable 𝑋𝛾 : [0, 1] → R over

at most 2
𝑛 values, where Pr(𝑋𝛾 = 𝑥) = ∑

𝑢∈dom(𝑋 ) 2
−|𝑢 |1[𝛾 (𝑋 (𝑢)) = 𝑥] for any 𝛾 : {0, 1}𝑛 → R. «

Proof. Write dom(𝑋 ) = {𝑢1, 𝑢2, . . .} ⊂ {0, 1}∗ and define 𝐼𝑖 B [(0.𝑢𝑖 )2, (0.𝑢𝑖 1̄)2). By the first

property in (3.1) (prefix-free), the intervals 𝐼1, 𝐼2, . . . are pairwise disjoint. By the second property

in (3.1) (exhaustive), the union of these disjoint intervals forms a measure one subset of [0, 1], since
𝜆(∪𝑖 𝐼𝑖 ) =

∑
𝑖 𝜆(𝐼𝑖 ) =

∑
𝑖 [(0.𝑢𝑖1∞)2 − (0.𝑢𝑖0∞)2] (C.1)

=
∑
𝑖

[
((0.𝑢𝑖0∞)2 + 2

−|𝑢𝑖 | ) − (0.𝑢𝑖0∞)2
]
=

∑
𝑖 2
−|𝑢𝑖 | = 1. (C.2)

Then for each 𝜔 ∈ [0, 1], let 𝑋𝛾 (𝜔) B 𝛾 (𝑋 (𝑢 𝑗 )) if there exists 𝑗 such that 𝜔 ∈ 𝐼 𝑗 , and arbitrarily

otherwise, on the measure zero set [0, 1] \ ∪𝑖 𝐼𝑖 . With this construction, for any 𝑥 ∈ R we have

Pr(𝑋𝛾 = 𝑥) = Pr

( ∞⋃
𝑖=1

{𝐼𝑖 | 𝛾 (𝑋 (𝑢𝑖 )) = 𝑥}
)

(C.3)

=

∞∑︁
𝑖=1

𝜆(𝐼𝑖 )1[𝛾 (𝑋 (𝑢𝑖 )) = 𝑥] =
∞∑︁
𝑖=1

2
−|𝑢𝑖 |1[𝛾 (𝑋 (𝑢𝑖 )) = 𝑥] . (C.4)

□

The remainder of this section proves the correctness (Cor. C.5) and entropy-optimality (Cor. C.6)

of Algorithm 1, which together imply Theorem 4.6.

Proposition C.1. For any 𝑧, 𝑥,𝑦 ∈ [0, 1] with 𝑧 = 𝑥 + 𝑦, let 𝑧 = (𝑧0 .𝑧1𝑧2 . . .)2, 𝑥 = (𝑥0.𝑥1𝑥2 . . .)2,
and 𝑦 = (𝑦0.𝑦1𝑦2 . . .)2 be concise binary expansions. Suppose ℓ ≥ 0 is any index. If 𝑥ℓ𝑦ℓ𝑧ℓ ∈
{000, 011, 101, 110} and 𝑧 𝑗 = 0 for all 𝑗 > ℓ , then 𝑥 𝑗𝑦 𝑗 = 00 for all 𝑗 > ℓ . «

Proof. Toward a contradiction, assume 𝑥𝑘 = 1 or 𝑦𝑘 = 1 for some 𝑘 > ℓ . Let 𝑥 ′ B (𝑥ℓ .𝑥ℓ+1 . . .)2,
𝑦′ B (𝑦ℓ .𝑦ℓ+1 . . .)2, and 𝑧′ B (𝑧ℓ .𝑧ℓ+1 . . .)2 = 𝑧ℓ . Then, 𝑥ℓ + 𝑦ℓ = (𝑥ℓ .0 . . .)2 + (𝑦ℓ .0 . . .)2 < 𝑥 ′ + 𝑦′ <
(𝑥ℓ .1 . . .)2 + (𝑦ℓ .1 . . .)2 = 𝑥ℓ + 𝑦ℓ + 2, where the second < is by the conciseness of (𝑥ℓ .𝑥ℓ+1 . . .)2 and
(𝑦ℓ .𝑦ℓ+1 . . .)2. On the other hand, 𝑥 + 𝑦 = 𝑧 implies 𝑥 ′ + 𝑦′ ∈ {𝑧′, 𝑧′ + (10.0)2} = {𝑧ℓ , 𝑧ℓ + 2}, where
the ∈ is by the conciseness of (𝑥ℓ .𝑥ℓ+1 . . .)2 and (𝑦ℓ .𝑦ℓ+1 . . .)2, and the = is by assumption. Since

𝑥ℓ + 𝑦ℓ ∈ {𝑧ℓ , 𝑧ℓ + 2} by assumption, we get a contradiction. □

Theorem 4.2. Let 𝑧, 𝑥,𝑦 ∈ [0, 1] satisfy 𝑧 = 𝑥 + 𝑦. Suppose ℓ ≥ 0 is any index such that 𝑧ℓ = 1

and 𝑧 𝑗 = 0 for all 𝑗 > ℓ , where 𝑧 = (𝑧0.𝑧1𝑧2 . . .)2, 𝑥 = (𝑥0.𝑥1𝑥2 . . .)2 and 𝑦 = (𝑦0.𝑦1𝑦2 . . .)2 are concise
binary expansions. The binary expansions of 𝑥 and 𝑦 match exactly one of the following patterns:[

0 1

1 0

] [
0

0

]∞
(Pattern 4.2.1)

+

[
𝑥ℓ . . . 𝑥ℓ ′ . . .

𝑦ℓ . . . 𝑦ℓ ′ . . .

]
=

[
0 1

0 1

] [
0 1

1 0

]∗ [
1

1

] [
0

0

]∞
(Pattern 4.2.2)[

0 1

0 1

] [
0 1

1 0

]∗
(Pattern 4.2.3)

= 𝑧ℓ . . . 𝑧ℓ ′ . . . = 1 0 . . . 0 . . .


(4.2)

Here, each pattern is written in the style of regular expressions: [𝑅 | 𝑅′] denotes either 𝑅 or 𝑅′, [𝑅]∗
denotes zero or more occurrences of 𝑅, and [𝑅]∞ denotes the infinite occurrences of 𝑅. «

Proof. For each 𝑗 ≥ 0, write 𝑧 𝑗 = 𝑥 𝑗 + 𝑦 𝑗 + 𝑐 𝑗 (mod 2), where 𝑐 𝑗 ∈ {0, 1} is the “carry” bit at
location 𝑗 of the binary addition. The three patterns in (4.2) correspond to three different cases of

(𝑥ℓ𝑥ℓ+1 . . .) and (𝑦ℓ𝑦ℓ+1 . . .).
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4.2.1 Assume 𝑥ℓ𝑦ℓ ∈ {01, 10}. Since 𝑥ℓ𝑦ℓ𝑧ℓ ∈ {011, 101} and 𝑧 𝑗 = 0 for all 𝑗 > ℓ , Prop. C.1 implies

that 𝑥 𝑗𝑦 𝑗 = 00 for all 𝑗 > ℓ .

4.2.2 Assume 𝑥ℓ𝑦ℓ ∈ {00, 11} and 𝑥 𝑗𝑦 𝑗 ≠ 11 for all 𝑗 > ℓ . We argue that 𝑥 𝑗𝑦 𝑗 ≠ 00 for all 𝑗 > ℓ .

For contradiction, assume 𝑥𝑘𝑦𝑘 = 00 for some 𝑘 > ℓ ; let 𝑘 be the smallest such index. Then, 𝑐𝑘−1 = 0

holds. If 𝑘 = ℓ + 1, then 𝑥ℓ + 𝑦ℓ + 𝑐ℓ = 0 ≠ 1 = 𝑧ℓ (mod 2), a contradiction. If 𝑘 > ℓ + 1, then

𝑥𝑘−1𝑦𝑘−1 = 11 must hold by 𝑥𝑘−1 + 𝑦𝑘−1 + 𝑐𝑘−1 = 𝑧𝑘−1 = 0 (mod 2), 𝑐𝑘−1 = 0, and the minimality

of 𝑘 . This contradicts to 𝑥 𝑗𝑦 𝑗 ≠ 11 for all 𝑗 > ℓ .

4.2.3 Assume 𝑥ℓ𝑦ℓ ∈ {00, 11} and 𝑥𝑘𝑦𝑘 = 11 for some 𝑘 > ℓ . Let 𝑘 be the smallest such index.

Since 𝑥𝑘𝑦𝑘𝑧𝑘 = 110 and 𝑧 𝑗 = 0 for all 𝑗 > 𝑘 , Prop. C.1 implies that 𝑥 𝑗𝑦 𝑗 = 00 for all 𝑗 > 𝑘 . By the

minimality of 𝑘 , it suffices show that 𝑥 𝑗𝑦 𝑗 ≠ 00 for all 𝑗 ∈ (ℓ, 𝑘). Toward a contradiction, assume

not. Then, 𝑥 𝑗 ′𝑦 𝑗 ′𝑧 𝑗 ′ = 000 for some 𝑗 ′ ∈ (ℓ, 𝑘). Since 𝑧 𝑗 = 0 for all 𝑗 > 𝑗 ′, Prop. C.1 implies that

𝑥 𝑗𝑦 𝑗 = 00 for all 𝑗 > 𝑗 ′. This contradicts to 𝑥𝑘𝑦𝑘 = 11 and 𝑘 > 𝑗 ′. □

Remark C.2. In Theorem 4.2, if 𝑧 = 1 and 𝑥 ∈ (0, 1), then 𝑥1𝑦1 ≠ 00 (otherwise 𝑥 + 𝑦 < 1). «

Theorem 4.4. Let 𝑧, 𝑥,𝑦 ∈ [0, 1] satisfy 𝑧 = 𝑥 + 𝑦. Suppose 0 ≤ ℓ < ℓ ′ are two indexes such that
𝑧ℓ = 1, 𝑧ℓ ′ = 1 and 𝑧 𝑗 = 0 for ℓ + 1 ≤ 𝑗 ≤ ℓ ′ − 1, where 𝑧 𝑗 , 𝑥 𝑗 and 𝑦 𝑗 are defined as in Theorem 4.2. The
binary expansions of 𝑥 and 𝑦 between locations ℓ and ℓ ′ match exactly one of three possible patterns:[

0 1

1 0

] [
0

0

]ℓ ′−ℓ−1
[
0 0 1

0 1 0

]
(Pattern 4.3.1)

+

[
𝑥ℓ . . . 𝑥ℓ ′

𝑦ℓ . . . 𝑦ℓ ′

]
=

[
0 1

0 1

] [
0 1

1 0

]ℓ ′−ℓ−1
[
1

1

]
(Pattern 4.3.2)[

0 1

0 1

] [
0 1

1 0

]𝑘1
[
1

1

] [
0

0

]𝑘2
[
0 0 1

0 1 0

]
where 𝑘1 + 𝑘2 = ℓ ′ − ℓ − 2

(Pattern 4.3.3)

= 𝑧ℓ . . . 𝑧ℓ ′ = 1 0 . . . 0 1 «


(4.3)

Proof. For each 𝑗 ≥ 0, write 𝑧 𝑗 = 𝑥 𝑗 + 𝑦 𝑗 + 𝑐 𝑗 (mod 2), where 𝑐 𝑗 ∈ {0, 1} is the “carry” bit at
location 𝑗 of the binary addition. The three patterns in (4.3) correspond to three different cases of

the final bits 𝑥ℓ ′𝑦ℓ ′ and initial bits 𝑥ℓ𝑦ℓ .

4.3.2 Assume 𝑥ℓ ′𝑦ℓ ′ = 11. We first prove that 𝑐 𝑗 = 1 and 𝑥 𝑗𝑦 𝑗 ∈ {01, 10} for each 𝑗 ∈ {ℓ +
1, . . . , ℓ ′ − 1}, by induction. For the base case ( 𝑗 = ℓ ′ − 1), 𝑥ℓ ′𝑦ℓ ′ = 11 implies 𝑐ℓ ′−1 = 1. Since

𝑥ℓ ′−1 +𝑦ℓ ′−1 + 𝑐ℓ ′−1 = 𝑧ℓ ′−1 = 0 (mod 2), we must have 𝑥ℓ ′−1𝑦ℓ ′−1 ∈ {01, 10}. For the inductive case
(ℓ + 1 ≤ 𝑗 < ℓ ′ − 1), the induction hypothesis that 𝑥 𝑗+1𝑦 𝑗+1 ∈ {01, 10} and 𝑐 𝑗+1 = 1 implies 𝑐 𝑗 = 1.

But 𝑥 𝑗 + 𝑦 𝑗 + 𝑐 𝑗 = 𝑧 𝑗 = 0 (mod 2) again implies 𝑥 𝑗𝑦 𝑗 ∈ {01, 10}.
We next prove 𝑥ℓ𝑦ℓ ∈ {00, 11}. Since 𝑥ℓ + 𝑦ℓ + 𝑐ℓ = 𝑧ℓ = 1 (mod 2), it suffices to show 𝑐ℓ = 1. If

ℓ ′ = ℓ + 1 then 𝑥ℓ ′𝑦ℓ ′ = 11 implies this. If ℓ ′ > ℓ + 1 then 𝑐ℓ+1 = 1 and 𝑥ℓ+1𝑦ℓ+1 ∈ {01, 10} imply this.

4.3.1 Assume 𝑥ℓ ′𝑦ℓ ′ ≠ 11 and 𝑥ℓ𝑦ℓ ∈ {01, 10}. From 𝑥ℓ ′𝑦ℓ ′ ∈ {00, 01, 10}, we have 𝑐ℓ ′−1 =

0. This implies 𝑧 = 𝑥 + 𝑦 for 𝑧 B (𝑧0.𝑧1 . . . 𝑧ℓ ′−10 . . .)2, 𝑥 B (𝑥0.𝑥1 . . . 𝑥ℓ ′−10 . . .)2, and 𝑦 B
(𝑦0.𝑦1 . . . 𝑦ℓ ′−10 . . .)2. Since 𝑧 𝑗 = 0 for all ℓ < 𝑗 < ℓ ′, we can apply Theorem 4.2 to (𝑧, 𝑥,𝑦, ℓ).
In the theorem, only Pattern 4.2.1 matches because 𝑥ℓ𝑦ℓ𝑧ℓ ∈ {011, 101}. This yields the desired
pattern on (𝑥ℓ+1𝑦ℓ+1, . . . , 𝑥ℓ ′−1𝑦ℓ ′−1) described in Pattern 4.3.1.

4.3.3 Assume 𝑥ℓ ′𝑦ℓ ′ ≠ 11 and 𝑥ℓ𝑦ℓ ∈ {00, 11}. As in the previous case, we have 𝑐ℓ ′−1 = 0 and

𝑧 = 𝑥 + 𝑦, where 𝑧, 𝑥 , and 𝑦 are defined as before. Since 𝑧 𝑗 = 0 for all ℓ < 𝑗 < ℓ ′, we can apply

Theorem 4.2 to (𝑧, 𝑥,𝑦, ℓ). In the theorem, only Pattern 4.2.3 matches because 𝑥ℓ𝑦ℓ𝑧ℓ ∈ {001, 111}
and 𝑥 and 𝑦 have trailing zeros in their binary expansions. This yields the desired pattern on

(𝑥ℓ+1𝑦ℓ+1, . . . , 𝑥ℓ ′−1𝑦ℓ ′−1) described in Pattern 4.3.3. □

Proposition C.3. In GenOpt(𝑝, 𝑏, ℓ), the random number of loop iterations has a least upper
bound 𝑗 ≥ 1 if and only if 𝑗 is the smallest integer such that 𝑝𝑏0

ℓ+𝑗𝑝
𝑏1

ℓ+𝑗 = 11. «
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Proof. If the algorithm reaches step 𝑗 , then it exits at this step with probability one if and only

if 𝑝𝑏0

ℓ+𝑗𝑝
𝑏1

ℓ+𝑗 = 11 (by case analysis); so 𝑗 is an upper bound on the number of loop iterations. It is the

least upper bound if and only if the algorithm reaches step 𝑗 with nonzero probability, which holds

if and only if there is no 𝑗 ′ < 𝑗 such that 𝑝𝑏0

ℓ+𝑗 ′𝑝
𝑏1

ℓ+𝑗 ′ = 11 (otherwise it would exit at step 𝑗 ′). □

Theorem C.4. Let 𝑝 be a binary-coded probability distribution and fix an integer 𝑛 ≥ 1. Let 𝐵𝑛
denote the first 𝑛 bits (stored in variable 𝑏) generated by GenOpt(𝑝) and 𝐶𝑛 the number of coin
flips (stored in variable ℓ) made up to and including the point when the 𝑛-th bit is generated. Then
Pr(𝐵𝑛 = 𝑏,𝐶𝑛 = ℓ) = 2

−ℓ1[[𝑝 (𝑏)]ℓ = 1]. «

Proof. The proof is by induction on the number of recursive calls 𝑛 to GenOpt.

Base Case. Suppose 𝑛 = 1. Consider the invocation GenOpt(𝑝, 𝑏 = 𝜀, ℓ = 0).
Case: (𝑝0, 𝑝1) = (1, 0). In the concise binary expansion, we have (𝑝0

0
, 𝑝1

0
) = (1, 0). Then 0 is

generated with probability 1, the loop is never entered, and exactly 0 flips are made. An

analogous result holds for the symmetric case (𝑝0, 𝑝1) = (0, 1).
Case: 𝑝0 ∈ (0, 1). Fix ℓ ≥ 1 is such that 𝑝0

ℓ = 1. Since 𝑝0 + 𝑝1 = 1, 𝑝0

1
𝑝1

1
≠ 00. Theorem 4.2

establishes that 𝑝0

𝑗𝑝
1

𝑗 ∈ {01, 10} for all 𝑗 = 1, . . . , ℓ − 1. Let 𝑥 𝑗 denote the outcome of

RandBit at iteration 𝑗 . At iteration 𝑗 , the loop continues if and only if 𝑝0

𝑗𝑝
1

𝑗 = 01∧𝑥 𝑗 = 0

or 𝑝0

𝑗𝑝
1

𝑗 = 10 ∧ 𝑥 𝑗 = 1. Therefore, line 9 occurs after exactly 𝑖 coin flips if and only if

𝑥 𝑗 = 𝑝
0

𝑗 ( 𝑗 = 1, . . . , ℓ − 1) and 𝑥ℓ = 1; which by independence of RandBit occurs with

probability 2
−ℓ
. Further, if 𝑝0

ℓ = 0, then line 9 at iteration ℓ is never entered, so 0 cannot

possibly be generated with exactly ℓ flips. The case of 𝑝1 ∈ (0, 1) is similar.

Inductive Case. Assume the claim holds for 𝑛 > 1. Consider the recursive call GenOpt(𝑝,𝑏, ℓ),
where𝑏 ∈ {0, 1}𝑛 is the string generated using exactly ℓ coin flips. From the inductive hypothesis,

𝑝𝑏ℓ = 1 and the probability of the current execution path is 2
−ℓ
. Let ℓ ′ = min𝑖>ℓ {𝑝𝑏𝑖 = 1} be the

index (possibly infinite) of the next 1 in the expansion of 𝑝𝑏 . We analyze the event that the next

generated bit at this stage of the recursion is 0, which means the overall generated string is 𝑏0

(the analysis for 𝑏1 is entirely symmetric to 𝑏0).

Case: ℓ ′ < ∞. Consider the three patterns from Theorem 4.4 for the binary expansions

(𝑝𝑏0

ℓ , 𝑝
𝑏0

ℓ+1, . . . ) and (𝑝𝑏1

ℓ , 𝑝
𝑏0

ℓ+1, . . . ). Suppose Pattern 4.3.1 is matched. If 𝑝𝑏0

ℓ 𝑝
𝑏1

ℓ = 10,

then line 3 ensures that 𝑏0 is generated with 0 additional flips, so the path probability

remains 2
−ℓ

as desired. Suppose Pattern 4.3.2 or 4.3.2 are matched, so the loop is entered.

Let 𝑘 ∈ {1, . . . , ℓ ′ − ℓ} be such that 𝑝𝑏0

ℓ+𝑘 = 1. By an analogous argument to the base

case, the probability of exiting at line 9 after 𝑘 loop iterations (i.e., 𝑘 additional flips) is

precisely 2
−𝑘
, which gives ℓ + 𝑘 flips overall with path probability 2

−(ℓ+𝑘 )
.

Case: ℓ ′ = ∞. Pattern 4.2 shows the bit configuration. If 𝑝𝑏0

ℓ 𝑝
𝑏1

ℓ ∈ {10, 01} the loop is not

entered, as in Pattern 4.3.1. Otherwise if 𝑝𝑏0

ℓ 𝑝
𝑏1

ℓ = 00, loop is entered as in Pattern 4.3.2

and 4.3.3.

Finally, we prove that every index 𝑘 ∈ N with 𝑝𝑏0

𝑘
= 1 has a positive probability of being

encountered in an execution path of a recursive call GenOpt(𝑝, 𝑏, ℓ), for some ℓ ≥ 0. From

the inductive hypothesis, every ℓ such that 𝑧ℓ = 1 is encountered with probability 2
−ℓ > 0. It

suffices to prove that all the 1 bits among 𝑝𝑏0

ℓ , 𝑝
𝑏0

ℓ+1, . . . , 𝑝
𝑏0

ℓ ′ are selected with positive probability.

Case: the loop is entered. By Prop. C.3 it suffices to prove there are no 1 bits after a loop

index 𝑗 such that 𝑝𝑏0

𝑗 𝑝
𝑏1

𝑗 = 11. If ℓ ′ < ∞, apply Theorem 4.4 (Pattern 4.3.3) to conclude.

If ℓ ′ = ∞, apply Theorem 4.2 (Pattern 4.2) to conclude.

Case: the loop is not entered. If ℓ ′ < ∞, apply Theorem 4.4 (Pattern 4.3.1) to conclude that

all the skipped bits are 0. If ℓ ′ = ∞, we have 𝑝𝑏0

ℓ 𝑝
𝑏1

ℓ = 10 (wlog). If 𝑝𝑏0 = 𝑝𝑏 = (1.000 . . .)2,
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then ℓ = 0, and the conclusion is immediate. Otherwise 𝑝𝑏0 < 1. Assume for a con-

tradiction there is a minimal 𝑗 > ℓ such that 𝑝𝑏0

𝑗 = 1 and 𝑝𝑏0

𝑖 = 0 for ℓ < 𝑖 < 𝑗 . As

𝑝𝑏𝑗 = 0 = 1 + 𝑝𝑏1

𝑗 + 𝑐 𝑗 (mod 2) it follows that 𝑐 𝑗−1 = 1. But 𝑝𝑏𝑗−1
= 0 = 0 + 𝑝𝑏1

𝑗−1
+ 𝑐 𝑗−1

(mod 2) so 𝑐 𝑗−2 = 1. Apply repeatedly to conclude that 𝑐ℓ = 1. But 𝑝𝑏ℓ = 1 = 1 + 0 + 1

(mod 2) = 0, a contradiction.

As 𝑏 was arbitrary, the statement holds for all 𝑏′ ∈ {0, 1}𝑛+1. □

Corollary C.5. For each 𝑛 ≥ 0 and 𝑏 ∈ {0, 1}𝑛 the probability GenOpt(𝑝) generates a string
matching 𝑏{0, 1}∗ is 𝑝 (𝑏). «

Proof. Define 𝐵𝑛 and 𝐶𝑛 as in the statement of Theorem C.4. Then

Pr(𝐵𝑛 = 𝑏) =
∞∑︁
ℓ=0

Pr(𝐵𝑛 = 𝑏,𝐶𝑛 = ℓ) =
∞∑︁
ℓ=0

2
−ℓ1[[𝑝 (𝑏)]ℓ = 1] =

∞∑︁
ℓ=0

2
−ℓ [𝑝 (𝑏)]ℓ = 𝑝 (𝑏). (C.5)

□

Corollary C.6. For every binary-coded distribution 𝑝 and integer 𝑛 ≥ 1, GenOpt defines an
entropy-optimal generator for the discrete distribution 𝑃𝑛 B {𝑏 ↦→ 𝑝 (𝑏) | 𝑏 ∈ {0, 1}𝑛}, i.e., its average
number of random coin flips 𝐶𝑛 is minimal among all exact sampling algorithms for 𝑃𝑛 . «

Proof. Define 𝐵𝑛 and 𝐶𝑛 as in the statement of Theorem C.4. Then

E[𝐶𝑛] =
∞∑︁
ℓ=0

ℓ · Pr(𝐶𝑛 = ℓ) =
∞∑︁
ℓ=0

ℓ
©­«

∑︁
𝑏∈{0,1}𝑛

Pr(𝐶𝑛 = ℓ, 𝐵𝑛 = 𝑏)ª®¬ (C.6)

=

∞∑︁
ℓ=0

ℓ
©­«

∑︁
𝑏∈{0,1}𝑛

2
−ℓ [𝑝 (𝑏)]ℓ

ª®¬ (C.7)

=
∑︁

𝑏∈{0,1}𝑛

∞∑︁
ℓ=0

ℓ · 2−ℓ [𝑝 (𝑏)]ℓ (C.8)

which is precisely the Knuth-Yao lower bound. It follows from [37] that𝐻 (𝑃𝑛) ≤ E[𝐶𝑛] ≤ 𝐻 (𝑃𝑛)+2,

where 𝐻 is the binary entropy function. □

Theorem 4.6. Let 𝑝 : {0, 1}∗ → [0, 1] be a binary-coded probability distribution. For each 𝑛 ∈ N,
Algorithm 1 generates a string 𝐵1 . . . 𝐵𝑛 ∼ 𝑝𝑛 (stored as a prefix of 𝑏) and is entropy-optimal for 𝑝𝑛 . «

Proof. This result is a restatement of Cors. C.5 and C.6. □

Implementation of Algorithm 1 using Lazy Computation. Algorithm 1, which generates a stream

of random bits from a binary-coded probability distribution, can be directly implemented in a

programming language that supports lazy computation. Listing 3 shows one such implementation

in Haskell, using a guarded recursive call on line 40 that occurs in the data constructor (:) for lists
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Lst 3. Implementation of Algorithm 1, which generates a stream of random bits from a binary-coded probability

distribution, using lazy computation with a guarded recursive call in the Haskell programming language.

1 type Bit = Int
2 type BinaryString = [Bit]
3 type BinaryCodedDist = [Bit] -> Float
4

5 -- Obtain a fair random bit from the entropy source.
6 randBit :: Bit
7

8 -- Extract bit from a float (Algorithms 3 and 4).
9 extractBit :: Float -> Int -> Bit
10

11 -- Generate the next random bit from the binary coded distribution.
12 -- Returns the generated bit and the updated number of calls to randBit.
13 generateNextBit :: (BinaryCodedDist) -> BinaryString -> Int -> (Bit , Int)
14 generateNextBit p b l = do
15 let pb0 = p (0:b)
16 let pb1 = p (1:b)
17 let bit0 = extractBit pb0 l
18 let bit1 = extractBit pb1 l
19 case (bit0 , bit1) of
20 (1, 0) -> (0, l)
21 (0, 1) -> (1, l)
22 otherwise -> do
23 loop l
24 where loop j = do
25 let x = randBit
26 let j' = j + 1
27 let bit0 = extractBit pb0 j'
28 let bit1 = extractBit pb1 j'
29 if x == 0 && bit0 == 1 then (0, j')
30 else if x == 1 && bit1 == 1 then (1, j')
31 else loop j'
32

33 -- Overall recursive function.
34 generate :: (BinaryCodedDist) -> BinaryString
35 generate p = generate_ [] 0
36 where
37 generate_ :: BinaryString -> Int -> BinaryString
38 generate_ b l =
39 let (x, l') = generateNextBit p b l
40 in x : (generate_ (x : b) (l+l'))
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D Deferred Results in §5
Proposition 5.8. The ordering <F𝐸𝑚 induced by 𝜙F𝐸𝑚 (5.5) guarantees that 𝛾F𝐸𝑚 : ({0, 1}𝑛, <F𝐸𝑚 ) →
(−R, <−R) is monotonic. That is, for any distinct 𝑏,𝑏′ ∈ {0, 1}1+𝐸+𝑚 such that 𝛾F𝐸𝑚 ({𝑏, 𝑏

′}) ∉ {{0}, {⊥}},
the following are equivalent: 𝜙−1

F𝐸𝑚
(𝑏) <dict 𝜙

−1

F𝐸𝑚
(𝑏′) ⇐⇒ 𝑏 <F𝐸𝑚 𝑏′ ⇐⇒ 𝛾F𝐸𝑚 (𝑏) <−R 𝛾F𝐸𝑚 (𝑏

′). «

Proof. By the definition of <F𝐸𝑚 , it suffices to show the following: for all 𝑏, 𝑏′ ∈ {0, 1}1+𝐸+𝑚 such

that 𝑏 ≠ 𝑏′ and 𝛾F𝐸𝑚 (𝜙F𝐸𝑚 ({𝑦,𝑦
′})) ≠ {0}, {⊥},

𝑏 <dict 𝑏
′ ⇐⇒ 𝛾F𝐸𝑚 (𝜙F𝐸𝑚 (𝑏)) <−R 𝛾F𝐸𝑚 (𝜙F𝐸𝑚 (𝑏

′)) . (D.1)

Recall that 𝜙M𝐸+𝑚 and 𝜙F𝐸𝑚 are defined as follows: for 𝑏0 . . . 𝑏𝐸+𝑚 ∈ {0, 1}1+𝐸+𝑚 ,

𝜙M𝐸+𝑚 (𝑏0 . . . 𝑏𝐸+𝑚) =
{

1
¯𝑏1 . . . ¯𝑏𝐸+𝑚 if 𝑏0 = 0

0𝑏1 . . . 𝑏𝐸+𝑚 if 𝑏0 = 1,
(D.2)

𝜙F𝐸𝑚 (𝑏0 . . . 𝑏𝐸+𝑚) =
{
𝜙M𝐸+𝑚

(
(𝑏0 . . . 𝑏𝐸+𝑚)2 + (2𝑚 − 1)

)
if 𝑏0 . . . 𝑏𝐸+𝑚 ≤dict 11

𝐸
0
𝑚

𝑏0 . . . 𝑏𝐸+𝑚 if 𝑏0 . . . 𝑏𝐸+𝑚 >dict 11
𝐸

0
𝑚 .

(D.3)

Using this mapping, we sequentially compute two bit strings (𝑏)2 + (2𝑚 − 1), 𝜙F𝐸𝑚 (𝑏) ∈ {0, 1}
1+𝐸+𝑚

and one extended real 𝛾F𝐸𝑚 (𝜙F𝐸𝑚 (𝑏)) ∈
−

R for each 𝑏 ∈ {0, 1}1+𝐸+𝑚 :

𝑏

𝑏0 𝑏1 . . . 𝑏𝐸 𝑏𝐸+1 . . . 𝑏𝐸+𝑚
0 00 . . . 00 00 . . . 000

...
...

...

0 11 . . . 11 00 . . . 000

0 11 . . . 11 00 . . . 001

...
...

...

1 11 . . . 10 00 . . . 001

1 11 . . . 10 00 . . . 010

...
...

...

1 11 . . . 11 00 . . . 000

1 11 . . . 11 00 . . . 001

...
...

...

1 11 . . . 11 11 . . . 111

(𝑏)2 + (2𝑚 − 1)

𝑏′
0
𝑏′

1
. . . 𝑏′

𝐸
𝑏′
𝐸+1 . . . 𝑏

′
𝐸+𝑚

0 00 . . . 00 11 . . . 111

...
...

...

0 11 . . . 11 11 . . . 111

1 00 . . . 00 00 . . . 000

...
...

...

1 11 . . . 11 00 . . . 000

1 11 . . . 11 00 . . . 001

...
...

...

1 11 . . . 11 11 . . . 111

unimportant

𝜙F𝐸𝑚 (𝑏)

𝑠 𝑒𝐸 . . . 𝑒1 𝑓1 . . . 𝑓𝑚
1 11 . . . 11 00 . . . 000

...
...

...

1 00 . . . 00 00 . . . 000

0 00 . . . 00 00 . . . 000

...
...

...

0 11 . . . 11 00 . . . 000

0 11 . . . 11 00 . . . 001

...
...

...

0 11 . . . 11 11 . . . 111

1 11 . . . 11 00 . . . 001

...
...

...

1 11 . . . 11 11 . . . 111

𝛾F𝐸𝑚 (𝜙F𝐸𝑚 (𝑏))

𝑟 ∈ −R
−∞
...

0

0

...

+∞
⊥
...

⊥
⊥
...

⊥

Using this calculation and the definition of 𝛾F𝐸𝑚 and <−R, one can check that (D.1) indeed holds. □

Proposition 5.13. Let 𝐹 : {0, 1}𝑛 → F𝐸𝑚 ∩ [0, 1] be a CDF over the unsigned integer format U𝑛
and 𝑃𝐹 the corresponding discrete distribution from Remark 5.11. The function 𝑝𝐹 : {0, 1}∗ → [0, 1]
defined below is a binary-coded probability distribution that satisfies 𝑝𝐹 (𝑏) = 𝑃𝐹 (𝑏) for all 𝑏 ∈ {0, 1}𝑛 :

𝑝𝐹 (𝑏) B 𝐹 (𝑏1
𝑛−|𝑏 | ) −R 𝐹 ((𝑏0

𝑛−|𝑏 | )−) (𝑏 ∈ {0, 1}≤𝑛), (5.7)

𝑝𝐹 (𝑏𝑏′) B 𝑝𝐹 (𝑏)1[𝑏′ = 0 . . . 0] (𝑏 ∈ {0, 1}𝑛 ;𝑏′ ∈ {0, 1}+), (5.8)

where 𝑥− B pred
dict
(𝑥) for any 𝑥 ∈ {0, 1}𝑛 \ {0𝑛}, with the convention that 𝐹 ((0𝑛)−) B 0. «
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Proof. We first argue that 𝑝𝐹 is a binary-coded distribution. If |𝑏 | = 0, then (5.7) gives

𝑝𝐹 (𝜀) = 𝐹 (1𝑛) −R 𝐹 ((0𝑛)−) = 1 − 0 = 1. (D.4)

If 1 ≤ |𝑏 | ≤ 𝑛, then (5.7) again gives

𝑝𝐹 (𝑏0) + 𝑝𝐹 (𝑏1) = 𝐹 (𝑏01
𝑚) − 𝐹 ((𝑏00

𝑚)−) + 𝐹 (𝑏11
𝑚) − 𝐹 ((𝑏10

𝑚)−︸    ︷︷    ︸
=𝑏01

𝑚

) (D.5)

= 𝐹 (𝑏11
𝑚) − 𝐹 ((𝑏00

𝑚)−) = 𝐹 (𝑏1
𝑚+1) − 𝐹 ((𝑏0

𝑚+1)−) = 𝑝𝐹 (𝑏), (D.6)

where 𝑚 B 𝑛 − |𝑏 | − 1. Next consider 𝑝𝐹 (𝑏𝑏′) where |𝑏 | = 𝑛 and 𝑏′ ∈ {0, 1}+. If 𝑏′ = 0 . . . 0,

(5.8) gives 𝑝 (𝑏𝑏′0) + 𝑝 (𝑏𝑏′1) = 𝑝 (𝑏) + 0 = 𝑝 (𝑏) = 𝑝 (𝑏𝑏′). Otherwise 𝑏′ ≠ 0 . . . 0 so (5.8) gives

𝑝 (𝑏𝑏′0) + 𝑝 (𝑏𝑏′1) = 0 + 0 = 0 = 𝑝 (𝑏𝑏′).
Finally, we prove that 𝑃𝐹 (𝑏) = 𝑝𝐹 (𝑏) for all 𝑏 ∈ {0, 1}𝑛 , where 𝑃𝐹 . From (5.8), if 𝑏 = 0

𝑛
then

𝑝𝐹 (𝑏) = 𝐹 (𝑏) = 𝑃𝐹 (𝑏). Otherwise 𝑝𝐹 (𝑏) = 𝐹 (𝑏) − 𝐹 (pred
dict
(𝑏)) = 𝑃𝐹 (𝑏), which follows from

pred
dict

= predU𝑛
. □

Proposition 5.14. Let 𝐹 : {0, 1}𝑛 → F𝐸𝑚 ∩ [0, 1] be a CDF over a number format B = (𝑛,𝛾B, 𝜙B).
Then 𝐹 B 𝐹 ◦ 𝜙B is a CDF over the unsigned integer format U𝑛 = (𝑛, (·)2, id) from Example 5.4. «

Proof. As 𝜙U𝑛 = id, for the minimal element: 𝐹 (𝜙U𝑛 (0𝑛)) = 𝐹 (0𝑛) = 𝐹 (𝜙𝑆 (0𝑛)) ≥ 0. For the

maximal element: 𝐹 (𝜙U𝑛 (1𝑛)) = 𝐹 (1𝑛) = 𝐹 (𝜙𝑆 (1𝑛)) = 1. Since 𝐹 is monotonically non-decreasing

and 𝜙 monotonically increasing, so is their composition 𝐹 ≡ 𝐹 ◦ 𝜙𝑆 . That is, if 𝑥 <U𝑛 𝑥
′
, then (5.1)

implies that 𝜙𝑆 (𝑥) <F𝐸𝑚 𝜙𝑆 (𝑥 ′), so 𝐹 (𝑥) = 𝐹 (𝜙𝑆 (𝑥)) ≤F𝐸𝑚 𝐹 (𝜙𝑆 (𝑥 ′)) = 𝐹 (𝑥 ′). □

Theorem 5.16. Suppose 𝑥, 𝑥 ′ ∈ F𝐸𝑚 satisfy 0 < 𝑥 −R 𝑥 ′ < 1, and consider any integer ℓ ≥ 1. Let
𝛽 = (𝑛1, 𝑛2, 𝑛hi, 𝑛lo, 𝑏1, 𝑏2, 𝑔hi, 𝑔lo) be the output of ExtractBitPreproc1(𝑥, 𝑥 ′) (Algorithm 3), and let
𝑏′ be the output of ExtractBit(𝛽, ℓ) (Algorithm 4). Then,

𝑥 −R 𝑥 ′ =
(
0. 𝑏1 . . . 𝑏1

𝑛1 bits

𝑔hi

𝑛
hi
bits

𝑏2 . . . 𝑏2

𝑛2 bits

𝑔lo

𝑛
lo
bits

)
2

(5.9)

and 𝑏′ is the ℓ-th digit of 𝑥 −R 𝑥 ′ in binary expansion. Also, all intermediate values appearing in both
algorithms are representable as (1 + 𝐸 +𝑚)-bit signed integers. «

Proof. We prove the claims for 𝑥 < 1 and 𝑥 = 1 separately.

First, assume 𝑥 < 1. Then, (𝑒, 𝑓 ) and (𝑒′, 𝑓 ′) computed in lines 2–8 of Algorithm 3 satisfy

𝑒, 𝑒′ ≤ −1, 𝑓 = (𝑓0 . . . 𝑓𝑚)2, 𝑓 ′ = (𝑓 ′
0
. . . 𝑓 ′𝑚)2, 𝑥 = 2

𝑒 · (𝑓 /2𝑚), 𝑥 ′ = 2
𝑒′ · (𝑓 ′/2𝑚), (D.7)

where 𝑓0 B 1[𝑒 > 0] and 𝑓 ′
0
B 1[𝑒′ > 0]. Here, ≤ is by 𝑥, 𝑥 ′ ∈ [0, 1), the first two = are by the

definition of 𝑓0 and 𝑓
′

0
, and the last two = are by the definition of F𝐸𝑚 and 𝑥, 𝑥 ′ ∈ [0,∞) ∩ F𝐸𝑚 . We

note that 𝑓0 = 1 if 𝑥 is a normal float, and 𝑓0 = 0 if 𝑥 is a subnormal float; the same hold for 𝑓 ′
0
, 𝑥 ′.

Using the previous observation, we show Eq. (5.9) for 𝑥 < 1 by case analysis on 𝑒 − 𝑒′.
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Case 1. (𝑒 − 𝑒′ ≤ 𝑚 + 1). In this case, we have

= 0. 0 . . . 0 𝑓0 . . . . . . . . . . . . 𝑓𝑚 0 . . . 0

− = 0. 0 . . . 0 0 . . . 0 𝑓 ′
0

. . . 𝑓 ′
𝑚−(𝑒−𝑒′ ) 𝑓 ′

𝑚−(𝑒−𝑒′ )+1 . . . 𝑓 ′𝑚

0. 0 . . . 0

0. 0 . . . 0

𝑥

𝑥 ′

𝑥 − 𝑥 ′ =
𝑓 − 𝑓 ′

hi
0 if 𝑓 ′

lo
= 0

𝑓 − 𝑓 ′
hi
− 1 2

𝑒−𝑒′ − 𝑓 ′
lo

if 𝑓 ′
lo
> 0

{

−𝑒−1 bits︷     ︸︸     ︷ 𝑓 ∈ Z
𝑚+1 bits︷                                   ︸︸                                   ︷

︸                     ︷︷                     ︸
−𝑒′−1 bits

︸                  ︷︷                  ︸
(𝑚+1)−(𝑒−𝑒′ ) bits

𝑓 ′
hi
∈ Z

︸                     ︷︷                     ︸
𝑒−𝑒′ bits
𝑓 ′
lo
∈ Z

︸     ︷︷     ︸
−𝑒−1 bits

︸                                   ︷︷                                   ︸
𝑚+1 bits

︸                     ︷︷                     ︸
𝑒−𝑒′ bits

(D.8)

Here, the equalities on 𝑥 , 𝑥 ′, 𝑓 are by Eq. (D.7), and the equalities on 𝑓 ′
hi
, 𝑓 ′

lo
are by lines 9–

10 of Algorithm 3 and the following: 0 ≤ 𝑒 −𝑒′ ≤ 𝑚 + 1 (by 𝑥 ≥ 𝑥 ′) and 𝑒 −𝑒′ ≤ 𝐸 +𝑚 (by

𝐸 ≥ 1). Further, the equality on 𝑥 − 𝑥 ′ is by earlier equalities and the following: if 𝑓 ′
lo
> 0,

then 𝑓 − 𝑓 ′
hi
≥ 1 (since 𝑓0 = 1 and 𝑒 − 𝑒′ ≥ 1 must hold) and 0 ≤ 2

𝑒−𝑒′ − 𝑓 ′
lo
< 2

𝑒−𝑒′
.

Based on (D.8), we can check that 𝛽 computed in lines 11–16 of Algorithm 3 satisfies

the following: (𝑛1, 𝑛hi, 𝑛2, 𝑛lo) = (−𝑒 − 1,𝑚 + 1, 0, 𝑒 − 𝑒′) are the numbers of bits shown

in the last line of (D.8); (𝑏1, 𝑏2) = (0, 1[𝑓 ′
lo
> 0]) are the bits of 𝑥 − 𝑥 ′ in the 𝑛1 and 𝑛2

parts; and (𝑔hi, 𝑔lo) are the values of 𝑥 − 𝑥 ′ in the 𝑛hi and 𝑛lo parts (i.e., the boxed values

in the last line of (D.8)). Hence, the last line of (D.8) implies (5.9), as desired.

Case 2. (𝑒 − 𝑒′ > 𝑚 + 1). In this case, we have

= 0. 0 . . . 0 𝑓0 . . . 𝑓𝑚 0 . . . 0 0 . . . 0

− = 0. 0 . . . 0 0 . . . 0 0 . . . 0 𝑓 ′
0

. . . 𝑓 ′𝑚

0. 0 . . . 0 0 . . . 0

0. 0 . . . 0 1 . . . 1

𝑥

𝑥 ′

𝑥 − 𝑥 ′ =
𝑓 0 if 𝑓 ′

lo
= 0

𝑓 − 1 2
𝑚+1 − 𝑓 ′

lo
if 𝑓 ′

lo
> 0

{

−𝑒−1 bits︷     ︸︸     ︷ 𝑓 ∈ Z
𝑚+1 bits︷           ︸︸           ︷

︸                                            ︷︷                                            ︸
−𝑒′−1 bits

︸           ︷︷           ︸
𝑚+1 bits

𝑓 ′
lo
∈ Z

︸     ︷︷     ︸
−𝑒−1 bits

︸           ︷︷           ︸
𝑚+1 bits

︸            ︷︷            ︸
(𝑒−𝑒′ )−(𝑚+1) bits

︸           ︷︷           ︸
𝑚+1 bits

(D.9)

Here, the equalities on 𝑥 , 𝑥 ′, 𝑓 is by the same argument in the previous case, the equality

on 𝑓 ′
lo
is by line 10 of Algorithm 3 and 𝑒 − 𝑒′ > 𝑚 + 1, and the equality on 𝑥 − 𝑥 ′ is by

earlier equalities. We note that 𝑓 ′
hi
computed in line 9 of Algorithm 3 satisfies 𝑓 ′

hi
= 0,

because 𝑒 − 𝑒′ ≥ 𝑚 + 1 and 𝐸 +𝑚 ≥ 𝑚 + 1.

Based on (D.9), we can check that 𝛽 computed in lines 11–16 of Algorithm 3 satisfies

the following: (𝑛1, 𝑛hi, 𝑛2, 𝑛lo) = (−𝑒 − 1,𝑚 + 1, (𝑒 − 𝑒′) − (𝑚 + 1),𝑚 + 1) are the numbers

of bits shown in the last line of (D.9); (𝑏1, 𝑏2) = (0, 1[𝑓 ′
lo
> 0]) are the bits of 𝑥 − 𝑥 ′ in

the 𝑛1 and 𝑛2 parts; and (𝑔hi, 𝑔lo) are the values of 𝑥 − 𝑥 ′ in the 𝑛hi and 𝑛lo parts (since

𝑓 ′
hi
= 0). Hence, the last line of (D.9) implies (5.9), as desired.

We now show the remaining claims for 𝑥 < 1: (i) 𝑏′ is the ℓ-th digit of 𝑥 −𝑥 ′ in binary expansion,

and (ii) all intermediate values appearing in ExtractBitPreproc1 and ExtractBit are repre-

sentable as (𝑚 + 1)-bit (signed or unsigned) integers. The claim (i) follows immediately from (5.9)
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and the definition of ExtractBit(𝛽, ℓ). The claim (ii) holds as follows: we have

𝑒, 𝑒′, 𝑒, 𝑒′ ∈ [−2
𝐸−1 + 2, 2𝐸 − 1] ⊆ [−2

𝐸−1, 2𝐸 − 1], (D.10)

𝑓 , 𝑓 ′, 𝑓 ′
hi
, 𝑓 ′

lo
, 𝑔hi, 𝑔lo ∈ [0, 2𝑚+1 − 1] ⊆ [0, 2𝐸+𝑚 − 1], (D.11)

𝑛1 + 𝑛hi + 𝑛2 + 𝑛lo ∈ [0,−𝑒′ +𝑚] ⊆ [0, 2𝐸+𝑚 − 1], (D.12)

which implies that all the above values are representable as (1 + 𝐸 +𝑚)-bit signed integers. Here,

(D.11) is by 𝐸 ≥ 1 and (D.12) is by −𝑒′ +𝑚 ≤ (2𝐸−1 − 2) +𝑚 ≤ 2
𝐸 + 2

𝑚 − 2 ≤ 2
𝐸+𝑚 − 1.

Lastly, we consider the remaining case: 𝑥 = 1. In this case, (D.8) and (D.9) still hold except that

−𝑒 − 1 = −1 is now less than 0; and 𝑔hi < 2
𝑚
holds since 𝑥 − 𝑥 ′ < 1 (by assumption). From these,

𝑥 −R 𝑥 ′ =
(
0. 𝑔hi

𝑛
hi
bits

𝑏2 . . . 𝑏2

𝑛2 bits

𝑔lo

𝑛
lo
bits

)
2

(D.13)

Since lines 11–16 of Algorithm 3 compute (𝑛1, 𝑛hi) = (0,𝑚), the output of Algorithm 3 corresponds

to the above equation. This implies that all the claims still hold for 𝑥 = 1. □

Proposition D.1. If 𝑝 B (𝑝1, . . . , 𝑝𝑛−1, 𝑝𝑛) and 𝑝′ B (𝑝1, . . . , 𝑝𝑛−1, 𝑝
′
𝑛, 𝑝
′
𝑛+1) are discrete proba-

bility distributions with 𝑝𝑛 = 𝑝′𝑛 + 𝑝′𝑛+1 and 𝑝′𝑛, 𝑝′𝑛+1 > 0, then 𝐻 (𝑝′) > 𝐻 (𝑝). «

Proof.

𝐻 (𝑝′) − 𝐻 (𝑝)
= −𝑝′𝑛 log

2
(𝑝′𝑛) − 𝑝′𝑛+1 log

2
(𝑝′𝑛+1) + 𝑝𝑛 log

2
(𝑝𝑛) (D.14)

= −𝑝′𝑛 log
2
(𝑝′𝑛) − 𝑝′𝑛+1 log

2
(𝑝′𝑛+1) + (𝑝′𝑛 + 𝑝′𝑛+1) log

2
(𝑝′𝑛 + 𝑝′𝑛+1) (D.15)

= 𝑝′𝑛 [log
2
(𝑝′𝑛 + 𝑝′𝑛+1) − log

2
(𝑝′𝑛)] + 𝑝′𝑛+1 [log

2
(𝑝′𝑛 + 𝑝′𝑛+1) − log

2
(𝑝′𝑛+1)] > 0. (D.16)

□

We next establish Theorem 5.18, whose proof rests on Theorem D.2 and Prop. D.3.

Theorem D.2. Let 𝑋 ⊂ −R and 𝑌 ⊂ [0, 1] be finite sets with |𝑌 | ≤ |𝑋 | + 1 and {0, 1} ⊂ 𝑌 . Define
F (𝑋,𝑌 ) ⊂ −R→ [0, 1] to be the set of CDFs with atoms in𝑋 and cumulative probabilities in 𝑌 . Letting
𝐻 (𝐹 ) denote the Shannon entropy of 𝐹 , we have

𝐹 ∈ argmax𝐹 ′∈F(𝑋,𝑌 ) 𝐻 (𝐹 ′) ⇐⇒ 𝐹 (𝑋 ) ∪ {0} = 𝑌 . « (D.17)

Proof. Let 𝑋 = {𝑥1 <−R · · · <−R 𝑥 |𝑋 | } and 𝑌 = {0 = 𝑦1 < · · · < 𝑦 |𝑌 | = 1}. The claim is trivial for

|𝑌 | = 2. Suppose |𝑌 | ≥ 3. Let 𝐹 ∈ F (𝑋,𝑌 ) and 𝑝 = (𝑝1, . . . , 𝑝 |𝑋 | ) ∈ R |𝑋 | be the discrete distribution
corresponding to 𝐹 , i.e., 𝑝𝑖 B 𝐹 (𝑥𝑖 ) − 𝐹 (𝑥𝑖−1) with the convention that 𝐹 (𝑥0) B 0.

(=⇒) Suppose 𝐹 (𝑋 ) ∪ {0} ≠ 𝑌 . Then, there exists 𝑦∗ ∈ 𝑌 \ (𝐹 (𝑋 ) ∪ {0}). Since 𝑦∗ ≠ 0 and 𝑦∗ ≠ 1

(because 𝐹 (𝑥 |𝑋 | ) = 1), there exists 1 < 𝑖∗ < |𝑋 | such that 𝐹 (𝑥𝑖∗ ) < 𝑦∗ < 𝐹 (𝑥𝑖∗+1). Let 𝑝 ∈ R |𝑋 |+1 be
a new discrete distribution defined by

𝑝 =
(
𝑝1, . . . , 𝑝𝑖∗ , 𝑦

∗ − 𝐹 (𝑥𝑖∗ ), 𝐹 (𝑥𝑖∗+1) − 𝑦∗, 𝑝𝑖∗+2, . . . , 𝑝 |𝑋 |
)
. (D.18)

Then, 𝐻 (𝑝) < 𝐻 (𝑝) by Prop. D.1. Further, 𝑝 satisfies two properties: all the prefix sums of 𝑝 are in

𝑌 , and 𝑝 𝑗∗ = 0 for some 𝑗∗. The first property holds because each of the prefix sum of 𝑝 is either 𝑦∗

or 𝐹 (𝑥𝑖 ) for some 𝑖 . The second property holds as follows: if 𝐹 (𝑥 𝑗 ) = 0 for some 𝑗 , then 𝑝 𝑗 = 0 with

𝑗 ≠ 𝑖∗ + 1; otherwise, |𝐹 (𝑋 ) | = |𝐹 (𝑋 ) \ {0}| < |𝑌 \ {0}| = |𝑌 | − 1 ≤ |𝑋 |, so 𝐹 (𝑥 𝑗 ) = 𝐹 (𝑥 𝑗−1) for
some 𝑗 > 1, implying that 𝑝 𝑗 = 0 with 𝑗 ≠ 𝑖∗ + 1. By the two properties, there exists 𝐹 ∈ F (𝑋,𝑌 )
corresponding to 𝑝 (with 𝑝 𝑗∗ = 0 excluded), and 𝐻 (𝑝) < 𝐻 (𝑝) implies the desired conclusion:

𝐻 (𝐹 ) = 𝐻 (𝑝) < 𝐻 (𝑝) = 𝐻 (𝐹 ) ≤ max

𝐹 ′∈F(𝑋,𝑌 )
𝐻 (𝐹 ′). (D.19)
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2
𝑚

outcomes

binade [2−1, 20 )
2
𝑚

outcomes

binade [2−2, 2−1 )
2
𝑚

outcomes

binade [2−𝑘 , 2−𝑘+1 )
2
𝑚

outcomes

binade [0, 2−𝑘 )

𝑚

𝑚

𝑚

𝑘

Fig. 11. DDG tree for a maximum entropy distribution with cumulative probabilities in F𝐸𝑚 , which attains the

maximum possible expected entropy cost described in Theorem C.4. Here, 𝑘 B 2
𝐸−1 + 2.

(⇐=) This direction is immediate from the previous direction and the fact that 𝐹 (𝑋 ) ∪ {0} =
𝐹 ′ (𝑋 ) ∪ {0} implies 𝐻 (𝐹 ) = 𝐻 (𝐹 ′) for all 𝐹, 𝐹 ′ ∈ F (𝑋,𝑌 ). □

Proposition D.3. Let B and F𝐸𝑚 be binary number formats with |F𝐸𝑚 ∩ [0, 1] | ≤ |B| + 1. Let
F be the set of CDFs with atoms in B and cumulative probabilities in F𝐸𝑚 . Then, max𝐹 ′∈F 𝐻 (𝐹 ′) =
𝑚 + 2 − 2

−2
𝐸−1+3, «

Proof. Let 𝑋 = B and 𝑌 = F𝐸𝑚 ∩ [0, 1]. Since they satisfy all the conditions of Theorem D.2,

this theorem implies max𝐹 ′∈F 𝐻 (𝐹 ′) = 𝐻 (𝐹 ), where 𝐹 ∈ F is a CDF that has atoms in B with

𝐹 (B) ∪ {0} = F𝐸𝑚 ∩ [0, 1]. Hence, it suffices to show 𝐻 (𝐹 ) =𝑚 + 2 − 2
−2

𝐸−1+3
. Let 𝑘 B 2

𝐸−1 + 2 so

that −𝑘 is the smallest exponent in F𝐸𝑚 . The atoms of 𝐹 have probabilities given by

subnormal binade: 2
−𝑘/2𝑚 (D.20)

normal binades: (2−𝑒+1 − 2
−𝑒 )/2𝑚 = 2

−𝑒/2𝑚 (𝑒 = 𝑘, 𝑘 − 1, . . . , 1). (D.21)

As there are 2
𝑚
equally likely outcomes in each of these binades, the entropy of 𝐹 is

𝐻 (𝐹 ) = 2
𝑚

(
2
−𝑘−𝑚

log
2
(2𝑘+𝑚)

)
+

𝑘∑︁
𝑒=1

[
2
𝑚

(
2
−𝑒−𝑚

log
2

(
2
𝑒+𝑚 ) ) ]

(D.22)

= 2
𝑚

(
2
−𝑘−𝑚 (𝑘 +𝑚))

)
+

𝑘∑︁
𝑒=1

[2𝑚 (2−𝑒−𝑚 (𝑒 +𝑚))] (D.23)

= 2
−𝑘 (𝑘 +𝑚) +

𝑘∑︁
𝑒=1

[2−𝑒 (𝑒 +𝑚)] (D.24)

= 2
−𝑘 (𝑘 +𝑚) +

(
(𝑚 + 2) − 2

−𝑘 (𝑘 +𝑚 + 2)
)

(D.25)

=𝑚 + 2 − 2
−2

𝐸−1+3. (D.26)

□

Theorem 5.18. The expected entropy cost of Algorithm 2 is at most𝑚 + 2 − 2
−2

𝐸−1+3 bits. «

Proof. Let 𝐹 ∈ F be any maximum entropy CDF as in the proof of Prop. D.3. Following (D.20),

all the probabilities of outcomes in 𝐹 are dyadic rationals of the form 1/2𝑒+𝑚 , where 𝑒 ∈ {1, . . . , 𝑘}
and 𝑘 B 2

𝐸−1 + 2. By Theorem 3.9, any entropy-optimal DDG tree for 𝐹 has precisely one leaf node

for each outcome. Each outcome with probability 1/2𝑒+𝑚 has a leaf at depth 𝑒 +𝑚 of the tree, and

there are 2
𝑚
such leaves at this depth (Fig. 11). Therefore, (D.23) is the expected entropy cost of any

optimal DDG tree for 𝐹 : the first addend is the cost for the 2
𝑚
outcomes with probabilities in the
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subnormal binade and the second addend is the sum of costs for the 2
𝑚
outcomes with probabilities

in each of the 𝑘 normal binades.

Finally, following an analogous argument to the proof of Theorem D.2 and the observations that

(i) all the probabilities of distributions in F are dyadic rationals; and

(ii) (D.23) characterizes the expected entropy cost,

we conclude that this distribution 𝐹 attains the largest possible average entropy cost among all

distributions in F . □
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E Deferred Results in §6
Remark E.1. We describe the essential changes in Algorithms E14 and E15, as compared to

Algorithms A6 and 2, respectively.

• Algorithm A6 ↦→ Algorithm E14. The arguments 𝑐0, 𝑐1 are now pairs with initial values 𝑐0 = (0, 0)
and 𝑐1 = (1, 0). ExactRatio returns (𝑖, 𝑘) such that 𝑖/𝑘 = (𝐺∗ (𝑏) −𝐺∗ (𝑏′))/(𝐺∗ (𝑏) −𝐺∗ (𝑏′′)).
• Algorithm 2 ↦→ Algorithm E15. The arguments 𝑐0 and 𝑐1 are pairs with initial values 𝑐0 = (0, 0)
and 𝑐1 = (1, 0). Algorithms 3–4 are replaced with the more general Algorithms E10–E13 which

exactly subtract (𝑑 ′, 𝑓 ′) B 𝐺 (𝑏′) from (𝑑, 𝑓 ) B 𝐺 (𝑏) for 𝑏 >B 𝑏
′
by handling four cases:

Case 1. 𝑑 = 𝑑 ′ = 0. Apply the existing ExtractBitPreproc1(𝑓 , 𝑓 ′) in Algorithm 3.

Case 2. 𝑑 = 𝑑 ′ = 1. Return ExtractBitPreproc1(𝑓 ′, 𝑓 ), because (1 − 𝑓 ) − (1 − 𝑓 ′) = 𝑓 ′ − 𝑓 .
Case 3. 𝑑 = 1 and𝑑 ′ = 0.Wemust extract the bits in (1− 𝑓 )− 𝑓 ′ = 1−(𝑓 + 𝑓 ′). This computation

is implemented as Algorithm E11 (ExtractBitPreproc2), whose structure closely

mirrors Algorithm 3 and whose correctness is the subject of Theorem E.3.

Case 4. 𝑑 = 0 and 𝑑 ′ = 1. This case cannot occur by (iii) of Prop. E.2. «

Theorem 6.3. Let 𝐹 be a CDF and 𝑆 a SF over a binary number format B, such that 𝑆 (𝑏∗) < 1/2 for
some cutoff 𝑏∗ B Quantile(𝐹, succF𝐸𝑚

(0.5)) ∈ {0, 1}𝑛 . A sound DDF 𝐺 over B satisfying Def. 6.1 is
𝐺 (𝑏) B (0, 𝐹 (𝑏)) if 𝑏 <B 𝑏

∗, 𝐺 (𝑏) B (1, 𝑆 (𝑏)) if 𝑏 ≥B 𝑏∗ (𝑏 ∈ {0, 1}𝑛). « (6.4)

Proof. Assume 𝑆 (𝑏∗) < 1/2. Recall that 𝑏∗ is defined by 𝑏∗ B min<B {𝑏 ∈ {0, 1}𝑛 | 𝐹 (𝑏) ≥
succF𝐸𝑚

(1/2)}. This assumption and definition imply that for all 𝑏 ∈ {0, 1}𝑛 ,

𝑏 <B 𝑏
∗ =⇒ 𝐹 (𝑏) ≤ predF𝐸𝑚

(succF𝐸𝑚
(1/2)) = 1/2, (E.1)

𝑏 ≥B 𝑏∗ =⇒ 𝑆 (𝑏) ≤ 𝑆 (𝑏∗) < 1/2, (E.2)

where the first ≤ is by 𝐹 being into F𝐸𝑚 and the second ≤ is by 𝑆 being a SF over B.
We now show that𝐺 is a DDF over B. By Def. 6.1, we need to prove two claims:𝐺∗ (𝜙B (1𝑛)) = 1;

and 𝑏 <B 𝑏
′
implies 𝐺∗ (𝑏) ≤ 𝐺∗ (𝑏′), where 𝐺∗ : {0, 1}𝑛 → [0, 1] is defined by

𝐺∗ (𝑏) B (1 − 𝑑) 𝑓 + 𝑑 (1 − 𝑓 ) (𝑏 ∈ {0, 1}𝑛 ; (𝑑, 𝑓 ) B 𝐺 (𝑏)) . (E.3)

The first claim holds as follows: since 𝐺 (𝑏) ∈ {(0, 𝐹 (𝑏)), (1, 𝑆 (𝑏))} for every 𝑏, we have
𝐺∗ (𝜙B (1𝑛)) ∈ {𝐹 (𝜙B (1𝑛)), 1 − 𝑆 (𝜙B (1𝑛))} = {1}, (E.4)

where the ∈ is by the definition of 𝐺∗ and the = is by 𝐹 (𝜙B (1𝑛)) = 1 and 𝑆 (𝜙B (1𝑛)) = 0 (because 𝐹

and 𝑆 are finite-precision CDF and SF over B, respectively). To show the second claim, consider

any 𝑏,𝑏′ ∈ {0, 1}𝑛 with 𝑏 <B 𝑏
′
. We show 𝐺∗ (𝑏) ≤ 𝐺∗ (𝑏′) by case analysis on (𝑏,𝑏′):

𝑏 <B 𝑏
′ <B 𝑏

∗ =⇒ 𝐺∗ (𝑏) = 𝐹 (𝑏) ≤ 𝐹 (𝑏′) = 𝐺∗ (𝑏′), (E.5)

𝑏 <B 𝑏
∗ ≤B 𝑏′ =⇒ 𝐺∗ (𝑏) = 𝐹 (𝑏) ≤ 1/2 < 1 − 𝑆 (𝑏′) = 𝐺∗ (𝑏′), (E.6)

𝑏∗ ≤B 𝑏 <B 𝑏
′ =⇒ 𝐺∗ (𝑏) = 1 − 𝑆 (𝑏) ≤ 1 − 𝑆 (𝑏′) = 𝐺∗ (𝑏′), (E.7)

where the first ≤ is by 𝐹 being a CDF over B, the second ≤ is by (E.1), the < is by (E.2), and the last

≤ is by 𝑆 being a SF over B. □

Proposition E.2. In the setup of Theorem 6.3, the DDF 𝐺 satisfies the following properties:
(i) 𝐺 defines a discrete random variable 𝑋 over−RB, for which

Pr(𝑋 ≤ 𝑡) = (1 − 𝑑) 𝑓 + 𝑑 (1 − 𝑓 ) (𝑡 ∈ −RB; (𝑑, 𝑓 ) B 𝐺 (rndB,↓ (𝑡))). (E.8)

(ii) Im(𝐺) ⊂ {(0, 𝑓 ) | 0 ≤ 𝑓 ≤ 1/2} ∪ {(1, 𝑓 ) | 0 ≤ 𝑓 < 1/2}.
(iii) 𝜋1 (𝐺 (𝑏)) < 𝜋1 (𝐺 (𝑏′)) implies 𝐺∗ (𝑏) <𝐺∗ (𝑏′) for all 𝑏,𝑏′ ∈ {0, 1}𝑛 , where 𝜋1 (𝑑, 𝑓 ) B 𝑑 . «
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Proof. For (i), define 𝐺† :
−

R → [0, 1] by 𝐺† (𝑡) B 𝐺∗ (rndB,↓ (𝑡)) as in Remark 5.12. Then, 𝐺†

is a CDF over
−

R due to the two claims we proved about 𝐺∗. Further, by the definition of 𝐺† and
𝐺∗, the distribution defined by 𝐺† satisfies (E.8) and has the support only on

−

RB. The property (ii)

is immediate from (E.1) and (E.2). For (iii), let 𝑏, 𝑏′ ∈ {0, 1}𝑛 satisfy 𝜋1 (𝐺 (𝑏)) < 𝜋1 (𝐺 (𝑏′)). Then,
𝑏 <B 𝑏

∗ ≤B 𝑏′ must hold, which implies 𝐺∗ (𝑏) < 𝐺∗ (𝑏′) by (E.6). □

Theorem E.3. Suppose that 𝑥, 𝑥 ′ ∈ F𝐸𝑚 ∩ [0, 1

2
] satisfy 0 < 𝑥 + 𝑥 ′ < 1, and consider any ℓ ≥ 1. Let

𝛽 = (𝑛1, 𝑛2, 𝑛hi, 𝑛lo, 𝑏1, 𝑏2, 𝑔hi, 𝑔lo) be the output of ExtractBitPreproc2(𝑥, 𝑥 ′) (Algorithm E11), and
let 𝑏′ be the output of ExtractBit(𝛽, ℓ) (Algorithm E13). Then,

1 − (𝑥 + 𝑥 ′) =
(
0. 𝑏1 . . . 𝑏1︸     ︷︷     ︸

𝑛1

𝑔hi︸   ︷︷   ︸
𝑛

hi

𝑏2 . . . 𝑏2︸     ︷︷     ︸
𝑛2

𝑔lo︸   ︷︷   ︸
𝑛

lo

)
2

(E.9)

and 𝑏′ is the ℓ-th digit of 1 − (𝑥 + 𝑥 ′) in binary expansion. Also, all intermediate values appearing in
both algorithms are representable as (1 + 𝐸 +𝑚)-bit (signed or unsigned) integers. «

Proof. By line 2 of Algorithm E11, we can assume 𝑥 ≥ 𝑥 ′. We prove the claims for 𝑥 < 1

2
and

for 𝑥 = 1

2
separately. The current proof is similar to the proof of Theorem 5.16, so we focus mainly

on the differences between the two proofs.

First, assume 𝑥 < 1

2
. Then, (𝑒, 𝑓 ) and (𝑒′, 𝑓 ′) computed in lines 3–10 of Algorithm E11 satisfy

𝑒, 𝑒′ ≤ −2, 𝑓 = (𝑓0 . . . 𝑓𝑚)2, 𝑓 ′ = (𝑓 ′
0
. . . 𝑓 ′𝑚)2, 𝑥 = 2

𝑒 · (𝑓 /2𝑚), 𝑥 ′ = 2
𝑒′ · (𝑓 ′/2𝑚), (E.10)

where 𝑓0 B 1[𝑒 > 0] and 𝑓 ′
0
B 1[𝑒′ > 0]. Here, the first inequality is by 𝑥, 𝑥 ′ ∈ [0, 1

2
), and we have

the remaining equalities as in the proof of Theorem 5.16.

Using the previous observation, we show (E.9) for 𝑥 < 1

2
by case analysis on 𝑒 − 𝑒′.

Case 1. (𝑒 − 𝑒′ ≤ 𝑚 + 1). In this case, we obtain

= 0. 0 . . . 0 0 𝑓0 . . . . . . . . . . . . 𝑓𝑚 0 . . . 0

+ = 0. 0 . . . 0 0 0 . . . 0 𝑓 ′
0

. . . 𝑓 ′
𝑚−(𝑒−𝑒′ ) 𝑓 ′

𝑚−(𝑒−𝑒′ )+1 . . . 𝑓 ′𝑚

𝑥 + 𝑥 ′ = 0. 0 . . . 0

𝑥

𝑥 ′

𝑓 + 𝑓 ′
hi

𝑓 ′
lo

−𝑒−1 bits︷         ︸︸         ︷ 𝑓 ∈ Z
𝑚+1 bits︷                                   ︸︸                                   ︷

︸                         ︷︷                         ︸
−𝑒′−1 bits

︸                  ︷︷                  ︸
(𝑚+1)−(𝑒−𝑒′ ) bits

𝑓 ′
hi
∈ Z

︸                    ︷︷                    ︸
𝑒−𝑒′ bits
𝑓 ′
lo
∈ Z

︸     ︷︷     ︸
−𝑒−2 bits

︸                                      ︷︷                                      ︸
𝑚+2 bits

︸                    ︷︷                    ︸
𝑒−𝑒′ bits

(E.11)

Here, the equalities on 𝑥 , 𝑥 ′, 𝑓 , 𝑓 ′
hi
, 𝑓 ′

lo
hold as in the proof of Theorem 5.16, and the

equality on 𝑥 + 𝑥 ′ is by 𝑒 ≤ −2 and 𝑓 + 𝑓 ′
hi
≤ 2 · (2𝑚+1 − 1) = 2

𝑚+2 − 2 < 2
𝑚+2

. From this,

we obtain

= 1. 0 . . . 0 0 . . . 0 0 . . . 0

− = 0. 0 . . . 0

0. 1 . . . 1

0. 1 . . . 1

1

𝑥 + 𝑥 ′ 𝑓 + 𝑓 ′
hi

𝑓 ′
lo

1 − (𝑥 + 𝑥 ′) =
2
𝑚+2 − (𝑓 + 𝑓 ′

hi
) 0 if 𝑓 ′

lo
= 0

2
𝑚+2 − (𝑓 + 𝑓 ′

hi
) − 1 2

𝑒−𝑒′ − 𝑓 ′
lo

if 𝑓 ′
lo
> 0

{
︸     ︷︷     ︸
−𝑒−2 bits

︸                           ︷︷                           ︸
𝑚+2 bits

︸                           ︷︷                           ︸
𝑒−𝑒′ bits

(E.12)
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Here, the last equality is by 1 ≤ 𝑓 + 𝑓 ′
hi
≤ 2

𝑚+1− 2; we have 𝑓 + 𝑓 ′
hi
≥ 1 because 𝑓 + 𝑓 ′

hi
= 0

implies 𝑥 = 0 = 𝑥 ′ and this contradicts to the assumption 𝑥 + 𝑥 ′ > 0.

Based on (E.12), we can check that 𝛽 computed in lines 13–20 of Algorithm E11 satisfies

the following: (𝑛1, 𝑛hi, 𝑛2, 𝑛lo) = (−𝑒 − 2,𝑚 + 2, 0, 𝑒 − 𝑒′) are the numbers of bits shown

in the last line of (E.12); (𝑏1, 𝑏2) = (1, 1[𝑓 ′
lo
> 0]) are the bits of 1− (𝑥 + 𝑥 ′) in the 𝑛1 and

𝑛2 parts; and (𝑔hi, 𝑔lo) are the values of 1− (𝑥 +𝑥 ′) in the 𝑛hi and 𝑛lo parts (i.e., the boxed

values in the last line of (E.12)). Hence, the last line of (E.12) implies (E.9), as desired.

Case 2. (𝑒 − 𝑒′ > 𝑚 + 1). In this case, we obtain

= 1. 0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0

− = 0. 0 . . . 0 0 𝑓0 . . . 𝑓𝑚 0 . . . 0 𝑓 ′
0

. . . 𝑓 ′𝑚

0. 1 . . . 1 0 . . . 0

0. 1 . . . 1 1 . . . 1

1

𝑥 + 𝑥 ′

1 − (𝑥 + 𝑥 ′) =
2
𝑚+2 − 𝑓 0 if 𝑓 ′

lo
= 0

2
𝑚+2 − 𝑓 − 1 2

𝑚+1 − 𝑓 ′
lo

if 𝑓 ′
lo
> 0

{
︸         ︷︷         ︸
−𝑒−1 bits

︸                ︷︷                ︸
𝑚+1 bits

𝑓 ∈ Z

︸                ︷︷                ︸
(𝑒−𝑒′ )−(𝑚+1) bits

︸                ︷︷                ︸
𝑚+1 bits

𝑓 ′
lo
∈ Z

︸     ︷︷     ︸
−𝑒−2 bits

︸                    ︷︷                    ︸
𝑚+2 bits

︸                ︷︷                ︸
(𝑒−𝑒′ )−(𝑚+1) bits

︸                ︷︷                ︸
𝑚+1 bits

(E.13)

Here, the equalities on 𝑥 + 𝑥 ′, 𝑓 , 𝑓 ′
lo
hold as in the proof of Theorem 5.16. Further, the

equality on 1 − (𝑥 + 𝑥 ′) is by 1 ≤ 𝑓 ≤ 2
𝑚+2 − 1, where we have 𝑓 ≥ 1 as in the previous

case.

Based on (E.13), we can check that 𝛽 computed in lines 13–20 of Algorithm E11 satisfies

the following: (𝑛1, 𝑛hi, 𝑛2, 𝑛lo) = (−𝑒 − 2,𝑚 + 2, (𝑒 − 𝑒′) − (𝑚 + 1),𝑚 + 1) are the numbers

of bits shown in the last line of (E.13); (𝑏1, 𝑏2) = (1, 1[𝑓 ′
lo
> 0]) are the bits of 1− (𝑥 +𝑥 ′)

in the 𝑛1 and 𝑛2 parts; and (𝑔hi, 𝑔lo) are the values of 1 − (𝑥 + 𝑥 ′) in the 𝑛hi and 𝑛lo parts

(since 𝑓 ′
hi
= 0). Hence, the last line of (E.13) implies (E.9), as desired.

We now show the remaining claims for 𝑥 < 1

2
: (i) 𝑏′ is the ℓ-th digit of 1 − (𝑥 + 𝑥 ′) in binary

expansion, and (ii) all intermediate values appearing in ExtractBitPreproc2 and ExtractBit are

representable as (𝑚 + 2)-bit (signed or unsigned) integers. The claim (i) holds as in the proof of

Theorem 5.16. To prove the claim (ii), we note that (D.10)–(D.12) hold as in the proof of Theorem 5.16,

except that we have 𝑓 , 𝑓 ′, 𝑓 ′
hi
, 𝑓 ′

lo
, 𝑔hi, 𝑔lo ∈ [0, 2𝑚+2 − 1] ⊆ [0, 21+𝐸+𝑚 − 1]. This observation implies

that 𝑒, 𝑒′, 𝑒, 𝑒′ are representable as (1 + 𝐸 +𝑚)-bit signed integers and all the other values (𝑓 , 𝑓 ′, . . .
and 𝑛1, 𝑛2, . . .) are representable as (1 + 𝐸 +𝑚)-bit unsigned integers.

Lastly, we consider the remaining case: 𝑥 = 1

2
. In this case, (E.12) and (E.13) still hold except that

−𝑒 − 2 = −1 is now less than 0; and 𝑔hi < 2
𝑚+1

holds since 1 − (𝑥 + 𝑥 ′) < 1 (by assumption). Thus,

1 − (𝑥 + 𝑥 ′) = 0. 𝑔hi︸   ︷︷   ︸
𝑚+1 bits

𝑏2 . . . 𝑏2︸     ︷︷     ︸
𝑛2 bits

𝑔lo︸   ︷︷   ︸
𝑛

lo
bits

. (E.14)

Since lines 13–20 of Algorithm E11 compute (𝑛1, 𝑛hi) = (0,𝑚 + 1), the output of Algorithm E11

corresponds to the above equation. This implies that all the claims still hold for 𝑥 = 1

2
. □
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Algorithm E9 Quantile of a Finite-Precision CDF

Input: CDF 𝐹 : {0, 1}𝑛 → F𝐸𝑚 ∩ [0, 1] over number format B = (𝑛,𝛾B, 𝜙B)
Float 𝑞 ∈ F𝐸𝑚 ∩ [0, 1]

Output: min<B {𝑏 ∈ {0, 1}𝑛 | 𝑞 ≤ 𝐹 (𝑏)}
1: functionQuantile(𝐹, 𝑞)

2: (𝑛, 𝑙, ℎ) ← (1 + 𝐸 +𝑚, 0, 2𝑛 − 1)
3: while 𝑙 ≤ ℎ do
4: 𝑠 ← ⌊(𝑙 + ℎ)/2⌋
5: 𝑠′ ← 𝜙B (𝛾−1

U𝑛
(𝑠))

6: if 𝑞 ≤ 𝐹 (𝑠′) ℎ ← 𝑠 − 1; 𝑡 ← 𝑠′

7: else 𝑙 ← 𝑠 + 1

8: return 𝑡
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Algorithm E10 Preprocessing for ExtractBit

Input: 𝑥, 𝑥 ′ ∈ F𝐸𝑚 ∩ [0, 1] with 0 < 𝑥 −R 𝑥 ′ < 1

Output: (𝑛1, 𝑛2, 𝑛hi, 𝑛lo, 𝑏1, 𝑏2, 𝑔hi, 𝑔lo)
1: function ExtractBitPreproc1(𝑥 , 𝑥 ′)

2: (𝑠 𝑒𝐸 . . . 𝑒1 𝑓1 . . . 𝑓𝑚)F𝐸𝑚 ← 𝑥

3: (𝑠 𝑒′
𝐸
. . . 𝑒′

1
𝑓 ′
1
. . . 𝑓 ′𝑚)F𝐸𝑚 ← 𝑥 ′

4: 𝑒 ← (𝑒𝐸 . . . 𝑒1)2
5: 𝑒′ ← (𝑒′

𝐸
. . . 𝑒′

1
)2

6: 𝑒 ← 𝑒 − (2𝐸−1 − 1) + 1[𝑒 = 0]
7: 𝑒′ ← 𝑒′ − (2𝐸−1 − 1) + 1[𝑒′ = 0]
8: 𝑓 ← (1 𝑓1 . . . 𝑓𝑚)2 − (1[𝑒 = 0] ≪𝑚)
9: 𝑓 ′ ← (1 𝑓 ′

1
. . . 𝑓 ′𝑚)2 − (1[𝑒′ = 0] ≪𝑚)

10: 𝑓 ′
hi
← 𝑓 ′ ≫ min{𝑒 − 𝑒′, 𝐸 +𝑚}

11: 𝑓 ′
lo
← 𝑓 ′ & ((1 ≪ min{𝑒 −𝑒′,𝑚+1}) −1)

12: 𝑛1 ← −𝑒 − 1 + 1[𝑥 = 1]
13: 𝑛2 ← max{(𝑒 − 𝑒′) − (𝑚 + 1), 0}
14: 𝑛hi ←𝑚 + 1 − 1[𝑥 = 1]
15: 𝑛lo ← min{𝑒 − 𝑒′,𝑚 + 1}
16: 𝑏1 ← 0

17: 𝑏2 ← 1[𝑓 ′
lo
> 0]

18: 𝑔hi ← 𝑓 − 𝑓 ′
hi
− 𝑏2

19: 𝑔lo ← (𝑏2 ≪ 𝑛lo) − 𝑓 ′
lo

20: return (𝑛1, 𝑛2, 𝑛hi, 𝑛lo, 𝑏1, 𝑏2, 𝑔hi, 𝑔lo)

Algorithm E11 Preprocessing for ExtractBit

Input: 𝑥, 𝑥 ′ ∈ F𝐸𝑚 ∩ [0, 1

2
] with 0 < 𝑥 +R 𝑥 ′ < 1

Output: (𝑛1, 𝑛2, 𝑛hi, 𝑛lo, 𝑏1, 𝑏2, 𝑔hi, 𝑔lo)
1: function ExtractBitPreproc2(𝑥 , 𝑥 ′)
2: (𝑥, 𝑥 ′) ← (𝑥 ≥ 𝑥 ′) ? (𝑥, 𝑥 ′) : (𝑥 ′, 𝑥)
3: (𝑠 𝑒𝐸 . . . 𝑒1 𝑓1 . . . 𝑓𝑚)F𝐸𝑚 ← 𝑥

4: (𝑠 𝑒′
𝐸
. . . 𝑒′

1
𝑓 ′
1
. . . 𝑓 ′𝑚)F𝐸𝑚 ← 𝑥 ′

5: 𝑒 ← (𝑒𝐸 . . . 𝑒1)2
6: 𝑒′ ← (𝑒′

𝐸
. . . 𝑒′

1
)2

7: 𝑒 ← 𝑒 − (2𝐸−1 − 1) + 1[𝑒 = 0]
8: 𝑒′ ← 𝑒′ − (2𝐸−1 − 1) + 1[𝑒′ = 0]
9: 𝑓 ← (1 𝑓1 . . . 𝑓𝑚)2 − (1[𝑒 = 0] ≪𝑚)
10: 𝑓 ′ ← (1 𝑓 ′

1
. . . 𝑓 ′𝑚)2 − (1[𝑒′ = 0] ≪𝑚)

11: 𝑓 ′
hi
← 𝑓 ′ ≫ min{𝑒 − 𝑒′, 𝐸 +𝑚}

12: 𝑓 ′
lo
← 𝑓 ′ & ((1 ≪ min{𝑒 −𝑒′,𝑚+1}) −1)

13: 𝑛1 ← −𝑒 − 2 + 1[𝑥 = 1

2
]

14: 𝑛2 ← max{(𝑒 − 𝑒′) − (𝑚 + 1), 0}
15: 𝑛hi ←𝑚 + 2 − 1[𝑥 = 1

2
]

16: 𝑛lo ← min{𝑒 − 𝑒′,𝑚 + 1}
17: 𝑏1 ← 1

18: 𝑏2 ← 1[𝑓 ′
lo
> 0]

19: 𝑔hi ← (1 ≪ 𝑛hi) − 𝑓 − 𝑓 ′
hi
− 𝑏2

20: 𝑔lo ← (𝑏2 ≪ 𝑛lo) − 𝑓 ′
lo

21: return (𝑛1, 𝑛2, 𝑛hi, 𝑛lo, 𝑏1, 𝑏2, 𝑔hi, 𝑔lo)
Algorithm E12 Preprocessing for ExtractBit

Input: (𝑑, 𝑓 ), (𝑑 ′, 𝑓 ′) with 𝑑, 𝑑 ′ ∈ {0, 1}
and 𝑓 , 𝑓 ′ ∈ F𝐸𝑚 ∩ [0, 1

2
]

Output: (𝑛1, 𝑛2, 𝑛hi, 𝑛lo, 𝑏1, 𝑏2, 𝑔hi, 𝑔lo)
1: function ExtractBitPreproc(𝑑, 𝑓 , 𝑑 ′, 𝑓 ′)
2: if 𝑑 = 𝑑 ′ = 0

3: ⊲ 𝑓 −R 𝑓 ′
4: return ExtractBitPreproc1(𝑓 , 𝑓 ′)
5: if 𝑑 = 𝑑 ′ = 1

6: ⊲ 𝑓 ′ −R 𝑓
7: return ExtractBitPreproc1(𝑓 ′, 𝑓 )
8: if 𝑑 = 1 and 𝑑 ′ = 0

9: ⊲ 1 −R (𝑓 +R 𝑓 ′)
10: return ExtractBitPreproc2(𝑓 , 𝑓 ′)
11: error

Algorithm E13 Extract Binary Digit

Input: 𝛽B(𝑛1, 𝑛2, 𝑛hi, 𝑛lo, 𝑏1, 𝑏2, 𝑔hi, 𝑔lo), ℓ≥1;

where𝑛1, 𝑛2, 𝑛hi, 𝑛lo ≥ 0, 𝑏1, 𝑏2 ∈ {0, 1},
0 ≤ 𝑔hi < 2

𝑛
hi , 0 ≤ 𝑔lo < 2

𝑛
lo ,

are from

ExtractBitPreproc((𝑑, 𝑓 ), (𝑑 ′, 𝑓 ′))
Output: 𝑏′ ∈ {0, 1}; such that

if 𝑏1 = 0, then 𝑏′ is bit ℓ of (𝑥 −R 𝑥 ′);
if𝑏1 = 1, then𝑏′ is bit ℓ of 1−R (𝑥+R𝑥 ′);
where 𝑥 B (1 − 𝑑) 𝑓 + 𝑑 (1 − 𝑓 )

𝑥 ′ B (1 − 𝑑 ′) 𝑓 ′ + 𝑑 ′ (1 − 𝑓 ′)
.

1: function ExtractBit(𝛽, ℓ)

2: if ℓ ≤ 𝑛1 return 𝑏1

3: if ℓ ≤ 𝑛1 + 𝑛hi return 𝑔hi, ℓ−𝑛1

4: if ℓ ≤ 𝑛1 + 𝑛hi + 𝑛2 return 𝑏2

5: if ℓ ≤ 𝑛1 + 𝑛hi + 𝑛2 + 𝑛lo

6: return 𝑔lo, ℓ−(𝑛1+𝑛hi
+𝑛2 )

7: return 0

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 152. Publication date: June 2025.



152:50 Feras A. Saad and Wonyeol Lee

Algorithm E14 Extended-Accuracy Conditional Bit Sampling

Input: DDF 𝐺 : {0, 1}𝑛 → {0, 1} × (F𝐸𝑚 ∩ [0, 1

2
])

over binary number format B = (𝑛,𝛾B, 𝜙B)
String 𝑏 ∈ {0, 1}≤𝑛 ; Pairs (𝑑0, 𝑓0), (𝑑1, 𝑓1) ∈ {0, 1} × (F𝐸𝑚 ∩ [0, 1

2
])

Output: Exact random variate 𝑋 ∼ 𝐺
1: function CBS(𝐺 , 𝑏 = 𝜀, 𝑑0 = 0, 𝑓0 = 0, 𝑑1 = 0, 𝑓1 = 0)

2: if |𝑏 | = 𝑛 ⊲ Base Case
3: return 𝜙B (𝑏) ⊲ String in Format B
4: 𝑏′ ← 𝑏01

𝑛−|𝑏 |−1

5: (𝑑2, 𝑓2) ← 𝐺 (𝜙B (𝑏′))
6: if (𝑑2, 𝑓2) = (𝑑1, 𝑓1) ⊲ Leaf
7: return CBS(𝐺,𝑏0, 𝑑0, 𝑓0, 𝑑2, 𝑓2) ⊲ 0
8: if (𝑑2, 𝑓2) = (𝑑0, 𝑓0) ⊲ Leaf
9: return CBS(𝐺,𝑏1, 𝑑2, 𝑓2, 𝑑1, 𝑓1) ⊲ 1

10: ⊲
𝑖

𝑘
B

(
(1 − 𝑑1) 𝑓1 + 𝑑1 (1 − 𝑓1)

)
−

(
(1 − 𝑑2) 𝑓2 + 𝑑2 (1 − 𝑓2)

)(
(1 − 𝑑1) 𝑓1 + 𝑑1 (1 − 𝑓1)

)
−

(
(1 − 𝑑0) 𝑓0 + 𝑑0 (1 − 𝑓0)

)
11: (𝑖, 𝑘) ← ExactRatio(𝑑0, 𝑓0, 𝑑2, 𝑓2, 𝑑1, 𝑓1)
12: 𝑧 ← Bernoulli(𝑖, 𝑘) ⊲ Refine Subtree
13: if 𝑧 = 0

14: return CBS(𝐺,𝑏0, 𝑑0, 𝑓0, 𝑑2, 𝑓2) ⊲ 0
15: else
16: return CBS(𝐺,𝑏1, 𝑑2, 𝑓2, 𝑑1, 𝑓1) ⊲ 1
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Algorithm E15 Extended-Accuracy Entropy-Optimal Random Variate Generation

Input: DDF 𝐺 : {0, 1}𝑛 → {0, 1} × (F𝐸𝑚 ∩ [0, 1

2
])

over binary number format B = (𝑛,𝛾B, 𝜙B)
String 𝑏 ∈ {0, 1}≤𝑛 ; #Flips ℓ ≥ 0; Pairs (𝑑0, 𝑓0), (𝑑1, 𝑓1) ∈ {0, 1} × (F𝐸𝑚 ∩ [0, 1

2
])

Output: Exact random variate 𝑋 ∼ 𝐺
1: function Opt(𝐺 , 𝑏 = 𝜀, ℓ = 0, 𝑑0 = 0, 𝑓0 = 0, 𝑑1 = 1, 𝑓1 = 0)

2: if |𝑏 | = 𝑛 ⊲ Base Case
3: return 𝜙B (𝑏) ⊲ String in Format B
4: 𝑏′ ← 𝑏01

𝑛−|𝑏 |−1

5: (𝑑2, 𝑓2) ← 𝐺 (𝜙B (𝑏′))
6: if (𝑑2, 𝑓2) = (𝑑1, 𝑓1) ⊲ Leaf
7: return Opt(𝐺,𝑏0, ℓ, 𝑑0, 𝑓0, 𝑑2, 𝑓2) ⊲ 0
8: if (𝑑2, 𝑓2) = (𝑑0, 𝑓0) ⊲ Leaf
9: return Opt(𝐺,𝑏1, ℓ, 𝑑2, 𝑓2, 𝑑1, 𝑓1) ⊲ 1
10: ⊲ 𝑟0 B

(
(1 − 𝑑2) 𝑓2 + 𝑑2 (1 − 𝑓2)

)
−

(
(1 − 𝑑0) 𝑓0 + 𝑑0 (1 − 𝑓0)

)
∈ R

11: ⊲ 𝑟1 B
(
(1 − 𝑑1) 𝑓1 + 𝑑1 (1 − 𝑓1)

)
−

(
(1 − 𝑑2) 𝑓2 + 𝑑2 (1 − 𝑓2)

)
∈ R

12: 𝛽0 ← ExtractBitPreproc(𝑑2, 𝑓2, 𝑑0, 𝑓0)
13: 𝛽1 ← ExtractBitPreproc(𝑑1, 𝑓1, 𝑑2, 𝑓2)
14: if ℓ > 0

15: 𝑎0 ← ExtractBit(𝛽0, ℓ) ⊲ [𝑟0]ℓ
16: 𝑎1 ← ExtractBit(𝛽1, ℓ) ⊲ [𝑟1]ℓ
17: if 𝑎0 = 1 and 𝑎1 = 0 ⊲ Leaf
18: return Opt(𝐺 , 𝑏0, ℓ , 𝑑0, 𝑓0, 𝑑2, 𝑓2) ⊲ 0
19: if 𝑎0 = 0 and 𝑎1 = 1 ⊲ Leaf
20: return Opt(𝐺 , 𝑏1, ℓ , 𝑑2, 𝑓2, 𝑑1, 𝑓1) ⊲ 1
21: while true do ⊲ Refine Subtree
22: 𝑥 ← RandBit(); ℓ ← ℓ + 1

23: 𝑎0 ← ExtractBit(𝛽0, ℓ) ⊲ [𝑟0]ℓ
24: 𝑎1 ← ExtractBit(𝛽1, ℓ) ⊲ [𝑟1]ℓ
25: if 𝑥 = 0 and 𝑎0 = 1 ⊲ Leaf
26: return Opt(𝐺 , 𝑏0, ℓ , 𝑑0, 𝑓0, 𝑑2, 𝑓2) ⊲ 0
27: if 𝑥 = 1 and 𝑎1 = 1 ⊲ Leaf
28: return Opt(𝐺 , 𝑏1, ℓ , 𝑑2, 𝑓2, 𝑑1, 𝑓1) ⊲ 1
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Algorithm E16 Quantile of an DDF

Input: DDF 𝐺 : {0, 1}𝑛 → {0, 1} × (F𝐸𝑚 ∩ [0, 1

2
])

over binary number format B = (𝑛,𝛾B, 𝜙B)
Pair (𝑑, 𝑓 ) ∈ {0, 1} × (F𝐸𝑚 ∩ [0, 1

2
])

Output: min<B {𝑏 ∈ {0, 1}𝑛 | (𝑑, 𝑓 ) ⪯ 𝐺 (𝑏)},
where (𝑑, 𝑓 ) ⪯ (𝑑 ′, 𝑓 ′) ⇐⇒ (1 − 𝑑) 𝑓 + 𝑑 (1 − 𝑓 ) ≤R (1 − 𝑑 ′) 𝑓 ′ + 𝑑 ′ (1 − 𝑓 ′)

1: functionQuantile(𝐺,𝑑, 𝑓 )

2: (𝑛, 𝑙, ℎ) ← (1 + 𝐸 +𝑚, 0, 2𝑛 − 1)
3: while 𝑙 ≤ ℎ do
4: 𝑠 ← ⌊(𝑙 + ℎ)/2⌋
5: 𝑠′ ← 𝜙B (𝛾−1

U𝑛
(𝑠))

6: (𝑑 ′, 𝑓 ′) ← 𝐺 (𝑠′)
7: if CompareLte(𝑑, 𝑓 , 𝑑 ′, 𝑓 ′)
8: ℎ ← 𝑠 − 1; 𝑡 ← 𝑠′

9: else
10: 𝑙 ← 𝑠 + 1

11: return 𝑡

Input: 𝑑, 𝑑 ′ ∈ {0, 1}, 𝑓 , 𝑓 ′ ∈ F𝐸𝑚 ∩ [0, 1

2
]

Output: (𝑑, 𝑓 ) ⪯ (𝑑 ′, 𝑓 ′)
12: function CompareLte(𝑑,𝑑 ′, 𝑓 , 𝑓 ′)
13: if 𝑑 < 𝑑 ′ return true
14: if 𝑑 = 𝑑 ′ = 0 and 𝑓 ≤ 𝑓 ′ return true
15: if 𝑑 = 𝑑 ′ = 1 and 𝑓 ′ ≤ 𝑓 return true
16: return false
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F Survey of Numerical Errors in Python Random Variate Generation Libraries
NumPy BUG: random: Problems with hypergeometric with ridiculously large arguments https://github.com/numpy/numpy/issues/11443

NumPy Possible bug in random.laplace https://github.com/numpy/numpy/issues/13361

NumPy Bias of random.integers() with int8 dtype https://github.com/numpy/numpy/issues/14774

NumPy Geometric, negative binomial and poisson fail for extreme arguments https://github.com/numpy/numpy/issues/1494

NumPy numpy.random.hypergeometric: error for some cases https://github.com/numpy/numpy/issues/1519

NumPy numpy.random.logseries - incorrect convergence for k=1, k=2 https://github.com/numpy/numpy/issues/1521

NumPy Von Mises draws not between -pi and pi [patch] https://github.com/numpy/numpy/issues/1584

NumPy Negative binomial sampling bug when p=0 https://github.com/numpy/numpy/issues/15913

NumPy default_rng.integers(2**32) always return 0 https://github.com/numpy/numpy/issues/16066

NumPy Beta random number generator can produce values outside its domain https://github.com/numpy/numpy/issues/16230

NumPy OverflowError for np.random.RandomState() https://github.com/numpy/numpy/issues/16695

NumPy binomial can return unitialized integers when size is passed with array values for a or p https://github.com/numpy/numpy/issues/16833

NumPy np.random.geometric(10**-20) returns negative values https://github.com/numpy/numpy/issues/17007

NumPy numpy.random.vonmises() fails for kappa > 108̂ https://github.com/numpy/numpy/issues/17275

NumPy Wasted bit in random float32 generation https://github.com/numpy/numpy/issues/17478

NumPy test_pareto on 32-bit got even worse https://github.com/numpy/numpy/issues/18387

NumPy Silent overflow error in numpy.random.default_rng.negative_binomial https://github.com/numpy/numpy/issues/18997

NumPy Possible mistake in distribution.c::rk_binomial_btpe https://github.com/numpy/numpy/issues/2012

NumPy mtrand.beta does not handle small parameters well https://github.com/numpy/numpy/issues/2056

NumPy random.uniform gives inf when using finfo(’float’).min, finfo(’float’).max as intervall https://github.com/numpy/numpy/issues/2138

NumPy BUG: numpy.random.Generator.dirichlet should accept zeros. https://github.com/numpy/numpy/issues/22547

NumPy numpy.random.randint(-2147483648, 2147483647) raises ValueError: low >= high https://github.com/numpy/numpy/issues/2286

NumPy BUG: random: beta (and therefore dirichlet) hangs when the parameters are very small https://github.com/numpy/numpy/issues/24203

NumPy BUG: random: dirichlet(alpha) can return nans in some cases https://github.com/numpy/numpy/issues/24210

NumPy BUG: random: beta can generate nan when the parameters are extremely small https://github.com/numpy/numpy/issues/24266

NumPy BUG: Inaccurate left tail of random.Generator.dirichlet at small alpha https://github.com/numpy/numpy/issues/24475

NumPy Cannot generate random variates from noncentral chi-square distribution with dof = 1 https://github.com/numpy/numpy/issues/5766

NumPy Bug in np.random.dirichlet for small alpha parameters https://github.com/numpy/numpy/issues/5851

NumPy numpy.random.poisson(0) should return 0 https://github.com/numpy/numpy/issues/827

NumPy Could random.hypergeometric() be made to match behavior of random.binomial() when sample or n = 0? https://github.com/numpy/numpy/issues/9237

NumPy BUG: np.random.zipf hangs the interpreter on pathological input https://github.com/numpy/numpy/issues/9829

PyTorch torch.distributions.categorical.Categorical samples indices with zero probability https://github.com/pytorch/pytorch/issues/100884

PyTorch Torch randperm with device mps does not sample exactly uniformly from all possible permutations https://github.com/pytorch/pytorch/issues/104315

PyTorch torch.distributions.Pareto.sample sometimes gives inf https://github.com/pytorch/pytorch/issues/107821

PyTorch torch.multinomial - Unexpected (incorrect) results when replacement=True in version 2.1.1+cpu https://github.com/pytorch/pytorch/issues/114945

PyTorch Strange behavior of randint using device=cuda https://github.com/pytorch/pytorch/issues/125224

PyTorch Beta Distribution values wrong for a=b—> 0 https://github.com/pytorch/pytorch/issues/15738

PyTorch Very poor Uniform() sampling near floating 0.0 https://github.com/pytorch/pytorch/issues/16706

PyTorch Full-range random_() generation broken for cuda.IntTensor, cuda.LongTensor and LongTensor. https://github.com/pytorch/pytorch/issues/16944

PyTorch RelaxedBernoulli produces samples on the boundary with NaN log_prob https://github.com/pytorch/pytorch/issues/18254

PyTorch torch.distributions.Binomial.sample() uses a massive amount of memory https://github.com/pytorch/pytorch/issues/20343

PyTorch Weird sampling from multinomial_alias_draw https://github.com/pytorch/pytorch/issues/21257

PyTorch CUDA implementation of alias multinomial doesn’t work correctly https://github.com/pytorch/pytorch/issues/21508

PyTorch Wrong distribution sampled by torch.multinomial on CUDA https://github.com/pytorch/pytorch/issues/22086

PyTorch torch.nn.functional.gumbel_softmax yields NaNs https://github.com/pytorch/pytorch/issues/22442

PyTorch torch.distributions.Normal cuda sampling broken https://github.com/pytorch/pytorch/issues/22529

PyTorch CPU torch.exponential_ function may generate 0 which can cause downstream NaN https://github.com/pytorch/pytorch/issues/22557

PyTorch got nan when gumbel_softmax calculated in GPU https://github.com/pytorch/pytorch/issues/22586

PyTorch torch.bernoulli() randomly returns "1" for 0 inputs on CPU https://github.com/pytorch/pytorch/issues/26807

PyTorch Uniform random generator generates too many zeros compared to NumPy https://github.com/pytorch/pytorch/issues/26973

PyTorch torch.multinominal ignores elements from cumulative distribution https://github.com/pytorch/pytorch/issues/28390

PyTorch Tensor.random_ should be able to generate all 64 bit numbers including min and max value https://github.com/pytorch/pytorch/issues/33299

PyTorch torch.multinomial behaves abnormally with CUDA tensor https://github.com/pytorch/pytorch/issues/37403

PyTorch Investigate using -cospi(u) / sinpi(u) instead of tan(pi * (u - 0.5)) in transformation::cauchy https://github.com/pytorch/pytorch/issues/38611

PyTorch Investigate exponential distribution improvements https://github.com/pytorch/pytorch/issues/38612

PyTorch [bug] Binomial distribution has small chance of returning -1 https://github.com/pytorch/pytorch/issues/42153

PyTorch torch.multinomial with replacement=True produces inaccurate results for large number of categories https://github.com/pytorch/pytorch/issues/43115

PyTorch torch.multinomial behave unexpectedly on float16 GPU input tensor https://github.com/pytorch/pytorch/issues/46702

PyTorch torch.multinomial selects elements with zero weight https://github.com/pytorch/pytorch/issues/48841

PyTorch Multinomial without replacement produces samples that have zero probability https://github.com/pytorch/pytorch/issues/50034

PyTorch Cauchy samples inf values on CUDA https://github.com/pytorch/pytorch/issues/59144

PyTorch [Bug] cuda version of torch.randperm(n) generate all zero/negative/large positive values for large n https://github.com/pytorch/pytorch/issues/59756

PyTorch a problem happened in torch.randperm https://github.com/pytorch/pytorch/issues/63726

PyTorch Gamma distribution returns some wrong extreme values https://github.com/pytorch/pytorch/issues/71414

PyTorch Dirichlet with small concentration https://github.com/pytorch/pytorch/issues/76030

PyTorch torch.randperm uses too much cpu, but not efficient. https://github.com/pytorch/pytorch/issues/77140

PyTorch torch.randint should accept high=2**63 https://github.com/pytorch/pytorch/issues/81446

PyTorch Beta distribution behaves incorrectly for small parameters https://github.com/pytorch/pytorch/issues/84625

PyTorch Poisson sampling on GPU fails for high rates https://github.com/pytorch/pytorch/issues/86782

PyTorch Hang: sampling VonMises distribution gets stuck in rejection sampling for small kappa https://github.com/pytorch/pytorch/issues/88443

PyTorch torch.normal(...) on MPS sometimes produces NaN’s https://github.com/pytorch/pytorch/issues/89127

PyTorch torch.randn and torch.normal sometimes produce NaN on mps device https://github.com/pytorch/pytorch/issues/89283

PyTorch torch.Categorical samples indexes with 0 probability when given logits as argument https://github.com/pytorch/pytorch/issues/91863

PyTorch [Inductor] philox randn doesn’t follow standard normal distribution https://github.com/pytorch/pytorch/issues/91944

PyTorch distributions.Beta returning incorrect results at 0 and 1 https://github.com/pytorch/pytorch/issues/92260

PyTorch torch.distributions.kumaraswamy.Kumaraswamy generates samples outside its support (0,1) https://github.com/pytorch/pytorch/issues/95548

PyTorch torch.rand can sample the upper bound for lower precision floating point dtypes on CUDA https://github.com/pytorch/pytorch/issues/96947

SciPy overflow in truncnorm.rvs https://github.com/scipy/scipy/issues/10092

SciPy truncnorm.rvs Weird Behaviors https://github.com/scipy/scipy/issues/11769

SciPy truncnorm.rvs is painfully slow on version 1.5.0rc2 https://github.com/scipy/scipy/issues/12370

SciPy Levy Stable Random Variates Code has a typo https://github.com/scipy/scipy/issues/12870

SciPy truncnorm.rvs still crashes when sampling from extreme tails https://github.com/scipy/scipy/issues/13966

SciPy truncnorm rvs() produces junk for ranges in the tail https://github.com/scipy/scipy/issues/1489

SciPy BUG: Levy stable https://github.com/scipy/scipy/issues/14994

SciPy BUG: scipy.stats.multivariate_hypergeom.rvs raises ValueError when at least the last two populations are 0 https://github.com/scipy/scipy/issues/16171

SciPy BUG: truncnorm rvs sometimes returns nan (float32 issue?) https://github.com/scipy/scipy/issues/19554

SciPy binomial (in numpy.random) and scipy.stats.binom are not defined for n=0 https://github.com/scipy/scipy/issues/2213

SciPy stats.truncnorm.rvs() does not give symmetric results for negative & positive regions https://github.com/scipy/scipy/issues/2477

SciPy scipy.stats.rice.rvs(b) returns bad random numbers (zeros) for b greater than 10 https://github.com/scipy/scipy/issues/3282

SciPy scipy.stats.ncx2 fails for nc=0 https://github.com/scipy/scipy/issues/5441
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