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A singular function is a partial function such that at one or more points, the left and/or right limit diverge (e.g.,
the function 1/𝑥). Since programming languages typically support division, programs may denote singular
functions. Although on its own, a singularity may be considered a bug, introducing a division-by-zero error,
singular integrals—a version of the integral that is well-defined when the integrand is a singular function
and the domain of integration contains a singularity—arise in science and engineering, including in physics,
aerodynamics, mechanical engineering, and computer graphics.

In this paper, we present the first semantics of a programming language for singular integration. Our
differentiable programming language, SingularFlow, supports the evaluation and differentiation of singular
integrals. We formally define the denotational semantics of SingularFlow, deriving all the necessary mathe-
matical machinery so that this work is rigorous and self-contained. We then define an operational semantics
for SingularFlow that estimates integrals and their derivatives using Monte Carlo samples, and show that
the operational semantics is a well-behaved estimator for the denotational semantics.

We implement SingularFlow in JAX and evaluate the implementation on a suite of benchmarks that
perform the finite Hilbert transform, an integral transform related to the Fourier transform, which arises in
domains such as physics and electrical engineering. We then use SingularFlow to approximate the solutions
to four singular integral equations—equations where the unknown function is in the integrand of a singular
integral—arising in aerodynamics and mechanical engineering.
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of computing→ Probabilistic algorithms; Automatic differentiation; Integral equations; Functional analysis.
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1 Introduction

On its own, a program denoting a singular function can reasonably be thought of as having a bug.
For example, a program may denote a singular function that takes in a real number 𝑢 and returns
1/(𝑢 − 2). An implementation of this program would typically return a division-by-zero error at
𝑢 = 2, and the denoted function diverges as 𝑢 approaches 2 (Figure 1a). More formally, a singular
function is a partial function 𝑓 : R𝑑 ⇀ R such that there is a point 𝑢0 ∈ R𝑑 where 𝑓 (𝑢) diverges
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Fig. 1. The graphs above depict singular functions with a singularity at 𝑠 = 2. The Cauchy principal

value integral (a) is defined as the integral where the domain of integration approaches the singularity:

C
∫ 4
−2

1
𝑢−𝑠𝑑𝑢 ≜ lim𝜖→0+

(∫ 𝑠−𝜖
−2

1
𝑢−𝑠𝑑𝑢 +

∫ 4
𝑠+𝜖

1
𝑢−𝑠𝑑𝑢

)
. The Hadamard finite part integral (b) is defined in terms

of the derivative of the Cauchy principal value integral:H
∫ 4
−2

1
(𝑢−𝑠 )2𝑑𝑢 ≜

𝑑
𝑑𝑠

(
C
∫ 4
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1
𝑢−𝑠𝑑𝑢

)
.

in the limit as 𝑢 → 𝑢0 and 𝑓 (𝑢0) does not exist as a result (and the rate of divergence should not
exceed 1/∥𝑢 − 𝑢0∥𝑛2 for some integer 𝑛 > 0).1
Many problems arising in diverse areas of science and engineering are specified using singular

integrals—a version of the integral that is well-defined when the integrand is a singular function
and the domain of integration contains one or more singularities. For instance, in mechanical
engineering, the growth of a crack on a structure is modeled using a singular integral over the
stress on the crack surface [64]. In aerodynamics, the upward force on a wing is modeled by a
singular integral over pressure perpendicular to the wing [40]. In computer graphics, researchers
can simulate a system on an infinite domain by transforming the problem to a finite domain with
singularities and then computing singular integrals to perform the simulation [65].

The definite Riemann (or Lebesgue) integral over a region containing a singularity does not exist
because the integrand diverges to ±∞ or an undefined value around the singularity. For example,
Figure 1a depicts a singular function 𝑔(𝑢) = 1/(𝑢−2), which has a singularity at 𝑠 = 2. The Riemann
integral from −2 to 4 of 𝑔 is undefined because 𝑔 approaches −∞ as 𝑢 approaches 2 from the left
and +∞ as 𝑢 approaches 2 from the right. However, if 𝜖 > 0 is a positive number approaching zero,
then the integral from −2 to 4 excluding the 𝜖 ball around 𝑠 = 2 (the shaded region in Figure 1a)
approaches the Cauchy principal value integral from −2 to 4 of 𝑔. More generally, if 𝑠 is closer to 4
than −2 (i.e., 1 < 𝑠 < 4), then only the region from −2 to −4 + 2𝑠 remains after the positive and
negative parts in a symmetric region around the singularity cancel each other out. Concretely,

C
∫ 4

−2

1
𝑢 − 𝑠 𝑑𝑢 ≜ lim

𝜖→0+

(∫ 𝑠−𝜖

−2

1
𝑢 − 𝑠 𝑑𝑢 +

∫ 4

𝑠+𝜖

1
𝑢 − 𝑠 𝑑𝑢

)
=

∫ −4+2𝑠

−2

1
𝑢 − 𝑠 𝑑𝑢 = ln

(
4 − 𝑠
𝑠 + 2

)
,

where the notation C indicates that the integral is interpreted a Cauchy principal value integral. At
𝑠 = 2, we find that C

∫ 4
−2

1
𝑢−𝑠𝑑𝑢 = − ln 2.

In the more general case, if 𝑓 : R→ R is a smooth function and 𝑎 < 𝑠 < 𝑏 bounds the location
of the singularity, then the following Cauchy principal value integral is well-defined:

C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 ≜ lim

𝜖→0+

(∫ 𝑠−𝜖

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫ 𝑏

𝑠+𝜖

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
.

To better understand the singularity, suppose 𝑓 is positive. Then, the integrand is a singular function
with a singularity at 𝑠 that diverges to −∞ (or +∞) as 𝑢 approaches 𝑠 from the left (or right).

1Gelfand and Shilov [29, Chapter 3] call this an algebraic singularity. Distribution theoretic techniques apply to this
case, while other techniques do not (e.g., dimensional regularization).
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Analogously, the Riemann integral from −2 to 4 of the function 𝑔(𝑢) = 1/(𝑢 − 2)2 depicted in
Figure 1b diverges to∞, but the Hadamard finite part integral is finite and equals the derivative
with respect to 𝑠 of the Cauchy principal value integral of 1/(𝑢 − 𝑠) evaluated at 𝑠 = 2. Concretely,

H
∫ 4

−2

1
(𝑢 − 𝑠)2𝑑𝑢 ≜

𝑑
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(
C
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))
= − 1
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1
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At 𝑠 = 2, we find thatH
∫ 4
−2

1
(𝑢−𝑠 )2𝑑𝑢 = −3/4. More generally, the Hadamard finite part integral is

defined in terms of the 𝑘th-order derivative of the Cauchy principal value integral:

H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 ≜
1
𝑘!
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(
C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
.

At a high-level, singular integrals are a modeling tool in the same way that derivatives, integrals,
and polynomials are all tools for modeling theworld. Singular integrals live within awell-established
area of mathematics called distribution theory [29, Chapter 3], which we do not use in this paper to
make the presentation more accessible.
State of the Art. Programming languages do not typically support integration as a primitive,
let alone singular integration. Moreover, many programs (e.g., arising in mechanical engineering,
aerodynamics, and computer graphics) are implemented in differentiable programming languages,
such as PyTorch [69] and JAX [11], which take in a program representing a real-valued function
and efficiently compute its derivative using automatic differentiation [32].
Since commonly used differentiable programming languages do not have integration in the

language [11, 69], users typically implement estimators for the integral of a function using a for-
loop over points in the domain of integration. However, doing so is challenging when programs use
singular integrals. Estimating these integrals with a standard approach such as simple Monte Carlo
integration produces incorrect results (e.g., unbounded bias and infinite variance). Differentiating
these programs with singular integrals presents a significant challenge, as naively differentiating
an estimator often yields an incorrect derivative, even when the original estimator is correct.
Our Approach. In this paper, we define the first differentiable programming language with support
for singular integrals. We present a differentiable programming language, SingularFlow, which
uses a Monte Carlo method with unbiased, strongly consistent, and finite variance estimators,
unlike a standard Monte Carlo integration for which the bias and variance are unbounded.
We use SingularFlow to find approximate solutions to singular integral equations, equations

where the unknown function is in the integrand of a singular integral, such as the following:

C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 = 𝑔(𝑢) for all 𝑠 ∈ (𝑎, 𝑏), (1)

where 𝑎, 𝑏 ∈ R, 𝑓 : R→ R is unknown, and 𝑔 : R→ R is given. Our solver uses physically-informed
neural networks (PINNs) [73] to solve problems in fracture mechanics [64] and aerodynamics [24, 40].

We also implement and differentiate a fundamental operation called the Hilbert transform, which
arises in signal processing [15, 68] and many areas of physics (e.g., optics, scattering, wave mechan-
ics) [19, 27, 28, 42, 81]. Previously, researchers hand-implemented application-specific techniques to
handle singular integrals [33, 54, 80], while SingularFlow automatically produces correct results.
Our contributions are as follows:
• We identify and formally specify the problem of evaluating and differentiating singular
integrals in a programming language. This includes a self-contained, rigorous description
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(a) NACA 6412 airfoil with the

chord line (dashed in purple).
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(c) Learned solution.

Fig. 2. In aerodynamics, the flow of air around a wing can be modeled by a singular integral equation.

Figure 2a shows a type of wing called a thin airfoil (model NACA 6612). We compare a Monte Carlo method

that accounts for the singularity (Ours) to standard Monte Carlo integration (Standard) and a by-hand

derivation of a mathematical approximation (Math Approx.). Figure 2b shows the loss over iterations, and

Figure 2c shows the function predicted by the three methods. Our method converges to a loss (squared error)

that is less than the other methods and the predicted function is close to the math approximation.

of singular integrals and their derivatives using only elementary tools from calculus (Ap-
pendix 3); we are unaware of such description in the literature. This will benefit future
researchers in the programming languages community working on singular integrals.
• We introduce SingularFlow—a differentiable programming language with a primitive for
singular integration. It is the first language to support singular integrals and their derivatives.
We provide a denotational semantics for SingularFlow (Appendix 4) and identify conditions
under which programs denote smooth functions (i.e., a law of composition, as in Theorem 4.2).
• Our operational semantics for SingularFlow performsMonte Carlo integration and supports
automatic differentiation (Appendix 5). We prove that the operational semantics provides a
well-behaved estimator of the denotational semantics (Theorems 5.5 and 5.7).
• We implement SingularFlow2 in JAX [11] and evaluate it on the finite Hilbert transform
(used in signal processing and physics [15, 19]) and its derivative (Appendix 6.1). We use
SingularFlow to numerically estimate solutions to singular integral equations including
problems from aerodynamics (Sections 2 and 6.2) and problems from mechanical engineering
(Appendix 6.3).

In the future, we hope that support for singular integrals in differentiable programming languages
will accelerate practitioners in domains such as science and engineering by providing a higher level
of abstraction (e.g., from loops to integrals), numerical robustness, and automatic differentiation.

2 Motivating Example: Aerodynamics

In this section, we introduce SingularFlow by example. We implement a model of the flow of air
around a wing that uses a neural network to solve a singular integral equation.
Circulation Density on aWing. To make a plane fly, engineers design wings that produce enough
lift to keep the plane in the air. Lift is the force created by the movement of a fluid around an object,
acting perpendicularly to the flow direction. Lift can be calculated from circulation density, which
is a scalar that quantifies the rate of rotation of a vector field (e.g., wind) about a point.

A thin airfoil is a model for a 2D slice along the length of a 3D wing, simplifying the analysis to
modeling the effect of a two-dimensional air stream (wind). This simplifying assumption introduces
a singularity at the leading edge, the part of the wing that first contacts the air stream (the leftmost
point in Figure 2a), due to the difference in the speed of the air stream above and below the wing.

2The implementation is available at https://github.com/martinjm97/singularflow.
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Moreover, it corresponds to a phenomenon observed in practice called leading-edge thrust [13].
Figure 2a depicts an example of a thin airfoil called the NACA 6412 [1].3

The Airfoil Equation. The airfoil equation is a singular integral equation that models the circula-
tion density around a thin airfoil [40, Section 11.14]. The airfoil equation is expressed in terms of
the Cauchy principal value integral, which we identify with a C, and is defined as the limit of the
Riemann integral as the domain of integration approaches the singularity:

C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 ≜ lim

𝜖→0+

(∫ 𝑠−𝜖

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫ 𝑏

𝑠+𝜖

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
.

The Cauchy principal value integral is well-defined for every smooth function 𝑓 : R→ R and for
real numbers 𝑎 < 𝑠 < 𝑏. The airfoil equation is given by

− 1
2𝜋 · C

∫ 𝑐

0

𝛾 (𝑢)
𝑢 − 𝑢0

𝑑𝑢 = 𝛼 (𝑢0)𝑉∞ for all 𝑢0 ∈ (0, 𝑐), (2)

where 𝛾 : R → R is the unknown circulation density, 𝑐 > 0 is the chord length, 𝑢0 ∈ (0, 𝑐) is the
location of the point of interest on the chord line, which is the imaginary straight line from one end
of the wing to the other (depicted as the dotted purple line in Figure 2a), 𝛼 : R→ R is the angle of
attack, and 𝑉∞ > 0 is the speed of the air stream. The chord length is defined as the length of the
chord line. The angle of attack is the angle between the chord line and the air stream.
Numerical Integration of the Cauchy Principal Value Integral. Researchers have designed
many numerical integration techniques for singular integrals [53, 63, 71, 78]. We call a knownMonte
Carlo integrator for the Cauchy principal value integral the symmetric sampling estimator [53]. The
idea behind this estimator is to sample 𝑢 from the domain of integration and consider its reflection
across 𝑠 , which is 2𝑠 − 𝑢; if both of 𝑢 and 2𝑠 − 𝑢 are in the domain of integration, we evaluate the
integrand at both points and sum them up; otherwise, we evaluate the integrand only at 𝑢. The
symmetric sampling estimator cancels out the singularity and results in an unbiased estimator.
Solving Singular Integral Equations with Neural Networks. The solution to Equation (2) is a
function 𝛾 that satisfies the airfoil equation for all 𝑢0 ∈ (0, 𝑐). Ideally, there would be an integral
inversion formula that could reverse the effect of integration by expressing the integrand in terms
of the integral of other terms (e.g., we would want to transform Equation (2) to a formula of the
form 𝛾 (𝑢 )

𝑢−𝑢0
= · · · , where the ellipses stand in for a function). However, King [40, Section 11.4] shows

that there is no integral inversion formula for this equation, justifying approximation.
Following recent work [33, 54, 80], we use a neural network 𝛾𝜃 : R → R to approximate 𝛾 in

Equation (2). Solving the integral equation then reduces to finding the 𝑝 parameters 𝜃 ∈ R𝑝 of
the neural network that minimize the squared error between the left- and right-hand sides of
Equation (2) for a fixed set of collocation points 𝑢 (1)0 , . . . , 𝑢

(𝑛)
0 ∈ (0, 𝑐) along the chord line:

min
𝜃

𝑛∑︁
𝑖=1

(
−1
2𝜋 · C

∫ 𝑐

0

𝛾𝜃 (𝑢)
𝑢 − 𝑢 (𝑖 )0

𝑑𝑢 − 𝛼 (𝑢 (𝑖 )0 )𝑉∞

)2
. (3)

SingularFlow allows us to express this loss function directly as a program and to estimate the
singular integral using a singularity-aware Monte Carlo integration algorithm:

3NACA (National Advisory Committee for Aeronautics) is the government aeronautics research organization that was
the precursor to NASA (National Aeronautics and Space Administration). The 4-series NACA airfoils written as NACA
XXXX were studied both theoretically and empirically by NACA after World War I and during World War II [1]. The four
digits determine the dimensions of the airfoil.
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1 loss, step_size, theta = 0, 0.01, Param("theta", init())
2 c, V_inf = 1, 1 # Given function alpha depends on airfoil shape
3 for uo in uos: # uos is a list of points between 0 and c
4 est = integral (0,c) (nn(theta, u)/(u-uo)) du
5 loss += (-1/(2 * pi) * est - alpha(u0) * Vinf)^2
6 theta -= deriv(loss, theta) * step_size

Line 1 initializes the variable loss to zero, the step size to 0.01, and the parameters to random
values specified by an initialization function init. Line 2 sets the constants 𝑐 = 1,𝑉∞ = 1, and then
we assume that the function 𝛼 (𝑢0) is defined. Line 3 iterates over each of the collocation points
(which we write in the core language by iterating over a range). Line 4 uses the integral primitive of
SingularFlow to estimate the Cauchy principal value integral. The first argument to the integral
primitive is a pair representing the domain of integration, the second argument represents the
integrand, and the third argument declares that u is a variable of integration. Line 5 accumulates the
squared error into the variable loss. Finally, on Line 6, we use the deriv primitive to compute
the derivative of the loss with respect to the parameter theta (which we implement by extracting
the derivative part in the forward-mode operational semantics in Figure 8) and then update the
parameters using a single step of gradient descent.

The syntax above is a simplified version of the actual JAX [11] implementation. In practice, we
use the vmap command to vectorize the computation over the collocation points, the jit command
to compile the code for faster execution (effectively unrolling the above loop), and we use a library
to implement the Adam optimizer rather than using gradient descent.
Methodology.We use a multilayer perceptron with one input, two hidden layers of 100 units each
with the smooth GeLU activation function, and one output.4 We use the Adam optimizer with a
learning rate of 0.01 and train for 1000 iterations using 50 samples to estimate the singular integral.
We use 50 uniformly spaced collocation points from 0 to 1 and then remove the endpoints.
Results. In Figure 2, we compare symmetric sampling (Ours) to standard Monte Carlo integration
(Standard) and a by-hand derivation of a mathematical approximation (Math Approx.).

Figure 2b shows the loss over iterations for training neural networks to solve the airfoil equation.
We train each neural network with 5 different random seeds and plot the mean (darker line) and
standard deviation (lighter line) of the test losses across runs. We use different random samples for
the test loss than the train loss. We use 1000 test samples instead of 50 training samples. We provide
the training loss curves in Appendix D. The dotted purple line represents the loss of Math Approx.,
which serves as both a baseline and a sanity check for the results. We see that Ours converges to a
squared error loss that is slightly less than Math Approx. The loss is the squared error, which is a
typical measure of end-application performance (as in Harold Page Starr [35, Tables 2.1-2.13]). As a
result, the low loss indicates that Ours provides a good solution to the airfoil equation.

Figure 2c depicts the function predicted by Ours, Math Approx., and Standard. We see that Ours
is close to the Math Approx., while the Standard is essentially a flat line at zero.

Training takes about 13 seconds for Standard and about 18 seconds for Ours.

3 Theory of Singular Integrals and Their Derivatives

To define the semantics of SingularFlow, we need a mathematical foundation for singular integrals
and their derivatives. We present a self-contained introduction to singular integrals, specifically
the Cauchy principal value integral and the Hadamard finite part integral. We then show how to
differentiate these singular integrals. Although it is not one of our core contributions, we believe our
work is the first to rigorously state and prove that a singular integral with a parameter-dependent

4We use a smooth activation function so that the theoretical results from Appendix 3 apply.
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integrand is smooth in those parameters, and it admits nice differentiation formulas under the
integral sign (Propositions 3.12–3.15).5 The proofs of the results in this section are in Appendix A.
Throughout the section, we will use the convention that 𝑎, 𝑏, and 𝑠 are real numbers such that

𝑎 < 𝑠 < 𝑏, where the interval from 𝑎 to 𝑏 represents the domain of integration. The variable
𝑠 is thus implicitly quantified over the interval (𝑎, 𝑏) in this section. Also, we use the notation
𝐵𝜖 (𝑐) ≜ (𝑐 − 𝜖, 𝑐 + 𝜖) to represent the open ball of radius 𝜖 > 0 centered at 𝑐 ∈ R.

3.1 Cauchy Principal Value Integral

The plot in Figure 1a depicts the function 1
𝑢−2 , which has a singularity at 𝑢 = 2. In calculus, if

𝑎 < 2 < 𝑏 then the integral
∫ 𝑏

𝑎

1
𝑢−2𝑑𝑢 does not exist (i.e., it does not have a well-defined finite

value) due to the singularity at 𝑢 = 2. More generally, for every 𝑠 ∈ (𝑎, 𝑏) and smooth function
𝑓 : R→ R, the integral

∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢 exists if and only if 𝑓 (𝑠) = 0, as we show below.

Proposition 3.1. For all smooth 𝑓 , the integral
∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢 exists if and only if 𝑓 (𝑠) = 0. «

The Cauchy principal value integral, written as C
∫ 𝑏

𝑎
𝑓 (𝑢)/(𝑢 − 𝑠)𝑑𝑢, is a generalization of the

Riemann integral that exists for every smooth function 𝑓 (even when 𝑓 (𝑠) ≠ 0).6 Informally, the
Cauchy principal value integral is defined so that the two instances of infinity of the integrand
𝑓 (𝑢)/(𝑢 − 𝑠) at 𝑢 = 𝑠 cancel each other out. For example, in Figure 1a the integrand approaches
−∞ as 𝑢 approaches 2 from the left and +∞ as 𝑢 approaches 2 from the right. We can imagine
approaching the singularity 𝑠 = 2 from the left and right at the same rate, so that the two infinities
cancel each other out. The Cauchy principal value integral is inspired by this idea of cancellation,
and defines the result of integration as what remains after the cancellation. We now provide the
formal definition.

Definition 3.2 ([64]). The Cauchy principal value integral is defined as

C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 ≜ lim

𝜖→0+

∫
[𝑎,𝑏 ]\𝐵𝜖 (𝑠 )

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

for every smooth function 𝑓 : R→ R. △
The Cauchy principal value integral exists for every smooth function and can be written in terms

of Riemann integrals. Moreover, the Cauchy principal value integral is a linear operator on smooth
functions and is a (strict) generalization of the corresponding Riemann integral in that they agree
with each other whenever the Riemann integral exists.

Proposition 3.3. For every smooth 𝑓 : R→ R, the following hold:
(a) C

∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢 is well-defined and

C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 =

∫ 𝑠

𝑎

𝑓 (𝑢) − 𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢 −

∫ 𝑎

2𝑠−𝑏

𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢, (4)

5For example, [56] references a proof in [57], which states that the proof of smoothness is implicit in [34] and references
a proof in [55, Pages 8-12]. However, (i) [55] does not give a formal theorem statement, (ii) its proof implicitly relies on
the numerator of an integrand being analytic, and (iii) the proof is not mathematically rigorous in many steps (e.g., does
not formally justify the exchange of limits, does not prove the smoothness of a singular integral, etc). In contrast, (i) we
provide a formal theorem statement, (ii) our proof requires only smoothness (a weaker condition than analyticity) of the
numerator, and (iii) the proof is rigorous in each step. To achieve (iii), our proof relies on several results such as Lemmas
A.4-A.6, which prove that the integral of a jointly continuous (or smooth) function is continuous (or smooth) and certain
singular integrands can be formally extended to a smooth function.

6We present all results in terms of the Riemann integral since it is more elementary and should be more familiar to the
reader. The theoretical development in this paper holds immediately for Lebesgue integration as well, because our proofs
do not use any properties that differ between the two notions of integration.
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where the two Riemann integrals in Equation (4) are well-defined.
(b) The Cauchy principal value integral is a linear operator on smooth functions:

C
∫ 𝑏

𝑎

𝑐1 𝑓1 (𝑢) + 𝑐2 𝑓2 (𝑢)
𝑢 − 𝑠 𝑑𝑢 = 𝑐1 ·

(
C
∫ 𝑏

𝑎

𝑓1 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
+ 𝑐2 ·

(
C
∫ 𝑏

𝑎

𝑓2 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
for all 𝑐1, 𝑐2 ∈ R and smooth 𝑓1, 𝑓2 : R→ R.

(c) If
∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢 is well-defined, then C

∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢 =

∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢. «

Example 3.4. Let 𝑎 = −1, 𝑏 = 1, 𝑠 = 0, and 𝑓 (𝑢) = 1. Then by Proposition 3.3(a),

C
∫ 1

−1

1
𝑢
𝑑𝑢 =

∫ 0

−1

1 − 1
𝑢

𝑑𝑢 −
∫ −1

0−1

1
𝑢
𝑑𝑢 = 0.

The result makes sense because the integrand is an odd function (a function ℎ : R→ R such that
ℎ(−𝑥) = −ℎ(𝑥) for all 𝑥 ∈ R) and the domain of integration is symmetric so that the positive and
negative parts of the integrand cancel. △
Example 3.5. Let 𝑎 = −1, 𝑏 = 2, 𝑠 = 1, and 𝑓 (𝑢) = 𝑢. Then by Proposition 3.3(a),

C
∫ 2

−1

𝑢

𝑢 − 1𝑑𝑢 =

∫ 1

−1

𝑢 − (2 − 𝑢)
𝑢 − 1 𝑑𝑢 −

∫ −1

2−2

2 − 𝑢
𝑢 − 1𝑑𝑢.

The first integral simplifies to
∫ 1
−1 2𝑑𝑢 = 4, and the second integral simplifies to

∫ −1
0

2−𝑢
𝑢−1𝑑𝑢 =∫ −1

0 (−1 +
1

𝑢−1 )𝑑𝑢 = 1 + ln 2. Hence, the result is 4 − (1 + ln 2) = 3 − ln 2. △

We now present an alternative formula that expresses the Cauchy principal value integral in
terms of the Riemann integral, which we use to prove the operational semantics correct.

Proposition 3.6. For every smooth function 𝑓 : R→ R,

C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 =


∫ 𝑠

𝑎

𝑓 (𝑢) − 𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫ 𝑏

2𝑠−𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 if 𝑠 ∈

(
𝑎, 𝑎+𝑏2

]
∫ 𝑏

𝑠

𝑓 (𝑢) − 𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫ 2𝑠−𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 if 𝑠 ∈

[
𝑎+𝑏
2 , 𝑏

)
.

(5)

«
3.2 Hadamard Finite Part Integral

The plot in Figure 1b depicts the function 1/(𝑢 − 2)2, which has a singularity at 𝑢 = 2. In calculus,
if 𝑎 < 2 < 𝑏, then the integral

∫ 𝑏

𝑎

1
(𝑢−2)𝑘+1𝑑𝑢 does not exist for all positive integers 𝑘 (as in the

previous subsection) because the integrand has a singularity at 𝑢 = 2. More generally, for every
𝑠 ∈ (𝑎, 𝑏) and smooth 𝑓 : R→ R, the integral

∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )𝑘+1𝑑𝑢 exists if and only if 𝑓 (𝑖 ) (𝑠) = 0 for all

𝑖 ∈ {0, . . . , 𝑘}, where 𝑓 (𝑖 ) denotes the 𝑖th order derivative of 𝑓 .

Proposition 3.7. For all smooth 𝑓 : R→ R and integers 𝑘 ≥ 0, the integral
∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )𝑘+1𝑑𝑢 exists

if and only if 𝑓 (𝑖 ) (𝑠) = 0 for all 𝑖 ∈ {0, . . . , 𝑘}. «

The Hadamard finite part integral handles cases when 𝑓 or some of its 𝑖th derivatives are nonzero.
For every smooth 𝑓 , it is well-defined (even when 𝑓 (𝑖 ) (𝑠) ≠ 0 for some 0 ≤ 𝑖 ≤ 𝑘) and equals the
Riemann integral when both are defined. Concretely, the Hadamard finite part integral is defined
as a constant times the 𝑘th derivative of the corresponding Cauchy principal value integral.

Definition 3.8. For all smooth functions 𝑓 : R→ R and integers 𝑘 ≥ 1, the Hadamard finite part
integral is defined as the 𝑘th derivative of the Cauchy principal value integral:

H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 ≜
1
𝑘!
𝑑𝑘

𝑑𝑠𝑘

(
C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
.

△
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While our definition differs from Monegato [63, Definition 2.3] and Monegato [64], it is in-
terchangeable (e.g., Monegato [63, Property 2.5] matches our definition). A way to arrive at our
definition is by splitting the integral into two at the singularity and subtracting out terms that
diverge in the limit, yielding only the finite part of the integral [34]. This informal procedure agrees
with Definition 3.8.

For example, the informal calculation ofH
∫ 1
−1

𝑒𝑢
2

𝑢2 𝑑𝑢 would split the integral into
∫ −𝜖
−1

𝑒𝑢
2

𝑢2 𝑑𝑢 and∫ 1
𝜖

𝑒𝑢
2

𝑢2 𝑑𝑢. Then by integration by parts,
∫ 1
𝜖

𝑒𝑢
2

𝑢
𝑑𝑢 =

∫ 1
𝜖

2𝑢𝑒𝑢2
𝑢
𝑑𝑢 − 𝑒𝑢

2

𝑢

���1
𝜖
=

∫ 1
𝜖
2𝑒𝑢2

𝑑𝑢 −
(
𝑒 − 𝑒𝜖

2

𝜖

)
,

and similarly,
∫ −𝜖
−1

𝑒𝑢
2

𝑢
𝑑𝑢 =

∫ −𝜖
−1 2𝑒𝑢2

𝑑𝑢 −
(
𝑒 − 𝑒𝜖

2

𝜖

)
. In the limit as 𝜖 goes to 0, the term 𝑒𝜖

2

𝜖
diverges.

Subtracting 𝑒𝜖
2

𝜖
from both expressions makes the integral converge in the limit. Only the finite part

remains. Specifically,
∫ 1
−1 2𝑒

𝑢2
𝑑𝑢 − 2𝑒 ≈ 0.414. At the end of this section, we will confirm our formal

definition is the same as in this informal calculation.
The following theorem states that the Hadamard finite part integral is well-defined, is a linear

operator on smooth functions, and agrees with the Riemann integral when both are well-defined.
We were not able to find rigorous proofs of the following results in the literature (see Footnote 5).

Proposition 3.9. For every smooth 𝑓 : R→ R and integer 𝑘 ≥ 1, the following hold:

(a) H
∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )𝑘+1𝑑𝑢 is well-defined and satisfies integration by parts:

H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 =


− 𝑓 (𝑢)
𝑢 − 𝑠

����𝑏
𝑢=𝑎

+ C
∫ 𝑏

𝑎

𝑓 ′ (𝑢)
𝑢 − 𝑠 𝑑𝑢 if 𝑘 = 1

− 1
𝑘

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘

����𝑏
𝑢=𝑎

+ 1
𝑘
H

∫ 𝑏

𝑎

𝑓 ′ (𝑢)
(𝑢 − 𝑠)𝑘

𝑑𝑢 if 𝑘 ≥ 2.
(6)

(b) The Hadamard finite part value integral is a linear operator on smooth functions:

H
∫ 𝑏

𝑎

𝑐1 𝑓1 (𝑢) + 𝑐2 𝑓2 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 = 𝑐1 ·
(
H

∫ 𝑏

𝑎

𝑓1 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

)
+ 𝑐2 ·

(
H

∫ 𝑏

𝑎

𝑓2 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

)
for all 𝑐1, 𝑐2 ∈ R and smooth 𝑓1, 𝑓2 : R→ R.

(c) If
∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )𝑘+1𝑑𝑢 is well-defined, thenH

∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )𝑘+1𝑑𝑢 =

∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )𝑘+1𝑑𝑢. «

We can write the Hadamard finite part integral in terms of the Cauchy principal value integral
plus some boundary terms.

Proposition 3.10. For all integers 𝑘 ≥ 1 and smooth functions 𝑓 : R→ R,

H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 =
1
𝑘!C

∫ 𝑏

𝑎

𝑓 (𝑘 ) (𝑢)
𝑢 − 𝑠 𝑑𝑢 −

𝑘∑︁
𝑖=1

(𝑖 − 1)!
𝑘!

𝑓 (𝑘−𝑖 ) (𝑢)
(𝑢 − 𝑠)𝑖

����𝑏
𝑢=𝑎

. (7)
«

We now apply the above formula and confirm the previous informal calculation.

Example 3.11. CalculateH
∫ 1
−1

𝑒𝑢
2

𝑢2 𝑑𝑢. By Proposition 3.10,H
∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢2 𝑑𝑢 = C

∫ 𝑏

𝑎

𝑓 ′ (𝑢 )
𝑢
𝑑𝑢− 𝑓 (𝑢 )

𝑢

��𝑏
𝑢=𝑎

.
At 𝑎 = −1, 𝑏 = 1, 𝑓 (𝑢) = 𝑒𝑢2 , and 𝑠 = 0, we have

H
∫ 1

−1

𝑒𝑢
2

𝑢2
𝑑𝑢 = C

∫ 1

−1

2𝑢𝑒𝑢2

𝑢
𝑑𝑢 − 𝑒

𝑢2

𝑢

����1
𝑢=−1

=

∫ 1

−1
2𝑒𝑢

2
𝑑𝑢 − (𝑒 − (−𝑒)) = 2

∫ 1

−1
𝑒𝑢

2
𝑑𝑢 − 2𝑒 ≈ 0.414.

△
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3.3 Differentiating Singular Integrals

In this section, we provide derivative rules for singular integrals, which enables us to build a
differentiable programming language that supports singular integration.

We show that the derivative and integral commute when differentiating a singular integral with
respect to parameters that occur in the integrand but do not correspond to the singularity. These
results imply that the smooth neural network that models the unknown function in Equation (1)
can be trained by differentiating the numerical integrator for the singular integral.

Proposition 3.12. For every integer𝑚 ≥ 0 and smooth function 𝑓 : R × R𝑚 → R, the function
𝑔(𝑠, 𝑣1, . . . , 𝑣𝑚) = C

∫ 𝑏

𝑎

𝑓 (𝑢,𝑣1,...,𝑣𝑚 )
𝑢−𝑠 𝑑𝑢 is smooth on (𝑎, 𝑏) × R𝑚 . Moreover, for every integer 𝑛 ≥ 0 and

𝑖1, . . . , 𝑖𝑛 ∈ {1, . . . ,𝑚},

𝜕𝑛

𝜕𝑣𝑖1 · · · 𝜕𝑣𝑖𝑛

(
C
∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
𝑢 − 𝑠 𝑑𝑢

)
= C

∫ 𝑏

𝑎

𝜕𝑛

𝜕𝑣𝑖1 · · ·𝜕𝑣𝑖𝑛
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)

𝑢 − 𝑠 𝑑𝑢. (8)
«

Proposition 3.13. For every integer 𝑚 ≥ 0, smooth function 𝑓 : R × R𝑚 → R, and integer
𝑘 ≥ 1, the function 𝑔(𝑠, 𝑣1, . . . , 𝑣𝑚) = H

∫ 𝑏

𝑎

𝑓 (𝑢,𝑣1,...,𝑣𝑚 )
(𝑢−𝑠 )𝑘+1 𝑑𝑢 is smooth on (𝑎, 𝑏) × R𝑚 . Moreover, for

every integer 𝑛 ≥ 0 and 𝑖1, . . . , 𝑖𝑛 ∈ {1, . . . ,𝑚},

𝜕𝑛

𝜕𝑣𝑖1 · · · 𝜕𝑣𝑖𝑛

(
H

∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

)
= H

∫ 𝑏

𝑎

𝜕𝑛

𝜕𝑣𝑖1 · · ·𝜕𝑣𝑖𝑛
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)

(𝑢 − 𝑠)𝑘+1
𝑑𝑢. (9)

«

Next, we give a formula for the derivative of a singular integral with respect to the singularity.

Proposition 3.14. For every smooth function 𝑓 : R→ R and integer 𝑛 ≥ 1,

𝑑𝑛

𝑑𝑠𝑛

(
C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
= 𝑛! · H

∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑛+1

𝑑𝑢.
«

Proposition 3.15. For every smooth function 𝑓 : R→ R and integers 𝑛, 𝑘 ≥ 1,

𝑑𝑛

𝑑𝑠𝑛

(
H

∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

)
=
(𝑛 + 𝑘)!
𝑘! · H

∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑛+𝑘+1

𝑑𝑢.
«

The derivative with respect to the singularity 𝑠 may not commute with the singular integral
even when the numerator 𝑓 (𝑢) in the integrand is smooth as we show in the following example.

Example 3.16. Using Proposition 3.14: 𝑑
𝑑𝑠

(
C
∫ 1
−1

𝑒𝑢
2

𝑢−𝑠𝑑𝑢
) ���

𝑠=0
= H

∫ 1
−1

𝑒𝑢
2

(𝑢−𝑠 )2𝑑𝑢
���
𝑠=0
≈ 0.414,

where the second approximate equality is by Example 3.11. Note the change from the Cauchy
principal value integral to the Hadamard finite part integral here. If we instead commute the deriv-
ative and the integral by differentiating the integrand at 𝑠 = 0 and integrating the outcome as in
the definition of the Cauchy principal value integral, we get lim𝜖→0+

(∫ −𝜖
−1

𝑒𝑢
2

𝑢2 𝑑𝑢 +
∫ 1
𝜖

𝑒𝑢
2

𝑢2 𝑑𝑢

)
= ∞

because as 𝑢 approaches 0 from the left and from the right, the integrand 𝑒𝑢
2

𝑢2 diverges to +∞. Thus,
commuting the derivative and the Cauchy principal value integral does not work in this case. △

4 SingularFlow: A Differentiable Language with Singular Integrals

In this section, we define the syntax and denotational semantics of SingularFlow. SingularFlow
has a singular integral primitive, which no prior programming language to date has supported as a
language primitive. We provide proofs of the results in this section in Appendix B, and a discussion
of the boundaries of available theory and their implications to programming is in Appendix F.
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4.1 Syntax

The syntax of SingularFlow is defined by the following grammar:

𝑒 ::= 𝑐 | 𝑥 | ℎ(𝑒, . . . , 𝑒) 𝑝 ::= 𝑥 = 𝑒 | 𝑦 = integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥
| 𝑝;𝑝 | ifpos 𝑒 then 𝑝 else 𝑝 | for 𝑥 in range(𝑎, 𝑏, 𝑐) : 𝑝

𝑎, 𝑏, 𝑐 ∈ R, 𝑘 ∈ N, 𝑥,𝑦, 𝑠 ∈ Var, ℎ ∈ Op.

Here Var is a finite set of variable symbols, and Op is a countable set of function symbols that
includes + and × and is closed under taking partial derivatives. Expressions 𝑒 represent smooth
functions of variables, written as 𝑥 , 𝑦, and 𝑠 . We write constant reals as 𝑎, 𝑏, and 𝑐 , and integers as
𝑘 . Each function symbol ℎ ∈ Op represents a computable smooth function from R𝑚 to R for𝑚 ∈ N.

Programs 𝑝 are commands in an imperative programming language. The two assignment state-
ments set a variable to the value of either an expression or a singular integral. In the latter case, the
integrand has the form 𝑒 divided by (𝑥 − 𝑠)𝑘 , where the variable 𝑥 is bound in the declaration of
the integral and the domain of integration is specified by constants for simplicity. The conditional
evaluates the true branch if its condition 𝑒 is positive, and the false branch if 𝑒 is negative. When 𝑒 is
zero, the conditional raises an error, signaling a possible issue with differentiation. SingularFlow
supports sequential composition and a bounded for-loop ranging from 𝑎 to 𝑏 with increment 𝑐 .
For simplicity, we consider only the assignments 𝑦 = integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥 , where the

domain of integration satisfies 𝑎 ≤ 𝑏 and the singular variable 𝑠 is different from 𝑥 and all the
free variables of 𝑒 . We suppress the exponent of the denominator in the integrand when it is 1:
integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠) d𝑥 ≜ integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)1 d𝑥 .

4.2 Denotational Semantics

Figure 3 depicts the denotational semantics of expressions in SingularFlow. A context 𝛾 is a map
from variables to real numbers, and the set of all contexts is denoted by Ctx ≜ [Var → R]. Since
Var is finite, we often view Ctx as R |Var | equipped with the standard topology.
An expression 𝑒 denotes a smooth function J𝑒K that maps a context 𝛾 to a real number. The

definition of J𝑒K is standard. Note that each function symbol ℎ ∈ Op denotes a smooth function
JℎK : R𝑚 → R, where𝑚 is the arity of ℎ.
Figure 4 describes the denotational semantics of programs in SingularFlow. A program 𝑝

denotes a function J𝑝K from a context 𝛾 ∈ Ctx to either an updated context or an error, written as
err. The denotation of the assignment of a variable to an expression J𝑥 = 𝑒K(𝛾) updates the context
with 𝑥 mapped to the denotation of 𝑒 in 𝛾 .

The semantics of the singular-integral assignment varies depending on the real constants 𝑎, 𝑏 ∈ R
and the integer 𝑘 ∈ N. If 𝛾 (𝑠) ∈ (−∞, 𝑎) ∪ (𝑏,∞), the domain of integration does not contain the
singularity 𝛾 (𝑠), and the program denotes a standard integral. If 𝛾 (𝑠) ∈ (𝑎, 𝑏), the program denotes
a singular integral that is a Cauchy principal value integral when 𝑘 = 1 and a Hadamard finite part
integral when 𝑘 > 1. The denotation returns an error if the singularity is exactly at the boundary
of the domain of integration.
The denotation of 𝑝1;𝑝2 is defined so that if J𝑝1K(𝛾) returns an error, it propagates the error,

and otherwise, it returns the composition the denotations of 𝑝2 and 𝑝1 at 𝛾 . The denotation of a
conditional Jifpos 𝑒 then 𝑝1 else 𝑝2K(𝛾) is J𝑝1K(𝛾) if J𝑒K𝛾 is positive, and J𝑝2K(𝛾) if J𝑒K𝛾 is negative.
If J𝑒K𝛾 is zero, the denotation returns an error. This way of handling the J𝑒K𝛾 = 0 case ensures
differentiability for non-error computations, because sgn ◦ J𝑒K is constant in a ball around 𝛾 .
The denotation of a for-loop Jfor 𝑥 in range(𝑎, 𝑏, 𝑐) : 𝑝K(𝛾) is standard. It does not update the

context when 𝑎 ≥ 𝑏, and it propagates the error if J𝑝K(𝛾 [𝑥 ↦→ 𝑎]) is err. If J𝑝K(𝛾 [𝑥 ↦→ 𝑎]) is an
updated context 𝛾 ′, it recurses on the incremented counter with the context 𝛾 ′.
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J𝑒K : Ctx → R, J𝑐K𝛾 ≜ 𝑐, J𝑥K𝛾 ≜ 𝛾 (𝑥), Jℎ(𝑒1, . . . , 𝑒𝑚)K𝛾 ≜ JℎK(J𝑒1K𝛾, . . . , J𝑒𝑚K𝛾).
Fig. 3. Denotational semantics of expressions in SingularFlow.

J𝑝K : Ctx → (Ctx ∪ {err}),
J𝑥 = 𝑒K(𝛾) ≜ 𝛾 [𝑥 ↦→ J𝑒K𝛾],

s
𝑦 =

(
integral (𝑎, 𝑏)
𝑒/(𝑥 − 𝑠)𝑘 d𝑥

){
(𝛾) ≜ if (𝑐 = err) then err else 𝛾 [𝑦 ↦→ 𝑐],

where 𝑔(𝑢) = J𝑒K(𝛾 [𝑥 ↦→ 𝑢]) in 𝑐 =



err if 𝛾 (𝑠) ∈ {𝑎, 𝑏}∫ 𝑏

𝑎

𝑔(𝑢)
(𝑢 − 𝛾 (𝑠))𝑘

𝑑𝑢 if 𝛾 (𝑠) ∈ (−∞, 𝑎) ∪ (𝑏,∞)

C
∫ 𝑏

𝑎

𝑔(𝑢)
𝑢 − 𝛾 (𝑠)𝑑𝑢 if 𝛾 (𝑠) ∈ (𝑎, 𝑏) ∧ 𝑘 = 1

H
∫ 𝑏

𝑎

𝑔(𝑢)
(𝑢 − 𝛾 (𝑠))𝑘

𝑑𝑢 if 𝛾 (𝑠) ∈ (𝑎, 𝑏) ∧ 𝑘 > 1,

J𝑝1;𝑝2K(𝛾) ≜ if (𝛾 ′ = err) then err else J𝑝2K(𝛾 ′), where 𝛾 ′ = J𝑝1K𝛾,

Jifpos 𝑒 then 𝑝1 else 𝑝2K(𝛾) ≜


err if J𝑒K𝛾 = 0
J𝑝1K(𝛾) if J𝑒K𝛾 > 0
J𝑝2K(𝛾) if J𝑒K𝛾 < 0,

Jfor 𝑥 in range(𝑎, 𝑏, 𝑐) : 𝑝K(𝛾) ≜


𝛾 if 𝑎 ≥ 𝑏
Jfor 𝑥 in range(𝑎 + 𝑐, 𝑏, 𝑐) : 𝑝K(𝛾 ′) if 𝑎 <𝑏 ∧ 𝑐 > 0 ∧ 𝛾 ′ ≠ err
err otherwise,

where 𝛾 ′ = J𝑝K(𝛾 [𝑥 ↦→ 𝑎]).
Fig. 4. Denotational semantics of programs in SingularFlow.

We next present smoothness results on the denotation of expressions and programs: J𝑒K is smooth
unconditionally, and J𝑝K is smooth at 𝛾 whenever 𝑝 does not return an error at 𝛾 .

Lemma 4.1. For every expression 𝑒 , its semantics J𝑒K is smooth on Ctx. «

Theorem 4.2. For every program 𝑝 and 𝛾 ∈ Ctx, if J𝑝K𝛾 ≠ err, then J𝑝K is smooth at 𝛾 . «

We now provide two simple examples of the denotational semantics of SingularFlow.

Example 4.3. The program 𝑦 = integral (0, 1) 1/(𝑥 − 𝑠) d𝑥 errors if the singularity is at the
boundary of the domain of integration (𝛾 (𝑠) ∈ {0, 1}). It denotes a Riemann integral if the singularity
is outside the domain of integration (𝛾 (𝑠) ∉ [0, 1]), and a Cauchy principal value integral if the
singularity lies within the domain of integration (𝛾 (𝑠) ∈ (0, 1)):

J𝑦 = integral (0, 1) 1/(𝑥 − 𝑠) d𝑥K𝛾 = if 𝛾 (𝑠)∈{0, 1} then err else 𝛾
[
𝑦 ↦→

{ ∫ 1
0

1
𝑢−𝛾 (𝑠 )𝑑𝑢 if 𝛾 (𝑠) ∉ [0, 1]

C
∫ 1
0

1
𝑢−𝛾 (𝑠 )𝑑𝑢 if 𝛾 (𝑠) ∈ (0, 1)

]
.
△

Example 4.4. The program 𝑦 = integral (0, 1) 1/(𝑥 − 𝑠)2 d𝑥 errors if the singularity is at
the boundary of the domain of integration (𝛾 (𝑠) ∈ {0, 1}). It denotes a Riemann integral if the
singularity is outside the domain of integration (𝛾 (𝑠) ∉ [0, 1]), and a Hadamard finite part integral
if the singularity lies within the domain of integration (𝛾 (𝑠) ∈ (0, 1)):

J𝑦 = integral (0, 1) 1/(𝑥 − 𝑠)2 d𝑥K𝛾 = if 𝛾 (𝑠)∈{0, 1} then err else 𝛾
[
𝑦 ↦→

{ ∫ 1
0

1
(𝑢−𝛾 (𝑠 ) )2𝑑𝑢 if 𝛾 (𝑠) ∉ [0, 1]

H
∫ 1
0

1
(𝑢−𝛾 (𝑠 ) )2𝑑𝑢 if 𝛾 (𝑠) ∈ (0, 1)

]
.
△
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(𝛾, 𝑐) ⇓ 𝑐 (𝛾, 𝑥) ⇓ 𝛾 (𝑥)
(𝛾, 𝑒1) ⇓ 𝑐1 · · · (𝛾, 𝑒𝑚) ⇓ 𝑐𝑚 JℎK(𝑐1, . . . , 𝑐𝑚) = 𝑐

(𝛾, ℎ(𝑒1, . . . , 𝑒𝑚)) ⇓ 𝑐

Fig. 5. Standard operational semantics (𝛾, 𝑒) ⇓ 𝑐 for expressions.
For 𝑛 = 0: 𝐷 [𝑒] (𝑧, 0) ≜ 𝑒.
For 𝑛 ≥ 1: 𝐷 [𝑐] (𝑧, 𝑛) ≜ 0, 𝐷 [𝑥] (𝑧, 𝑛) ≜ 1[𝑛 = 1 ∧ 𝑥 = 𝑧],

𝐷 [ℎ(𝑒1, . . . , 𝑒𝑚)] (𝑧, 𝑛) ≜ 𝐷 [ℎ′1 · 𝑒
′
1 + · · · + ℎ

′
𝑚 · 𝑒′𝑚] (𝑧, 𝑛 − 1),

where ℎ′𝑖 = (D𝑖ℎ) (𝑒1, . . . , 𝑒𝑚), 𝑒′𝑖 = 𝐷 [𝑒𝑖 ] (𝑧, 1), D𝑖ℎ ∈ Op is the 𝑖th partial derivative of ℎ.

Fig. 6. The source-to-source 𝑛th derivative 𝐷 [𝑒] (𝑧, 𝑛) of an expression 𝑒 with respect to a variable 𝑧, where

𝑛 ∈ N0. In the rules, 1[𝜑] is 1 if 𝜑 is true, and 0 otherwise.

5 Operational Semantics for SingularFlow

In this section, we present a stochastic operational semantics for SingularFlow that estimates
singular integrals and provides a forward-mode derivative. We present a theorem relating the oper-
ational semantics to the denotational semantics. Proofs of results in this section are in Appendix C.

5.1 Operational Semantics

We organize an operational semantics for SingularFlow as follows. We first define the operational
semantics of an expression as a deterministic function mapping a context to a real. We then define
the operational semantics of a program as a stochastic function mapping a pair of contexts to
another pair of contexts, where the first (or second) component of the output stores Monte Carlo
estimates of all variables (or their derivatives). Along the way, we define two procedures: one for
taking higher-order derivatives of expressions, and the other for estimating singular integrals.
Operational Semantics for Expressions. Figure 5 defines a standard operational semantics for
expressions. The big-step relation (𝛾, 𝑒) ⇓ 𝑐 takes as input a context 𝛾 and an expression 𝑒 , and
returns a real value 𝑐 . The rule for ℎ(𝑒1, . . . , 𝑒𝑚) evaluates each of the arguments 𝑒𝑖 to 𝑐𝑖 and then
evaluates the denoted function JℎK at 𝑐1, . . . , 𝑐𝑚 .

Figure 6 defines 𝐷 [𝑒] (𝑧, 𝑛), a source-to-source transformation that computes the 𝑛th derivative
of an expression 𝑒 with respect to a variable 𝑧, where 𝑛 ∈ N0. For instance, 𝐷 [𝑐] (𝑥, 1) = 0 and
𝐷 [𝑥 · 𝑥 · 𝑥] (𝑥, 2) = 6 · 𝑥 (after simplification). In the rules, D𝑖 denotes the syntactic derivative
of an operation ℎ ∈ Op with respect to the 𝑖th parameter; that is, JD𝑖ℎK(𝑐1, . . . , 𝑐𝑚) = 𝐷𝑖JℎK(𝑐1,
. . . , 𝑐𝑚) for all 𝑐 ∈ R𝑚 , where𝑚 is the arity of ℎ, 𝑖 ∈ {1, . . . ,𝑚}, and 𝐷𝑖 denotes the mathematical
differentiation operator with respect to the 𝑖th parameter. As mentioned in Appendix 4.1, we assume
that Op is closed under taking partial derivatives: D𝑖ℎ ∈ Op for all ℎ ∈ Op and 𝑖 ∈ {1, . . . ,𝑚}. For
simplicity, we choose to use the source-to-source derivative to implement the 𝑛th derivative rather
than generalizing forward-mode automatic differentiation [22, 75].
Monte Carlo Integration Accounting for Singularities. Figure 7 depicts a procedure for
estimating singular integrals. The Standard rule applies standard Monte Carlo integration when
the singularity is outside the domain of integration. By transforming a sample 𝑢 from U(0, 1)
(i.e., uniform distribution over [0, 1]), it generates a uniformly-sampled point 𝑡 at the domain of
integration, evaluates the integrand at 𝑡 to compute the average value, and scales the result by the
size of the domain of integration to estimate the area under the curve.

The Cauchy PV1 and Cauchy PV2 rules apply a Monte Carlo algorithm that we call symmetrical
sampling to integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠) d𝑥 . This algorithm is different from the one used in standard
Monte Carlo integration. The idea of symmetrical sampling is to sample points symmetrically
around the singularity 𝑠 . This is a way to implement the limit to the singularity in Definition 3.2.
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Standard
𝛾 (𝑠) ∉ [𝑎, 𝑏] 𝑡 = 𝑢 · (𝑏 − 𝑎) + 𝑎 (𝛾 [𝑥 ↦→ 𝑡], 𝑒) ⇓ 𝑐

(𝛾,𝑢,𝑢′, integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥) ⇓ℎ (𝑏 − 𝑎) ·
𝑐

(𝑡 − 𝛾 (𝑠))𝑘
Cauchy PV1
𝛾 (𝑠) ∈ (𝑎, 𝑎+𝑏2 ]
𝑏′ = 2𝛾 (𝑠) − 𝑎

𝑡 = 𝑢′ · (𝛾 (𝑠) − 𝑎) + 𝑎
(𝛾,𝑢,𝑢′, integral (𝑏′, 𝑏) 𝑒/(𝑥 − 𝑠) d𝑥) ⇓ℎ 𝑐′

(𝛾 [𝑥 ↦→ 𝑡], 𝑒) ⇓ 𝑐+
(𝛾 [𝑥 ↦→ 2𝛾 (𝑠) − 𝑡], 𝑒) ⇓ 𝑐−

(𝛾,𝑢,𝑢′, integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠) d𝑥) ⇓ℎ 𝑐′ + (𝛾 (𝑠) − 𝑎) ·
𝑐+ − 𝑐−
𝑡 − 𝛾 (𝑠)

Cauchy PV2
𝛾 (𝑠) ∈ [ 𝑎+𝑏2 , 𝑏)
𝑎′ = 2𝛾 (𝑠) − 𝑏

𝑡 = 𝑢′ · (𝑏 − 𝛾 (𝑠)) + 𝛾 (𝑠)
(𝛾,𝑢,𝑢′, integral (𝑎, 𝑎′) 𝑒/(𝑥 − 𝑠) d𝑥) ⇓ℎ 𝑐′

(𝛾 [𝑥 ↦→ 𝑡], 𝑒) ⇓ 𝑐+
(𝛾 [𝑥 ↦→ 2𝛾 (𝑠) − 𝑡], 𝑒) ⇓ 𝑐−

(𝛾,𝑢,𝑢′, integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠) d𝑥) ⇓ℎ 𝑐′ + (𝑏 − 𝛾 (𝑠)) ·
𝑐+ − 𝑐−
𝑡 − 𝛾 (𝑠)

Hadamard FP
𝑘 ≥ 2
𝛾 (𝑠) ∈ (𝑎, 𝑏)

∀𝑖 ∈ {0, . . . , 𝑘 − 1}. 𝑒𝑖 = 𝐷 [𝑒] (𝑥, 𝑖)
(𝛾,𝑢,𝑢′, integral (𝑎, 𝑏) 𝑒𝑘−1/(𝑥 − 𝑠) d𝑥) ⇓ℎ 𝑐′

∀𝑖 ∈ {0, . . . , 𝑘 − 2}. (𝛾 [𝑥 ↦→ 𝑎], 𝑒𝑖 ) ⇓ 𝑐−𝑖
∀𝑖 ∈ {0, . . . , 𝑘 − 2}. (𝛾 [𝑥 ↦→ 𝑏], 𝑒𝑖 ) ⇓ 𝑐+𝑖

(𝛾,𝑢,𝑢′, integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥) ⇓ℎ
𝑐′

(𝑘 − 1)! −
𝑘−1∑︁
𝑖=1

(𝑖 − 1)!
(𝑘 − 1)!

(
𝑐+
𝑘−1−𝑖

(𝑏 − 𝛾 (𝑠))𝑖 −
𝑐−
𝑘−1−𝑖

(𝑎 − 𝛾 (𝑠))𝑖

)
Fig. 7. The helper function (𝛾,𝑢,𝑢′, · ) ⇓ℎ 𝑐 that takes in a context, two independent samples fromU(0, 1),
and the syntax of an integral, and returns a constant, representing a single-point Monte Carlo estimate of

the integral. We use 𝑎, 𝑏, and 𝑐 with subscripts/superscripts to denote real values.

Expr-Assign
(𝛾, 𝑒) ⇓ 𝑐 ∀𝑦 ∈ FV(𝑒). (𝛾, 𝐷 [𝑒] (𝑦, 1)) ⇓ 𝑐′𝑦
(𝛾,𝛾 ′, 𝑥 = 𝑒) ⇓𝑜 𝛾 [𝑥 ↦→ 𝑐], 𝛾 ′ [𝑥 ↦→ ∑

𝑦 𝑐
′
𝑦 · 𝛾 ′ (𝑦)]

Integral-Assign
𝑢 ←U(0, 1) 𝑢′ ←U(0, 1)
(𝛾,𝑢,𝑢′, integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥) ⇓ℎ 𝑐

(𝛾,𝑢,𝑢′, integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘+1 d𝑥) ⇓ℎ 𝑐′
∀𝑧 ∈ FV(𝑒) \ {𝑥, 𝑠}. (𝛾,𝑢,𝑢′, integral (𝑎, 𝑏) 𝐷 [𝑒] (𝑧, 1)/(𝑥 − 𝑠)𝑘 d𝑥) ⇓ℎ 𝑐′𝑧

(𝛾,𝛾 ′, 𝑦 = integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥) ⇓𝑜 𝛾 [𝑦 ↦→ 𝑐], 𝛾 ′ [𝑦 ↦→ 𝑘 · 𝑐′ · 𝛾 ′ (𝑠) +∑
𝑧 𝑐
′
𝑧 · 𝛾 ′ (𝑧)]

Comp
(𝛾,𝛾 ′, 𝑝1) ⇓𝑜 𝛾1, 𝛾 ′1 (𝛾1, 𝛾 ′1, 𝑝2) ⇓𝑜 𝛾2, 𝛾 ′2

(𝛾,𝛾 ′, 𝑝1;𝑝2) ⇓𝑜 𝛾2, 𝛾 ′2

If-Pos
(𝛾, 𝑒) ⇓ 𝑐 𝑐 > 0 (𝛾,𝛾 ′, 𝑝1) ⇓𝑜 𝛾1, 𝛾 ′1
(𝛾,𝛾 ′, ifpos 𝑒 then 𝑝1 else 𝑝2) ⇓𝑜 𝛾1, 𝛾 ′1

If-Neg
(𝛾, 𝑒) ⇓ 𝑐 𝑐 < 0 (𝛾,𝛾 ′, 𝑝2) ⇓𝑜 𝛾2, 𝛾 ′2
(𝛾,𝛾 ′, ifpos 𝑒 then 𝑝1 else 𝑝2) ⇓𝑜 𝛾2, 𝛾 ′2

For-Base
𝑎 ≥ 𝑏

(𝛾,𝛾 ′, for 𝑥 in range(𝑎, 𝑏, 𝑐) : 𝑝) ⇓𝑜 𝛾,𝛾 ′

For-Rec
𝑎 < 𝑏 𝑐 > 0 (𝛾 [𝑥 ↦→ 𝑎], 𝛾 ′ [𝑥 ↦→ 0], 𝑝) ⇓𝑜 𝛾1, 𝛾 ′1 (𝛾1, 𝛾 ′1, for 𝑥 in range(𝑎 + 𝑐, 𝑏, 𝑐) : 𝑝) ⇓𝑜 𝛾2, 𝛾 ′2

(𝛾,𝛾 ′, for 𝑥 in range(𝑎, 𝑏, 𝑐) : 𝑝) ⇓𝑜 𝛾2, 𝛾 ′2

Fig. 8. The big-step operational semantics (𝛾,𝛾 ′, 𝑝) ⇓𝑜 𝛾1, 𝛾 ′1 performs automatic differentiation of 𝑝 , including

sampling from singular integrals. Metavariables 𝑎, 𝑏, and 𝑐 with subscripts/superscripts denote real values.

The Cauchy PV1 rule, based on the first formula in Proposition 3.6, applies when the singularity
is closer to the lower bound of the domain of integration: 𝛾 (𝑠) ∈ (𝑎, 𝑎+𝑏2 ]. It then sets 𝑏′ = 2𝛾 (𝑠) −𝑏,
which is the point that is the reflection of 𝑎 across 𝛾 (𝑠).7 The first step in symmetrical sampling is
to partition the domain into the largest symmetrical region around the singularity, (𝑎, 𝑏′), and the
remaining region, (𝑏′, 𝑏). The second step is to generate a uniformly-sampled point 𝑡 from the lower
half of the symmetrical region (𝑎,𝛾 (𝑠)), by transforming the provided sample 𝑢′ fromU(0, 1), and
then reflect 𝑡 across the singularity to get 2𝛾 (𝑠) − 𝑡 . The third step evaluates the numerator at both
points to obtain real values 𝑐+ and 𝑐− . The fourth step (i) scales the obtained 𝑐+ and 𝑐− by the width

7An alternative choice is to sample 𝑡 such that the symmetric samples around the singularity are 𝑠 + 𝑡 and 𝑠 − 𝑡 . Our
choice to sample 𝑡 so that the symmetric samples are 𝑡 and 2𝑠 − 𝑡 better matches the results in Propositions 3.3(b) and 3.6.
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of the interval 2(𝛾 (𝑠) − 𝑎), (ii) divides the scaled values first by 2 for the 2 samples, and then by the
denominator of the integrand (i.e., 𝑡 − 𝛾 (𝑠) and (2𝛾 (𝑠) − 𝑡) − 𝛾 (𝑠)), and (iii) adds the outcomes of
these divisions. The result of the fourth step is 𝛾 (𝑠 )−𝑎

𝑡−𝛾 (𝑠 ) (𝑐
+ − 𝑐−) after simplification. The last step

uses the standard single-sample Monte Carlo estimate of the integral from (𝑏′, 𝑏) (which uses the
provided sample 𝑢, instead of 𝑢′, as described earlier) and adds this estimate to the result.

The Cauchy PV2 rule also uses symmetrical sampling and applies when the singularity is closer
to the upper bound of the domain integration: 𝛾 (𝑠) ∈ [ 𝑎+𝑏2 , 𝑏). Based on the second formula in
Proposition 3.6, this rule reflects 𝑏 across 𝛾 (𝑠), i.e., 𝑎′ = 2𝛾 (𝑠) − 𝑏. The largest symmetrical region
around the singularity is (𝑎′, 𝑏) and then the remaining region is (𝑎, 𝑎′). The Monte Carlo estimate
of the symmetrical region and the remaining region matches the previous rule.
The Hadamard FP rule implements the integration by parts formula in Proposition 3.10. For

each 0 ≤ 𝑖 ≤ 𝑘 − 1, it computes the 𝑖th derivative of 𝑒 to get 𝑒𝑖 via the derivative rules in Figure 6. It
then evaluates the integral at 𝑒𝑘−1/(𝑥 − 𝑠) to get 𝑐′. Next, it evaluates 𝑒𝑖 at the endpoints 𝑎 and 𝑏 to
get 𝑐−𝑖 and 𝑐+𝑖 , and computes (𝑐+

𝑘−1−𝑖/(𝑏 − 𝛾 (𝑠))
𝑖 ) − (𝑐−

𝑘−1−𝑖/(𝑎 − 𝛾 (𝑠))
𝑖 ) for each 𝑖 . Finally, it scales

the sum of these terms by (𝑖 − 1)!/(𝑘 − 1)! and subtracts it from 𝑐′/(𝑘 − 1)! to get the final result.
We do not provide rules for the case where the singularity and the bounds of integration coincide

(e.g., integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠) d𝑥 at [𝑠 ↦→ 𝑎, . . .]). As a result, the compiler will get stuck on these
programs, corresponding to the fact that in the denotational semantics, 𝛾 (𝑠) ∈ {𝑎, 𝑏} results in err.
Operational Semantics for Programs. Figure 8 presents the operational semantics for programs.
The big-step evaluation relation (𝛾,𝛾 ′, 𝑝) ⇓𝑜 𝛾1, 𝛾 ′1 takes as input a primal context 𝛾 , a derivative
context 𝛾 ′ (which is a context mapping each variable to a real number that represents the infinitesi-
mal perturbation to the variable), and a program 𝑝 , and returns updated contexts 𝛾1 and 𝛾 ′1. For
instance, we can compute the derivative of 𝑓 (𝑥,𝑦) = 𝑥𝑦 with respect to 𝑦 at (𝑥,𝑦) = (2, 3) in the
following way. If 𝛾 = [𝑥 ↦→ 2, 𝑦 ↦→ 3, 𝑧 ↦→ 0] and 𝛾 ′ = [𝑥 ↦→ 0, 𝑦 ↦→ 1, 𝑧 ↦→ 0], then we have that

(𝛾,𝛾 ′, 𝑧 = 𝑥 · 𝑦) ⇓𝑜 [𝑥 ↦→ 2, 𝑦 ↦→ 3, 𝑧 ↦→ 6], [𝑥 ↦→ 0, 𝑦 ↦→ 1, 𝑧 ↦→ 2] .

The bindings for 𝑥 and 𝑦 in 𝛾 and 𝛾 ′ remain the same, but 𝑧 is updated in both contexts. The first
output context binds 𝑧 to 6 because 𝑓 (2, 3) = 6, while the second output context for derivative
binds 𝑧 to 2 because the total derivative is 𝑔(𝑥,𝑦, 𝑑𝑥, 𝑑𝑦) = 𝑑𝑥 · 𝑦 + 𝑥 · 𝑑𝑦 and 𝑔(2, 3, 0, 1) = 2.

The Expr-Assign rule evaluates an expression 𝑒 and its source-to-source derivative with respect
to each variable in 𝑒 , scaled by appropriate infinitesimal values. The Integal-Assign rule draws two
independent samples 𝑢,𝑢′ from the uniform distribution over the unit interval (0, 1): 𝑢 ←U(0, 1)
and 𝑢′ ←U(0, 1). Note that we assert that samples selected on different runs are independent and
identically distributed. We also rely on the common assumption that samples are exact (i.e., we use
the Real-RAM model), although the implementation uses floating-point numbers.

The derivative part of the Integal-Assign rule consists of two terms: (𝑘 ·𝑐′) ·𝛾 ′ (𝑠) and∑
𝑧 𝑐
′
𝑧 ·𝛾 ′ (𝑧)

for 𝑧 ∈ FV(𝑒) \ {𝑥, 𝑠}. In the first term, 𝑘 · 𝑐′ estimates the singular integral of (𝑘 · 𝑒)/(𝑥 − 𝑠)𝑘+1,
which is the derivative of the original integrand 𝑒/(𝑥 −𝑠)𝑘 with respect to 𝑠 . Similarly, in the second
term, 𝑐′𝑧 estimates the singular integral of 𝐷 [𝑒] (𝑧, 1)/(𝑥 −𝑠)𝑘 , which is the derivative of the original
integrand with respect to 𝑧 ≠ 𝑠, 𝑥 . Hence, these two terms essentially commute the derivative with
respect to 𝑠 and 𝑧, and the original singular integral of 𝑒/(𝑥 − 𝑠)𝑘 ; and this is based on our results
in Section 3.3 (Propositions 3.12—3.15). On the other hand, a term involving the derivative with
respect to 𝑥 does not appear in the rule, because the derivative of the original singular integral
with respect to 𝑥 is 0: the integral binds the variable 𝑥 , so it is constant in 𝑥 . Note that this rule
shares the same samples 𝑢 and 𝑢′ for the primal and the derivative computation.

The derivative is particularly interesting for singular integrals because the derivative and integral
do not commute (Example 3.16). Moreover, the sampler for the Hadamard finite part integral
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specified in the Hadamard FP rule also does not commute with the integral. To see this, note that
the operational semantics estimates the Hadamard finite part integral, by using the equation

H
∫ 𝑏

𝑎

𝑓 (𝑥)
(𝑥 − 𝑠)𝑘

𝑑𝑥 =
1
𝑘!C

∫ 𝑏

𝑎

𝑓 (𝑘−1) (𝑢)
𝑢 − 𝑠 𝑑𝑢 −

𝑘−1∑︁
𝑖=1

(𝑖 − 1)!
(𝑘 − 1)!

𝑓 (𝑘−1−𝑖 ) (𝑢)
(𝑢 − 𝑠)𝑖

����𝑏
𝑢=𝑎

,

and by applying symmetrical sampling to the Cauchy principal value integral on the right-hand side
and evaluating the sum. Differentiating the sampler is incorrect because it involves differentiating
the sampler for Cauchy principal value integral, which is incorrect because the derivative and
Cauchy principal value integral do not commute (Example 3.16).
The Comp rule applied to 𝑝1; 𝑝2 evaluates 𝑝1, producing new primal and derivative contexts,

which are then used to evaluate 𝑝2. The If-Pos rule applies when the condition 𝑒 evaluates to a
positive number and returns the evaluation of the if-body. The If-Neg rule works analogously. In
the base case of for-loop (𝑎 ≥ 𝑏), the For-Base rule does not perform any computation and simply
returns 𝛾,𝛾 ′. In the recursive case, the For-Rec rule takes a program for 𝑥 in range(𝑎, 𝑏, 𝑐) : 𝑝 and
runs 𝑝 in a context where 𝑥 is set to 𝑎 and its derivative is set to 0. This rule also propagates any
errors from executing 𝑝 or from using an increment 𝑐 ≤ 0, which would lead to divergence.

5.2 Soundness of Operational Semantics

In this subsection, we show that the operational semantics provides a consistent (and unbiased in
simple cases) estimator of the denotation of the program and of its derivative. We begin with the
correctness of the operational semantics, and the derivative transformation, for expressions.

Lemma 5.1. For every context 𝛾 and expression 𝑒 , we have that (𝛾, 𝑒) ⇓ 𝑐 if and only if J𝑒K𝛾 = 𝑐 . «

Lemma 5.2. The derivative transformation is correct for every expression 𝑒 , 𝑛 ∈ N0, and 𝑧 ∈ Var:
J𝐷 [𝑒] (𝑧, 𝑛)K𝛾 = 𝑓 (𝑛) (𝛾 (𝑧)) for all𝛾 ∈ Ctx, where 𝑓 : R→ R is defined by 𝑓 (𝑢) = J𝑒K(𝛾 [𝑧 ↦→ 𝑢]). «

We recall a few standard definitions from statistics, and also a well-known result that leads to a
standard recipe for building a family of so-called strongly-consistent estimators.

Definition 5.3. An estimator𝑇 is a real-valued random variable. The estimator𝑇 is unbiased for a
real number 𝜃 ∈ R if E[𝑇 ] = 𝜃 . A family of estimators (𝑇𝑚)𝑚∈N is strongly consistent for 𝜃 ∈ R if
𝑇𝑚 almost surely converges to 𝜃 as𝑚 tends to∞, that is, Pr(lim𝑚→∞𝑇𝑚 = 𝜃 ) = 1. △

Proposition 5.4 ([26, Theorem 10.13]). If estimators (𝑇𝑚)𝑚∈N are independent and identically
distributed (i.i.d.) as random variables, and 𝑇1 is unbiased for 𝜃 and has finite variance, then the
estimators 𝑇 ′𝑚 ≜

1
𝑚

∑𝑚
𝑖=1𝑇𝑖 is unbiased for 𝜃 for all𝑚, and their family is strongly consistent for 𝜃 . «

We first present that the operational semantics is an unbiased and consistent estimator for the
denotational semantics whenever a program is single-line with the integral construct.

Theorem 5.5 (Unbiasedness and Finite Variance). Let 𝑝 ≡ (𝑦 = integral (𝑎, 𝑏) 𝑒/(𝑥 −𝑠)𝑘 d𝑥)
and 𝛾,𝛾 ′ ∈ Ctx with J𝑝K𝛾 ≠ err. Let 𝑐, 𝑐′ be estimators defined by 𝑐 ≜ 𝛾 (𝑦) and 𝑐′ ≜ 𝛾 ′ (𝑦),
where (𝛾,𝛾 ′, 𝑝) ⇓𝑜 𝛾,𝛾 ′. Then, 𝑐 and 𝑐′ have finite variance, and are unbiased for J𝑝K(𝛾) (𝑦) and∑

𝑧∈Var
𝑑
𝑑𝑡

J𝑝K(𝛾 [𝑧 ↦→ 𝑡]) (𝑦)
��
𝑡=𝛾 (𝑧 ) · 𝛾

′ (𝑧), respectively. «

Corollary 5.6. Let 𝑝 ≡ (𝑦 = integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥) and 𝛾,𝛾 ′ ∈ Ctx with J𝑝K𝛾 ≠ err.
Separate runs of the operational semantics produce (i.i.d.) random variables {𝑐𝑖 }𝑖∈N, {𝑐′𝑖 }𝑖∈N, that
is, for all 𝑖 ∈ N, we obtain (𝛾,𝛾 ′, 𝑝) ⇓𝑜 𝛾𝑖 , 𝛾 ′𝑖 with 𝑐𝑖 ≜ 𝛾𝑖 (𝑦) and 𝑐′𝑖 ≜ 𝛾 ′𝑖 (𝑦). Define estimators
𝑇𝑚 ≜

1
𝑚

∑𝑚
𝑖=1 𝑐𝑖 and 𝑇

′
𝑚 ≜

1
𝑚

∑𝑚
𝑖=1 𝑐

′
𝑖 for𝑚 ∈ N. Then, (𝑇𝑚)𝑚∈N consists of unbiased estimators for

𝜃 ≜ J𝑝K(𝛾) (𝑦), and it is strongly consistent for 𝜃 . Likewise, (𝑇 ′𝑚)𝑚∈N consists of unbiased estimators
for 𝜃 ′ ≜

∑
𝑧∈Var

𝑑
𝑑𝑡

J𝑝K(𝛾 [𝑧 ↦→ 𝑡]) (𝑦)
��
𝑡=𝛾 (𝑧 ) · 𝛾

′ (𝑧), and it is strongly consistent for 𝜃 ′. «
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We call a program well-typed if it satisfies a statically-determined, conservative type system
that ensures that (i) no if statements occur after an integral and (ii) integrals are not nested (i.e.,
no variable that depends on a variable assigned to an integral can be present in the integrand).
Appendix E formalizes the type system. The next theorem states that all well-typed programs
induce strongly consistent estimators for the denotational semantics. Note that this result applies
to all the programs in the evaluation (Appendices 2 and 6).

Theorem 5.7 (Consistency). Let 𝑝 be a well-typed program, 𝑥 ∈ Var be an arbitrary variable,
and 𝛾,𝛾 ′ ∈ Ctx be contexts with J𝑝K𝛾 ≠ err. Separate runs of the operational semantics produce
(i.i.d.) random variables {𝑐𝑖 }𝑖∈N and {𝑐′𝑖 }𝑖∈N, that is, for all 𝑖 ∈ N, we obtain (𝛾,𝛾 ′, 𝑝) ⇓𝑜 𝛾𝑖 , 𝛾 ′𝑖 with
𝑐𝑖 ≜ 𝛾𝑖 (𝑥) and 𝑐′𝑖 ≜ 𝛾 ′𝑖 (𝑥). Then, the family of estimators 𝑇𝑚 ≜ 1

𝑚

∑𝑚
𝑖=1 𝑐𝑖 is strongly consistent for

J𝑝K(𝛾) (𝑥), and𝑇 ′𝑚 ≜ 1
𝑚

∑𝑚
𝑖=1 𝑐

′
𝑖 is strongly consistent for

∑
𝑧∈Var

𝑑
𝑑𝑡

J𝑝K(𝛾 [𝑧 ↦→ 𝑡]) (𝑥)
��
𝑡=𝛾 (𝑧 ) ·𝛾

′ (𝑧). «

6 Evaluation

We implement the operational semantics of SingularFlow (Appendix 5) in JAX [11]. Users
can write programs with singular integrals and use all the standard Python/JAX primitives (e.g.,
jax.jit, jax.grad, for loops, neural networks). Our implementation introduces a singu-
lar_integrate primitive that performs Monte Carlo integration and uses the custom_vjp
jax primitive to define a custom derivative. JAX provides automatic differentiation for all other
primitives in our implementation (e.g., arithmetic primitives).

We evaluate our implementation on two tasks: evaluating and differentiating singular integrals,
and solving singular integral equations using feedforward neural networks. As a case study for
the first task, we consider the finite Hilbert transform (Appendix 6.1), a fundamental integral
transform used in science and engineering. For the second task, we solve singular integral equations—
fundamental models in science and engineering [23, 44]. In particular, we provide three case studies:
a model for the flow of air around a wing in aerodynamics (Appendix 6.2), and two models of the
displacement of a crack in fracture mechanics (Appendix 6.3).
We selected these benchmarks as they represent important use cases of singular integrals in

science and engineering (e.g., [23, 40, 44]). The historical uses of singular integrals include solving
Cauchy-Riemann and Laplace equations [16, 34]. A more comprehensive list of problems modeled
by singular integrals is given in Appendices 7 and 8, Appendix G, and standard textbooks (e.g.,
[23, 44]).
We compare our results using SingularFlow to several baselines (e.g., standard Monte Carlo

estimates, manually-derived approximations, closed-form solutions) and existing systems (e.g.,
Mathematica [85]). For Appendix 6.2 and Appendix 6.3 we use the same methodology for solving
integral equations as in Appendix 2, and provide training curves in Appendix D.We ran experiments
on a 2019 MacBook with an Intel Core i9-9980HK CPU and 32GB RAM.

6.1 Finite Hilbert Transform

The Hilbert transform is a fundamental integral transformation akin to the Fourier transform, which
is defined in terms of a singular integral over R. The finite Hilbert transform is its finite version
where the integral is taken over a finite domain. Formally, the finite Hilbert transform of a smooth
function 𝑓 : R→ R is defined as follows, using the Cauchy principal value integral [40, Section 11]:

𝑇𝑎 𝑓 (𝑠) ≜ −
1
𝜋
C
∫ 𝑎

−𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢, (10)

where 𝑎 > 0 and −𝑎 < 𝑠 < 𝑎. The finite Hilbert transform (and the Hilbert transform in general) is
used widely in diverse areas of science and engineering, including optics [27], scattering [10, 20],
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Table 1. We calculate the finite Hilbert transform: 𝑇1 𝑓 (𝑠) ≜ − 1
𝜋 C

∫ 1
−1

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢 for 𝑠 = 1

2 .

𝑓 (𝑢) Ground Truth Ours Standard Mathematica
𝑢 -0.462 −0.46 ± 4.1 × 10−4 −3.6 ± 7.3 -0.46
𝑢2 -0.231 −0.23 ± 6.1 × 10−4 −1.8 ± 3.7 -0.23
𝑒𝑢 -0.291 −0.29 ± 9.9 × 10−4 −11 ± 24 -0.29
𝑢𝑒𝑢 -0.894 −0.89 ± 5.6 × 10−4 −6.1 ± 12 -0.89
sin𝑢 -0.409 −0.41 ± 3.7 × 10−4 −3.4 ± 7.0 -0.41
cos𝑢 0.458 0.46 ± 1.0 × 10−3 −5.1 ± 13 0.46

Table 2. The result of computing the derivative
𝑑
𝑑𝑠
𝑇1 𝑓 (𝑠) = − 1

𝜋H
∫ 1
−1

𝑓 (𝑢 )
(𝑢−𝑠 )2𝑑𝑢 for 𝑠 = 1

2 . Ground Truth

corresponds to a by-hand derivation of the integrals into either a closed form or a form with an accurate

numerical solution in [40]. PV is the Cauchy Principal value integral interpretation of the derivative rather than

the correct Hadamard finite part interpretation. Standard is directly numerically estimating the integral. The

Mathematica column shows the results of running the benchmarks in Mathematica [85]. In the Mathematica

column, we mark a result with a dash if Mathematica does not return a numerical result.

𝑓 (𝑢) Ground Truth Ours PV Standard Mathematica
𝑢 0.774 0.77 ± 8.1 × 10−4 −5.9 × 102 −4.4 × 103 0.77
𝑢2 −7.47 × 10−2 −7.4 × 10−2 ± 8.1 × 10−4 −2.9 × 102 −2.2 × 103 −7.4 × 10−2
𝑒𝑢 1.52 1.5 ± 9.9 × 10−4 −1.9 × 103 −1.5 × 104 -
𝑢𝑒𝑢 0.468 0.47 ± 1.1 × 10−3 −9.7 × 102 −7.3 × 103 -
sin𝑢 0.816 0.82 ± 1.0 × 10−3 −5.6 × 102 −4.2 × 103 0.82
cos𝑢 0.868 0.87 ± 3.7 × 10−4 −1.0 × 103 −7.7 × 103 0.87

and electrochemistry [81]; in geology to study seismic waves [28]; and in electrical engineering to
study circuits [15], telecommunications [77], and control theory [74].
The finite Hilbert transform (and its derivative) often does not admit a closed-form formula,

requiring the numerical estimation of the transform (and its derivatives) in many cases [40, Section
14]. Inspired by this, we estimate the finite Hilbert transform and its derivative. We estimate the
finite Hilbert transform for six smooth functions King [40, Table 14.6]. In the following tables, we
present the mean and standard deviations across 10 runs using 10,000 samples.
Estimation of the Finite Hilbert Transform. Table 1 depicts the estimates of 𝑇1 𝑓 (𝑠) at 𝑠 = 1

2
for different functions 𝑓 . The Ground Truth column shows the exact values (in 3-digit precision)
computed using closed-form formulas King [40, Table 14.6]. The Ours column uses SingularFlow
to produce correct results, accounting for the singularity at 𝑢 = 𝑠 in Equation (10). The Standard
column uses standard Monte Carlo integration, producing incorrect results because it ignores the
singularity. Mathematica [85] produces an accurate numerical estimate (N) after singularity-aware
symbolic integration (Integrate with the option PrincipalValue->True) [86].

Estimation of the Derivative. Table 2 depicts estimates of the derivative 𝑑
𝑑𝑠
𝑇1 𝑓 (𝑠) at 𝑠 = 1/2 for

different functions 𝑓 . We hand-derived closed-form formulas for the Ground Truth derivatives
of the finite Hilbert transform. The Ours column uses SingularFlow to compute the derivative,
where SingularFlow automatically computes the Hadamard finite part integral (with a singularity
at 𝑢 = 𝑠). The result is correct up to the second bit of precision. PV uses the principal value
interpretation of the result of commuting the derivative and the integral, which is incorrect. PV
and Standard compute results that are orders of magnitude different from the correct result.
We run the experiments in Table 2 in Mathematica by setting the option PrincipalValue-

>True in the Integrate function, taking the derivative, evaluating the result at 𝑠 = 1/2, and
wrapping the result in the N function. Mathematica produces correct results for 𝑥 , 𝑥2, sin𝑥 , and cos𝑥 ,
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Table 3. Timing results, averaged across benchmarks, for the median and standard deviation of the runtime

(in ms) for the finite Hilbert transform and its derivative as well as the optimized versions (with jax.jit).

Benchmark Standard Ours Standard (w. jit) Ours (w. jit)
Finite Hilbert Transform 6.3 ± 0.22 21 ± 1.5 0.97 ± 0.47 1.2 ± 0.19

Deriv. Finite Hilbert Transform 30 ± 17 140 ± 7.1 0.96 ± 0.44 0.9 ± 0.41

(a) The NACA 0012 airfoil.
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Fig. 9. In aerodynamics, the flow of air around a wing can be modeled by a singular integral equation.

Figure 9a shows a symmetrical, thin airfoil (model NACA 0012). We compare a Monte Carlo method that

accounts for the singularity (Ours) to standard Monte Carlo integration (Standard) and a by-hand derivation

of a mathematical approximation (Math Approx.). Figure 9b shows the loss over iterations and Figure 9c

shows the function predicted by the three methods. Our method converges to a loss (squared error) that is

less than the other methods and the predicted function is close to the math approximation.

but does not fully simplify results for 𝑒𝑥 and 𝑥𝑒𝑥 . Mathematica does not support the Hadamard finite
part integral and therefore does not produce the desired result. We confirm this by using NInte-
grate with PrincipalValue->True, with Exclusions->1/2, and with the singularity
listed with the domain of integration, as specified in the documentation [86].
Computation Time. Table 3 shows the timing results for the finite Hilbert transform and its
derivative.We run all benchmarks 25 times and report themedian and standard deviation of runtimes
(with a single warm up iteration discarded). Each benchmark uses 10,000 samples to estimate the
integral. We include the timing results to show that the overhead of using SingularFlow is not
prohibitive. For the sake of completeness, we include more detailed timing results in Appendix D.1.

6.2 Airfoil Equation

Figure 9a shows a symmetrical, thin airfoil (model NACA 0012). It is symmetrical about the 𝑥-axis
and therefore easier to analyze mathematically than the thin airfoil in Appendix 2. We compare a
Monte Carlo method that accounts for the singularity (Ours) to standard Monte Carlo integration
(Standard) and a by-hand derivation of a mathematical approximation (Math Approx.).
Results. The results for Figure 9b are similar to those in Figure 2b in that the Ours loss is similar
to the loss in Math Approx.
Figure 9c is also similar to the results in Figure 2c. Because the airfoil is symmetric, one of the

assumptions in the derivation of the approximation of the airfoil equation applies, which means that
the approximation should be closer to the ground truth than in the case of the airfoil in Figure 2c.
Indeed, Ours and Math Approx. produce results that are closer to each other than results than in
Figure 2c, while Standard produces results that are far from both of them.

6.3 Crack Problem

A crack problem is a problem involving the discontinuous process by which an object splits resulting
in an opening, the sliding two pieces of material, or the tearing of an object. Mechanical engineers
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(a) Loss for crack function [35].
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Fig. 10. In fracture mechanics, the displacement of a crack can be modeled by a singular integral equation. We

compare a Monte Carlo method that accounts for the singularity (Ours) to standard Monte Carlo integration

(Standard) and the ground truth closed-form solution (Ground Truth). Figure 10a shows the loss over iterations

and Figure 10b shows the function predicted by the three methods. The neural approaches initially have

high loss, but the loss of Ours decreases and matches the ground truth closely, while Standard stagnates and

produces a poor model of the crack displacement.
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4 to 𝑏 = 6 and an infinite plane

strip in the 𝑦-axis.
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Fig. 11. Figure 11a shows a crack on the 𝑥-axis from 𝑎 = 4 to 𝑏 = 6 and an infinite plane strip in the 𝑦-axis

(truncated for display). We compare a Monte Carlo method that accounts for the singularity (Ours) to

a standard method (Standard). Figure 11b shows the loss over iterations. Figure 11c shows the function

predicted by the two methods. Ours converges to a loss that is orders of magnitude lower than Standard.

study crack problems to accurately model the failure of materials such as metals and concrete [38].
Characterization of cracks due to material manufacture, processing, or machining is important for
ensuring the safety of structures as well as ensuring that manufactured goods with imperfections
that maintain structural integrity. The discontinuity in stress leads to singularities in modeling.
1D Crack Problem. Harold Page Starr [35, Example 3.2] provides the following model:

−C
∫ 1

0

𝜎 (𝑡)
𝑡 − 𝑥 𝑑𝑡 +

∫ 1

0

𝜎 (𝑡)
𝑡 + 𝑥 𝑑𝑥 = 4𝑥 − 2

√
𝑥 + 𝑥2, (11)

where 𝜎 (𝑡) is the crack displacement, which is the distance separating the two materials at a given
point 𝑡 . In this singular integral equation, the goal is to solve for the unknown 𝜎 (𝑡). The equation
𝜎 (𝑡) = 2

𝜋

√
𝑡 − 𝑡2 is the closed-form solution to this problem [35].

Figure 10a shows the log loss over iterations for training a neural network to solve the crack
problem. Standard Monte Carlo integration (Standard) slightly increases the loss throughout
training, while our method (Ours) converges to a low loss. The neural network converges to a
smaller squared-error loss than ground truth (Ground Truth). Figure 10b depicts the functions
produced by Ours and by Math Approx. Standard predicts a function that is close to the constant
zero, while Ours predicts a function that is an arc and looks similar to Ground Truth. While there
is a small anomaly near zero, we show that the cause is a single outlier run and that upping the
number of samples from 50 to 500 removes the anomaly (see Appendix D.3).
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2D Crack Problem. Kaya and Erdogan [38] model this problem with the singular integral equation:

H
∫ 𝑏

𝑎

𝑉 (𝑡)
(𝑡 − 𝑥)2

𝑑𝑡 +
∫ 𝑏

𝑎

𝑉 (𝑡)𝐾0 (𝑡, 𝑥)𝑑𝑡 = −𝜋
1 + 𝜅
2𝜇 𝑝 (𝑥),

where 𝑎 = 4 and 𝑏 = 6 are the start and end of the crack, 𝜅 = 3− 4 ∗𝜈 = 2 is the elastic constant with
𝜈 = 0.25 is the Poisson ratio for granite, 𝜇 is the shear modulus, 𝑝 (𝑥) = 1 is the surface traction
representing constant load, and the kernel 𝐾0 (𝑡, 𝑥) = − 1

(𝑡+𝑥 )2 is simplified from [38, Equations
(62-66)]. The unknown 𝑉 (𝑥) is the displacement of the crack opening, i.e., the size of the crack. In
contrast to the previous integral equations, this one has Hadamard finite part integral rather than
a Cauchy principal value integral. We could not find a closed-form solution in the literature and
therefore do not have a ground truth solution.
Figure 11a depicts a crack on the 𝑥-axis from 𝑎 = 4 to 𝑏 = 6 and an infinite plane strip in the

𝑦-axis. Figure 11b shows the log loss over iterations for training a neural network to solve the crack
problem. The SingularFlow implementation (Ours) approaches a low loss, while standard Monte
Carlo integration (Standard) stays roughly constant at a high loss. Figure 11c depicts the functions
predicted by Ours and Standard. Standard predicts a function that seems to be a constant, while
Ours predicts a function that is more complex and varies with the input.

7 Related Work

We organize the related work into work from the programming languages community and work
from the machine learning community. We provide further discussion of related math, numerical
methods, and applications to computer graphics in Appendix G. To our knowledge, our paper is
the first to provide a semantics of programs with singular integrals as well as their derivatives.
Standard Integrals, Discontinuities, and Derivatives. A line of work studies differentiable pro-
gramming languages with support for integration [4, 61, 75]. Expressing programs using integrals
can be easier to manipulate than expressing them using sampling [67, 75]. In problems specified
using integration, discontinuities caused by control flow lead to challenges in modeling and differ-
entiation [17, 36, 46, 49, 58, 66, 76]. Researchers have addressed these challenges in various ways,
in specific contexts ranging from root finding to rendering to path planning [4, 7, 37, 61, 75, 87].
Probabilistic programs are programs that involve sampling and denote a measure [5, 41, 83].

Executing a probabilistic program (i.e., performing inference) often involves estimating the integral
of the measure to compute a statistic such as the expected value of a function [8, 14, 18, 25, 72].
An advantage of this interface is that it simplifies expressing certain computations such as a
random walk, where the measure is difficult to manually construct and integrate. Recent works
have analyzed existing inference algorithms and/or developed new ones to ensure correctness in
the presence of discontinuities [6, 39, 47, 48, 50, 51, 70, 84, 88].

None of the above works study semantics of programs with singular integrals or their derivatives.
Neural Solvers for Singular Integral Equations. Physically-informed neural networks (PINNs)
are an approach to solving integral equations using neural networks [73]. Researchers have applied
this framework to problems with singular integrals arising in fields such as potential theory and
electrostatics [33, 54, 80]. However, these works hand-derive Riemann integrals from a specific class
of singular integrals (i.e., principal value integrals), and differentiate them with respect to nonsin-
gular variables (written as 𝑥,𝑦 in our work). As we show in Example 3.16, naively differentiating
these integrals (or their estimators) with respect to singular variables is generally incorrect. We
could not find open-source implementations of these works to compare against our approach.
We use PINNs to solve singular integral equations. SingularFlow automatically estimates a

larger class of singular integrals, and differentiates them possibly with respect to singular variables.
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8 Limitations and Future Work

In this section, we discuss the limitations of our work and directions for future research.
Multivariate and Nested Integrals. Multivariate integrals with singularities,

∫
𝑆
𝑓 (x)/𝑔(x)𝑑x,

where 𝑆 is a multivariate domain of integration, have the problem that singularities may now
lay along a surface 𝑔(x) = 0 rather than a point. If the integrand is separable in the variables
of integration, then the problem can be reduced to our system. Future work could identify such
integrands automatically and work to expand the theory to handle the case where the singularity
is not separable. Perhaps the Schwartz kernel theorem is a good starting point [30].
Multiple Singularities. The extension to multiple singularities in the integrand is possible. An
implementation could use a different sampling approach for different terms in the integrand.
Perhaps it could tag samples in a way similar to Michel et al. [61].
More General Singularities. In this work, we studied singularities of the form 𝑓 (𝑥, 𝜃 )/(𝑥 − 𝑠)𝑘 ,
where 𝑘 is a positive integer. Kutt [43] studies the case where 𝑘 is a positive real number. Prior
work claims that a general class of functions can be used as a change of variables for these singular
integrals [64]. Future work could extend the language to support these more general singularities.
Another opportunity to generalize handling singularities is Hadamard regularization, which

defines the integral of a function with a singularity coincident to a bound of integration [43]. The
approach is to take the limit approaching the singularity, analytically integrate, and then add in
a regularization factor that cancels out the singularity. For example, −

∫ 1
0

1
𝑥
𝑑𝑥 ≜ lim𝜖→0

∫ 1
𝜖

1
𝑥
𝑑𝑥 +

ln 𝜖 = ln 1 = 0, which cancels the − ln 𝜖 singularity by adding ln 𝜖 . A challenge is that Hadamard
regularization requires the analytical integral and suffers from some pathologies. For instance,
Hadamard regularization is not invariant to changes of variables. Concretely, if 𝑦 = 2𝑥 then −

∫ 1
0

1
𝑥
𝑑𝑥

should equal −
∫ 2
0

1
𝑦
𝑑𝑦, but −

∫ 1
0

1
𝑥
𝑑𝑥 = ln 1 is not equal to −

∫ 2
0

1
𝑦
𝑑𝑦 ≜ lim𝜖

∫ 2
𝜖

1
𝑦
𝑑𝑦 − ln 𝜖 = ln 2. More

broadly, there is a rich literature on singular integral operators [2, 12, 23, 29, 44, 79].
Broader Applications. Support for automatic differentiation opens up a variety of additional
applications such as solving inverse problems [17, 50, 52, 87]. Some inverse problems most relevant
to the applications that we study are designing the wing of a plane to optimize for a desired
amount of lift [21] or optimizing a material so that cracks propagate slowly when they occur [3].
To highlight one very general example, it is possible to solve integral equations on infinite domains
by mapping the infinite domain to a finite one with a singularity using the Kelvin transform [65].
We provide additional discussion in Appendix G.

9 Conclusions

This paper introduced the first formal semantics for a programming language with support for
singular integrals. In doing so, we provided a self-contained and rigorous presentation of the
mathematical theory of singular integrals using only elementary calculus, including results that we
had not seen proven rigorously using elementary techniques.

We provided a denotational and operational semantics for SingularFlow, and proved that the
two semantics agree in that the operational semantics is an unbiased and finite-variance estimator of
the denotational semantics and averaging these estimators leads to a strongly-consistent estimator
family. We further defined a derivative operation that applies to SingularFlow programs and
proved that it is correct. We evaluated SingularFlow by using it to implement the Hilbert transform
as well as to solve singular integral equations arising in aerodynamics and mechanical engineering.

In the future, we hope our work will help researchers better formalize and reason about integral
equations, and lead to flexible, ubiquitous tools for solving problems in science and engineering.
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10 Data-Availability Statement

The artifact associated with this paper is available online [60].
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A Proofs for Section 3

A.1 Proofs for Appendix 3.1

Lemma A.1. For all smooth 𝑓 : R→ R, if 𝑓 (𝑠) = 0, then lim𝑢→𝑠
𝑓 (𝑢 )
𝑢−𝑠 exists and equals 𝑓 ′ (𝑠). «

Proof. Let 𝑔𝑠 (𝑢) = 𝑢 − 𝑠 . We prove the lemma as follows:

lim
𝑢→𝑠

𝑓 (𝑢)
𝑔𝑠 (𝑢)

= lim
𝑢→𝑠

𝑓 ′ (𝑢)
1 = 𝑓 ′ (𝑠),

where the first equality follows from L’Hopital’s rule and the second equality follows from 𝑓 being
smooth (at least 𝐶1). Here, L’Hopital’s rule is applicable because lim𝑢→𝑠 𝑓 (𝑢) = lim𝑢→𝑠 𝑔𝑠 (𝑢) = 0,
lim𝑢→𝑠 𝑔

′
𝑠 (𝑢) = 1 ≠ 0, and lim𝑢→𝑠 𝑓

′ (𝑢) exists. □

Proposition 3.1. For all smooth 𝑓 , the integral
∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢 exists if and only if 𝑓 (𝑠) = 0. «

Proof. (⇒) We prove the contrapositive: if 𝑓 (𝑠) ≠ 0, then
∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢 does not exist. Without

loss of generality, there exists some 𝜖 > 0 such that 𝑓 (𝑠) = 𝜖 . By continuity, there exists 𝛿 ∈
(0,min(𝑏 − 𝑠, 𝑠 − 𝑎)) such that for every 𝑢 ∈ 𝐵𝛿 (𝑠), |𝑓 (𝑢) − 𝑓 (𝑠) | < 𝜖

2 . Note that
𝜖
2 < 𝑓 (𝑢) < 3𝜖

2 for
all 𝑢 ∈ 𝐵𝛿 (𝑠). We split the integral into two parts:∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 =

∫
[𝑎,𝑏 ]\𝐵𝛿 (𝑠 )

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫
𝐵𝛿 (𝑠 )

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢.

The first integral exists because it is the integral of a function that is continuous over a compact set
and so bounded, and the integral of a bounded function over a compact set always exists. But the
second integral does not have a finite value because

∫
𝐵𝛿 (𝑠 )

�� 𝑓 (𝑢 )
𝑢−𝑠

��𝑑𝑢 ≥ 𝜖
2
∫
𝐵𝛿 (𝑠 )

�� 1
𝑢−𝑠

��𝑑𝑢 = ∞.
(⇐) It is sufficient to show that the integrand 𝑔(𝑢) = 𝑓 (𝑢)/(𝑢 −𝑠) is continuous on [𝑎, 𝑏] because

such a continuous function on [𝑎, 𝑏] is bounded, and this boundedness ensures that the integral of
the function over [𝑎, 𝑏] has a well-defined finite value. Since 𝑓 is smooth and 𝑓 (𝑠) = 0, Lemma A.1
implies that 𝑔 is indeed continuous on [𝑎, 𝑏]. □

Proposition 3.3. For every smooth 𝑓 : R→ R, the following hold:
(a) C

∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢 is well-defined and

C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 =

∫ 𝑠

𝑎

𝑓 (𝑢) − 𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢 −

∫ 𝑎

2𝑠−𝑏

𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢, (4)

where the two Riemann integrals in Equation (4) are well-defined.
(b) The Cauchy principal value integral is a linear operator on smooth functions:

C
∫ 𝑏

𝑎

𝑐1 𝑓1 (𝑢) + 𝑐2 𝑓2 (𝑢)
𝑢 − 𝑠 𝑑𝑢 = 𝑐1 ·

(
C
∫ 𝑏

𝑎

𝑓1 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
+ 𝑐2 ·

(
C
∫ 𝑏

𝑎

𝑓2 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
for all 𝑐1, 𝑐2 ∈ R and smooth 𝑓1, 𝑓2 : R→ R.

(c) If
∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢 is well-defined, then C

∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢 =

∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢. «

Proof. We prove each claim as follows.

Proof of (a). Recall the definition of the Cauchy principal value integral:

C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 = lim

𝜖→0+

(∫ 𝑠−𝜖

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫ 𝑏

𝑠+𝜖

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
. (12)
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Here, the latter integral can be rewritten with the change of variables 𝑣 = 2𝑠 − 𝑢 as follows:∫ 𝑏

𝑠+𝜖

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 =

∫ 𝑠−𝜖

2𝑠−𝑏

𝑓 (2𝑠 − 𝑣)
𝑠 − 𝑣 𝑑𝑣 = −

(∫ 𝑎

2𝑠−𝑏

𝑓 (2𝑠 − 𝑣)
𝑣 − 𝑠 𝑑𝑣 +

∫ 𝑠−𝜖

𝑎

𝑓 (2𝑠 − 𝑣)
𝑣 − 𝑠 𝑑𝑣

)
.

By substituting this back into (12), we obtain (a):

C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 = lim

𝜖→0+

(∫ 𝑠−𝜖

𝑎

𝑓 (𝑢) − 𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢 −

∫ 𝑎

2𝑠−𝑏

𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢

)
=

∫ 𝑠

𝑎

𝑓 (𝑢) − 𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢 −

∫ 𝑎

2𝑠−𝑏

𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢. (13)

The two Riemann integrals in (13) are well-defined because their integrands are continuous over
the compact domain of integration: the first integrand (𝑓 (𝑢) − 𝑓 (2𝑠 − 𝑢))/(𝑢 − 𝑠) is continuous by
Lemma A.1 (with 𝑓 being smooth and 𝑓 (𝑠) − 𝑓 (2𝑠 − 𝑠) = 0) and the second integrand is continuous
over the domain of integration because 𝑎 < 𝑠 and 2𝑠 − 𝑏 < 𝑠 (by 𝑠 < 𝑏). Further, the equality
in (13) holds by the following fact: if 𝑔 : R → R is continuous, then 𝐺 : R → R defined by
𝐺 (𝑡) =

∫ 𝑡

𝑎
𝑔(𝑢)𝑑𝑢 is continuous.

Proof of (b). We apply the definition of the Cauchy principal value integral, use the linearity of
the limit and the Riemann integral, and then apply the definition again:

C
∫ 𝑏

𝑎

𝑐1 𝑓1 (𝑢) + 𝑐2 𝑓2 (𝑢)
𝑢 − 𝑠 𝑑𝑢

= lim
𝜖→0+

(∫ 𝑠−𝜖

𝑎

𝑐1 𝑓1 (𝑢) + 𝑐2 𝑓2 (𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫ 𝑏

𝑠+𝜖

𝑐1 𝑓1 (𝑢) + 𝑐2 𝑓2 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
= 𝑐1 · lim

𝜖→0+

(∫ 𝑠−𝜖

𝑎

𝑓1 (𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫ 𝑏

𝑠+𝜖

𝑓1 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
+ 𝑐2 · lim

𝜖→0+

(∫ 𝑠−𝜖

𝑎

𝑓2 (𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫ 𝑏

𝑠+𝜖

𝑓2 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
= 𝑐1 ·

(
C
∫ 𝑏

𝑎

𝑓1 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
+ 𝑐2 ·

(
C
∫ 𝑏

𝑎

𝑓2 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
.

Proof of (c). We apply Proposition 3.1 to 𝑓 , which gives 𝑓 (𝑠) = 0. From this, we obtain (c):

C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 = lim

𝜖→0+

(∫ 𝑠−𝜖

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫ 𝑏

𝑠+𝜖

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
=

∫ 𝑠

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫ 𝑏

𝑠

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢,

where the last two Riemann integrals are well-defined because their integrands are continuous on
R by Lemma A.1 (with 𝑓 being smooth and 𝑓 (𝑠) = 0). The first equality above applies the definition
of the Cauchy principal value integral, and the second equality holds by the aforementioned fact:
the antiderivative of a continuous function is continuous. □

Proposition 3.6. For every smooth function 𝑓 : R→ R,

C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 =


∫ 𝑠

𝑎

𝑓 (𝑢) − 𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫ 𝑏

2𝑠−𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 if 𝑠 ∈

(
𝑎, 𝑎+𝑏2

]
∫ 𝑏

𝑠

𝑓 (𝑢) − 𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫ 2𝑠−𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 if 𝑠 ∈

[
𝑎+𝑏
2 , 𝑏

)
.

(5)

«
Proof. Suppose 𝑠 ∈

[
𝑎+𝑏
2 , 𝑏

)
. Let 𝑎′ = 2𝑠 − 𝑏. Since 𝑎 ≤ 𝑎′ < 𝑠 , we can split the integral into two:

C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 =

∫ 𝑎′

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 + C

∫ 𝑏

𝑎′

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢.
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We then expand the second integral in the RHS by Definition 3.2:

C
∫ 𝑏

𝑎′

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 = lim

𝜖→0

(∫ 𝑠−𝜖

𝑎′

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 +

∫ 𝑏

𝑠+𝜖

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
.

By using the substitution 𝑣 = 2𝑠 − 𝑢, we have:

C
∫ 𝑏

𝑎′

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢 = lim

𝜖→0

(
−

∫ 𝑠+𝜖

𝑏

𝑓 (2𝑠 − 𝑣)
(2𝑠 − 𝑣) − 𝑠 𝑑𝑣 +

∫ 𝑏

𝑠+𝜖

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
= lim

𝜖→0

(
−

∫ 𝑏

𝑠+𝜖

𝑓 (2𝑠 − 𝑣)
𝑣 − 𝑠 𝑑𝑣 +

∫ 𝑏

𝑠+𝜖

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
= lim

𝜖→0

∫ 𝑏

𝑠+𝜖

𝑓 (𝑢) − 𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢

=

∫ 𝑏

𝑠

𝑓 (𝑢) − 𝑓 (2𝑠 − 𝑢)
𝑢 − 𝑠 𝑑𝑢,

where the last equation follows from Lemma A.6, which states that the integrand can be extended
to a smooth function, justifying the limit. This proves the desired equation. The proof for the other
case (i.e., when 𝑠 ∈

(
𝑎, 𝑎+𝑏2

]
) is analogous, so we omit it. □

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 164. Publication date: June 2025.



164:30 Jesse Michel, Wonyeol Lee, and Hongseok Yang

A.2 Proofs for Appendix 3.2 (Technical Lemmas)

Lemma A.2 (Leibniz integral rule [45, Theorem 7.1]). Let 𝑓 : 𝑈 × R → R be a function of
𝑢 and 𝑣 for some open set 𝑈 ⊆ R with [𝑎, 𝑏] ⊆ 𝑈 . If 𝑓 and 𝜕

𝜕𝑣
𝑓 are continuous on [𝑎, 𝑏] × R, then

𝑔(𝑣) ≜
∫ 𝑏

𝑎
𝑓 (𝑢, 𝑣)𝑑𝑢 is differentiable on R and

𝑑

𝑑𝑣

∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣)𝑑𝑢 =

∫ 𝑏

𝑎

𝜕

𝜕𝑣
𝑓 (𝑢, 𝑣)𝑑𝑢 (𝑣 ∈ R). «

Lemma A.3 (Taylor’s theorem [45, Theorem 3.1]). For all smooth 𝑓 : R→ R and integers 𝑘 ≥ 0,

𝑓 (𝑢) −
𝑘∑︁
𝑖=0

𝑓 (𝑖 ) (𝑣)
𝑖! (𝑢 − 𝑣)𝑖 =

∫ 𝑢

𝑣

𝑓 (𝑘+1) (𝑡)
𝑘! (𝑢 − 𝑡)𝑘𝑑𝑡 (𝑢, 𝑣 ∈ R). «

Lemma A.4. Let 𝑓 : 𝑈 ×R𝑚 → R for some open set𝑈 ⊆ R and integer𝑚 ≥ 1 with [𝑎, 𝑏] ⊆ 𝑈 . If 𝑓
is continuous on [𝑎, 𝑏] × R𝑚 , then the function 𝑔(𝑣1, . . . , 𝑣𝑚) ≜

∫ 𝑏

𝑎
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)𝑑𝑢 is well-defined

and continuous on R𝑚 . «

Proof. The proof is trivial when 𝑎 = 𝑏, so assume 𝑎 < 𝑏. By the continuity of 𝑓 on the compact
set [𝑎, 𝑏], 𝑔 is well-defined on R𝑚 . To show the continuity of 𝑔, consider any 𝑣 ∈ R𝑚 and 𝜖 > 0. We
need to show that for some 𝛿 > 0,

∥𝑣 − 𝑣 ′∥2 < 𝛿 =⇒ |𝑔(𝑣) − 𝑔(𝑣 ′) | < 𝜖 (𝑣, 𝑣 ′ ∈ R𝑚).
Let 𝑆 ≜ [𝑎, 𝑏] ×{𝑣 ′ ∈ R𝑚 | ∥𝑣−𝑣 ′∥2 ≤ 1}. Since 𝑓 is continuous on the compact set 𝑆 , 𝑓 is uniformly
continuous on 𝑆 . Hence, there exists 𝛿 > 0 such that ∥𝑤−𝑤 ′∥2 < 𝛿 implies |𝑓 (𝑤)−𝑓 (𝑤 ′) | < 𝜖/(𝑏−𝑎)
for all𝑤,𝑤 ′ ∈ R𝑛+1. This 𝛿 satisfies the above claim as follows:���𝑔(𝑣) − 𝑔(𝑣 ′)��� = �����∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣) − 𝑓 (𝑢, 𝑣 ′)𝑑𝑢
����� ≤ ∫ 𝑏

𝑎

���𝑓 (𝑢, 𝑣) − 𝑓 (𝑢, 𝑣 ′)���𝑑𝑢 < (𝑏 − 𝑎) · 𝜖

𝑏 − 𝑎 = 𝜖,

where the last inequality is by ∥(𝑢, 𝑣) − (𝑢, 𝑣 ′)∥2 ≤ ∥𝑣 − 𝑣 ′∥2 < 𝛿 . □

Lemma A.5. Let 𝑓 : 𝑈 ×R𝑚 → R for some open set𝑈 ⊆ R and integer𝑚 ≥ 1 with [𝑎, 𝑏] ⊆ 𝑈 . If 𝑓
is smooth on [𝑎, 𝑏] × R𝑚 , then 𝑔(𝑣1, . . . , 𝑣𝑚) ≜

∫ 𝑏

𝑎
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)𝑑𝑢 is smooth on R𝑚 . «

Proof. It suffices to prove that for all 𝑛 ∈ N0 and 𝑖1, . . . , 𝑖𝑛 ∈ {1, . . . ,𝑚},
(i) the function 𝜕𝑛

𝜕𝑣𝑖1 · · ·𝜕𝑣𝑖𝑛
𝑔 is well-defined and continuous on R𝑚 ; and

(ii) for all integers 𝑛 ≥ 0, 𝑖1, . . . , 𝑖𝑛 ∈ {1, . . . ,𝑚}, and (𝑣1, . . . , 𝑣𝑚) ∈ R𝑚 ,
𝜕𝑛

𝜕𝑣𝑖1 · · · 𝜕𝑣𝑖𝑛
𝑔(𝑣1, . . . , 𝑣𝑚) =

∫ 𝑏

𝑎

𝜕𝑛

𝜕𝑣𝑖1 · · · 𝜕𝑣𝑖𝑛
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)𝑑𝑢. (14)

We prove this by induction on 𝑛.
• Case 𝑛 = 0. In this case, 𝜕𝑛

𝜕𝑣𝑖1 · · ·𝜕𝑣𝑖𝑛
𝑔 = 𝑔 and 𝜕𝑛

𝜕𝑣𝑖1 · · ·𝜕𝑣𝑖𝑛
𝑓 = 𝑓 . Hence, Equation (14) sim-

ply becomes the definition of 𝑔. Also, by applying Lemma A.4 to the definition of 𝑔 (i.e.,
𝑔(𝑣1, . . . , 𝑣𝑚) =

∫ 𝑏

𝑎
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)𝑑𝑢), we obtain that 𝑔 is well-defined and continuous on

R𝑚 . Here, the lemma is applicable because 𝑓 is smooth on𝑈 × R𝑚 .
• Case 𝑛 ≥ 1. Let 𝑖1, . . . , 𝑖𝑛 ∈ {1, . . . ,𝑚}. By induction hypothesis, the function 𝜕𝑛

𝜕𝑣𝑖2 · · ·𝜕𝑣𝑖𝑛
𝑔 is

continuous on R𝑚 and satisfies the following: for all (𝑣1, . . . , 𝑣𝑚) ∈ R𝑚 ,
𝜕𝑛−1

𝜕𝑣𝑖2 · · · 𝜕𝑣𝑖𝑛
𝑔(𝑣1, . . . , 𝑣𝑚) =

∫ 𝑏

𝑎

𝜕𝑛−1

𝜕𝑣𝑖2 · · · 𝜕𝑣𝑖𝑛
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)𝑑𝑢.
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By applying the Leibniz integral rule (Lemma A.2) to the above equation (more precisely, to
the function ℎ(𝑢, 𝑣𝑖1 ) ≜ 𝜕𝑛−1

𝜕𝑣𝑖2 · · ·𝜕𝑣𝑖𝑛
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)), we obtain that for all (𝑣1, . . . , 𝑣𝑚) ∈ R𝑚 ,

𝜕

𝜕𝑣𝑖1

(
𝜕𝑛−1

𝜕𝑣𝑖2 · · · 𝜕𝑣𝑖𝑛
𝑔

)
(𝑣1, . . . , 𝑣𝑚) =

∫ 𝑏

𝑎

𝜕

𝜕𝑣𝑖1

(
𝜕𝑛−1

𝜕𝑣𝑖2 · · · 𝜕𝑣𝑖𝑛
𝑓

)
(𝑢, 𝑣1, . . . , 𝑣𝑚)𝑑𝑢, (15)

where both sides are well-defined. Here, the Leibniz integral rule is applicable because ℎ is
smooth on𝑈 × R.
We now show (i) and (ii). First, Equation (15) shows that 𝜕𝑛

𝜕𝑣𝑖1 · · ·𝜕𝑣𝑖𝑛
𝑔 is well-defined on R𝑚 .

Second, Lemma A.4 applied to Equation (15) shows that 𝜕𝑛

𝜕𝑣𝑖1 · · ·𝜕𝑣𝑖𝑛
𝑔 is continuous on R𝑚 .

Here, the lemma is applicable because 𝜕𝑛

𝜕𝑣𝑖1 · · ·𝜕𝑣𝑖1
𝑓 is smooth on 𝑈 × R𝑚 . Third, Equation (15)

is exactly Equation (14). □

Lemma A.6. For all smooth 𝑓 : R→ R and integers 𝑘 ≥ 0, the function

𝑔(𝑢, 𝑣) ≜ 1
(𝑢 − 𝑣)𝑘+1

(
𝑓 (𝑢) −

𝑘∑︁
𝑖=0

𝑓 (𝑖 ) (𝑣)
𝑖! (𝑢 − 𝑣)𝑖

)
(16)

defined over R2 \ {(𝑐, 𝑐) : 𝑐 ∈ R} can be extended to a smooth function 𝑔 : R2 → R, which satisfies

𝑔(𝑢,𝑢) = 𝑓 (𝑘+1) (𝑢)
𝑘! (𝑢 ∈ R). «

Proof. Let 𝑓 : R→ R be a smooth function and 𝑘 ≥ 0 be an integer. Then, for all 𝑢, 𝑣 ∈ R,

𝑓 (𝑢) −
𝑘∑︁
𝑖=0

𝑓 (𝑖 ) (𝑣)
𝑖! (𝑢 − 𝑣)𝑖 =

∫ 𝑢

𝑣

𝑓 (𝑘+1) (𝑡)
𝑘! (𝑢 − 𝑡)𝑘𝑑𝑡

=

∫ 1

0

𝑓 (𝑘+1)
(
𝑡 ′𝑢 + (1 − 𝑡)′𝑣

)
𝑘! ·

(
(1 − 𝑡 ′) (𝑢 − 𝑣)

)𝑘 · (𝑢 − 𝑣)𝑑𝑡 ′
= (𝑢 − 𝑣)𝑘+1

∫ 1

0

𝑓 (𝑘+1)
(
𝑡 ′𝑢 + (1 − 𝑡 ′)𝑣

)
𝑘! (1 − 𝑡 ′)𝑘𝑑𝑡 ′ . (17)

Here, the first line is by Taylor’s theorem (Lemma A.3), and the second line holds for the following
reason: if 𝑢 = 𝑣 , then this line is trivial, and if 𝑢 ≠ 𝑣 , then the change of variable 𝑡 ′ = (𝑡 − 𝑣)/(𝑢 − 𝑣)
gives this line because 𝑡 = 𝑡 ′𝑢 + (1 − 𝑡 ′)𝑣 and 𝑑𝑡 = (𝑢 − 𝑣)𝑑𝑡 ′.
We now define 𝑔 : R2 → R as

𝑔(𝑢, 𝑣) ≜
∫ 1

0

𝑓 (𝑘+1)
(
𝑡𝑢 + (1 − 𝑡)𝑣

)
𝑘! (1 − 𝑡)𝑘𝑑𝑡 .

Then, 𝑔 satisfies the claims of the lemma. First, 𝑔 is an extension of 𝑔: by Equation (17), 𝑔 satisfies
Equation (16) for all 𝑢, 𝑣 ∈ R with 𝑢 ≠ 𝑣 . Second, 𝑔 is smooth on R2 by Lemma A.5, which is
applicable because the integrand of 𝑔 is a smooth function of 𝑡,𝑢, 𝑣 on R3. Lastly, for all 𝑢 ∈ R,
𝑔(𝑢,𝑢) = 𝑓 (𝑘+1) (𝑢 )

𝑘!
∫ 1
0 (1 − 𝑡)

𝑘𝑑𝑡 =
𝑓 (𝑘+1) (𝑢 )
(𝑘+1)! , as desired. □
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A.3 Proofs for Appendix 3.2 (Main Results)

Proposition 3.7. For all smooth 𝑓 : R→ R and integers 𝑘 ≥ 0, the integral
∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )𝑘+1𝑑𝑢 exists

if and only if 𝑓 (𝑖 ) (𝑠) = 0 for all 𝑖 ∈ {0, . . . , 𝑘}. «

Proof. (⇒) We prove the contrapositive: if 𝑓 (𝑖 ) (𝑠) ≠ 0 for some 0 ≤ 𝑖 ≤ 𝑘 , then
∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )𝑘+1𝑑𝑢

does not exist. Let 𝑖 be the smallest index such that 𝑓 (𝑖 ) (𝑠) ≠ 0. Without loss of generality, we
assume that 𝑓 (𝑖 ) (𝑠) > 0. Since 𝑓 (0) (𝑠) = . . . = 𝑓 (𝑖−1) (𝑠) = 0, Lemma A.6 implies that the function
𝑔 : R→ R defined by 𝑔(𝑢) ≜ 𝑓 (𝑢)/(𝑢 − 𝑠)𝑖 is continuous on R with 𝑔(𝑠) = 𝑓 (𝑖 ) (𝑠)/𝑖! > 0. By the
continuity of 𝑔, there exists 𝛿 ∈ (0,min(𝑏 − 𝑠, 𝑠 − 𝑎)) such that |𝑔(𝑢) − 𝑔(𝑠) | < 1

2𝑔(𝑠) for every
𝑢 ∈ 𝐵𝛿 (𝑠). Note that 1

2𝑔(𝑠) < 𝑔(𝑢) <
3
2𝑔(𝑠) for all 𝑢 ∈ 𝐵𝛿 (𝑠). We split the integral into two parts:∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 =

∫
[𝑎,𝑏 ]\𝐵𝛿 (𝑠 )

𝑔(𝑢)
(𝑢 − 𝑠)𝑘+1−𝑖

𝑑𝑢 +
∫
𝐵𝛿 (𝑠 )

𝑔(𝑢)
(𝑢 − 𝑠)𝑘+1−𝑖

𝑑𝑢.

The first integral is bounded because it is the integral of a function that is continuous over a compact
domain and is thus bounded over the domain. The second integral, however, does not exist because∫

𝐵𝛿 (𝑠 )

���� 𝑔(𝑢)
(𝑢 − 𝑠)𝑘+1−𝑖

����𝑑𝑢 ≥ 𝑔(𝑠)2 ∫
𝐵𝛿 (𝑠 )

���� 1
(𝑢 − 𝑠)𝑘+1−𝑖

����𝑑𝑢 = +∞,

where the equality is from 𝑔(𝑠) > 0 and 𝑘 + 1 − 𝑖 ≥ 1.
(⇐) It is sufficient to show that the integrand ℎ(𝑢) ≜ 𝑓 (𝑢)/(𝑢 − 𝑠)𝑘+1 is continuous on [𝑎, 𝑏]

because a continuous function over a compact set is bounded and the integral of a bounded function
over a compact set has a finite well-defined value. Since 𝑓 is smooth and 𝑓 (𝑖 ) (𝑠) = 0 for all 0 ≤ 𝑖 ≤ 𝑘 ,
Lemma A.6 implies that ℎ is indeed continuous on [𝑎, 𝑏]. □

Proposition 3.9. For every smooth 𝑓 : R→ R and integer 𝑘 ≥ 1, the following hold:

(a) H
∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )𝑘+1𝑑𝑢 is well-defined and satisfies integration by parts:

H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 =


− 𝑓 (𝑢)
𝑢 − 𝑠

����𝑏
𝑢=𝑎

+ C
∫ 𝑏

𝑎

𝑓 ′ (𝑢)
𝑢 − 𝑠 𝑑𝑢 if 𝑘 = 1

− 1
𝑘

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘

����𝑏
𝑢=𝑎

+ 1
𝑘
H

∫ 𝑏

𝑎

𝑓 ′ (𝑢)
(𝑢 − 𝑠)𝑘

𝑑𝑢 if 𝑘 ≥ 2.
(6)

(b) The Hadamard finite part value integral is a linear operator on smooth functions:

H
∫ 𝑏

𝑎

𝑐1 𝑓1 (𝑢) + 𝑐2 𝑓2 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 = 𝑐1 ·
(
H

∫ 𝑏

𝑎

𝑓1 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

)
+ 𝑐2 ·

(
H

∫ 𝑏

𝑎

𝑓2 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

)
for all 𝑐1, 𝑐2 ∈ R and smooth 𝑓1, 𝑓2 : R→ R.

(c) If
∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )𝑘+1𝑑𝑢 is well-defined, thenH

∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )𝑘+1𝑑𝑢 =

∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )𝑘+1𝑑𝑢. «

Proof. We prove each statement as follows.

Proof of (a): Well-definedness. We show that the Hadamard finite part integral is well-defined.
Since the Hadamard finite part integral is defined as a constant times the 𝑘-th derivative of the
Cauchy principal value integral (Definition 3.8), it is sufficient to show that 𝑔(𝑠) ≜ C

∫ 𝑏

𝑎

𝑓 (𝑢 )
𝑢−𝑠 𝑑𝑢 is

smooth on (𝑎, 𝑏). By the linearity of the Cauchy principal value integral (Proposition 3.3(b)),

𝑔(𝑠) = C
∫ 𝑏

𝑎

𝑓 (𝑢) − 𝑓 (𝑠)
𝑢 − 𝑠 𝑑𝑢 + C

∫ 𝑏

𝑎

𝑓 (𝑠)
𝑢 − 𝑠 𝑑𝑢
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=

∫ 𝑏

𝑎

𝑓 (𝑢) − 𝑓 (𝑠)
𝑢 − 𝑠 𝑑𝑢 + C

∫ 𝑏

𝑎

𝑓 (𝑠)
𝑢 − 𝑠 𝑑𝑢, (18)

where the second line is by Proposition 3.3(c). Here, this proposition is applicable because the first
integral in Equation (18) is well-defined: the integrand of this integral is smooth in 𝑢 by Lemma A.6,
so this integral is well-defined.

Given this, it is sufficient to show that each of the two integrals in Equation (18) is smooth in 𝑠 .
The first integral is smooth in 𝑠 by Lemma A.5, which is applicable because the integrand of this
integral is smooth in (𝑢, 𝑠) on R2 by Lemma A.6. For the second integral, applying Proposition 3.3(a)
yields

C
∫ 𝑏

𝑎

𝑓 (𝑠)
𝑢 − 𝑠 𝑑𝑢 =

∫ 𝑠

𝑎

𝑓 (𝑠) − 𝑓 (𝑠)
𝑢 − 𝑠 𝑑𝑢 −

∫ 𝑎

2𝑠−𝑏

𝑓 (𝑠)
𝑢 − 𝑠 𝑑𝑢 = 𝑓 (𝑠) · ln(𝑠 − 𝑢)

���2𝑠−𝑏
𝑢=𝑎

(19)

where the last equality is from 𝑎, 2𝑠 −𝑏 < 𝑠 (since 𝑎 < 𝑠 < 𝑏). This implies that the second integral is
also smooth in 𝑠 . Hence, 𝑔 is smooth on (𝑎, 𝑏) and the Hadamard finite part integral is well-defined.

Proof of (a): Integration by parts. We show that the Hadamard finite part integral satisfies
Equation (6), i.e., integration by parts. Equation (6) is equivalent to:

H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 = − 1
𝑘

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘

����𝑏
𝑢=𝑎

+ 1
𝑘!

𝜕𝑘−1

𝜕𝑠𝑘−1

(
C
∫ 𝑏

𝑎

𝑓 ′ (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
, (20)

where 𝜕0

𝜕𝑠0 denotes the identity function. The proof proceeds by induction on 𝑘 .
Base case (𝑘 = 1). We first computeH

∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )2𝑑𝑢 as follows:

H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)2𝑑𝑢 =

𝑑

𝑑𝑠

(
C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
=
𝑑

𝑑𝑠

(∫ 𝑏

𝑎

𝑓 (𝑢) − 𝑓 (𝑠)
𝑢 − 𝑠 𝑑𝑢 + 𝑓 (𝑠) · C

∫ 𝑏

𝑎

1
𝑢 − 𝑠 𝑑𝑢

)
=

∫ 𝑏

𝑎

𝑑

𝑑𝑠

(
𝑓 (𝑢) − 𝑓 (𝑠)
𝑢 − 𝑠

)
𝑑𝑢 + 𝑓 ′ (𝑠) · C

∫ 𝑏

𝑎

1
𝑢 − 𝑠 𝑑𝑢 + 𝑓 (𝑠) ·

𝑑

𝑑𝑠

(
C
∫ 𝑏

𝑎

1
𝑢 − 𝑠 𝑑𝑢

)
=

∫ 𝑏

𝑎

−𝑓 ′ (𝑠) (𝑢 − 𝑠) + 𝑓 (𝑢) − 𝑓 (𝑠)
(𝑢 − 𝑠)2 𝑑𝑢 + C

∫ 𝑏

𝑎

𝑓 ′ (𝑠)
𝑢 − 𝑠 𝑑𝑢

+ 𝑓 (𝑠) · 𝑑
𝑑𝑠

(
C
∫ 𝑏

𝑎

1
𝑢 − 𝑠 𝑑𝑢

)
.

Here, the first line is by the definition of the Hadamard finite part integral, and the second line is
by Equation (18) and the linearity of the Cauchy principal value integral (Proposition 3.3(b)). The
third line is by the Leibniz integral rule (Lemma A.2), and because (𝑓 (𝑢) − 𝑓 (𝑠))/(𝑢 − 𝑠) is smooth
in 𝑢 and 𝑠 and C

∫ 𝑏

𝑎

1
𝑢−𝑠𝑑𝑢 is smooth in 𝑠 (both of which were shown above). The last line is by the

linearity of the Cauchy principal value integral.
We next compute C

∫ 𝑏

𝑎

𝑓 ′ (𝑢 )
𝑢−𝑠 𝑑𝑢 as follows:

C
∫ 𝑏

𝑎

𝑓 ′ (𝑢)
𝑢 − 𝑠 𝑑𝑢 =

∫ 𝑏

𝑎

𝑓 ′ (𝑢) − 𝑓 ′ (𝑠)
𝑢 − 𝑠 𝑑𝑢 + C

∫ 𝑏

𝑎

𝑓 ′ (𝑠)
𝑢 − 𝑠 𝑑𝑢

=

∫ 𝑏

𝑎

−𝑓 ′ (𝑠) (𝑢 − 𝑠) + 𝑓 ′ (𝑢) (𝑢 − 𝑠)
(𝑢 − 𝑠)2 𝑑𝑢 + C

∫ 𝑏

𝑎

𝑓 ′ (𝑠)
𝑢 − 𝑠 𝑑𝑢,

where the first line is by Equation (18) and the smoothness of 𝑓 ′.
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By combining these results, we obtain the desired equality (i.e., Equation (6) for the 𝑘 = 1 case):

H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)2𝑑𝑢 − C

∫ 𝑏

𝑎

𝑓 ′ (𝑢)
𝑢 − 𝑠 𝑑𝑢

=

∫ 𝑏

𝑎

𝑓 (𝑢) − 𝑓 (𝑠) − 𝑓 ′ (𝑢) (𝑢 − 𝑠)
(𝑢 − 𝑠)2 𝑑𝑢 + 𝑓 (𝑠) · 𝑑

𝑑𝑠

(
C
∫ 𝑏

𝑎

1
𝑢 − 𝑠 𝑑𝑢

)
,

= −
∫ 𝑏

𝑎

𝑓 (𝑠) − 𝑓 (𝑢) − 𝑓 ′ (𝑢) (𝑠 − 𝑢)
(𝑠 − 𝑢)2 𝑑𝑢 + 𝑓 (𝑠) · 𝑑

𝑑𝑠

(
ln 𝑏 − 𝑠
𝑠 − 𝑎

)
= −

∫ 𝑏

𝑎

𝑑

𝑑𝑢

(
𝑓 (𝑠) − 𝑓 (𝑢)

𝑠 − 𝑢

)
𝑑𝑢 + 𝑓 (𝑠) · 𝑠 − 𝑎

𝑏 − 𝑠 ·
−(𝑠 − 𝑎) − (𝑏 − 𝑠)

(𝑠 − 𝑎)2

= − 𝑓 (𝑠) − 𝑓 (𝑢)
𝑠 − 𝑢

����𝑏
𝑢=𝑎

+ 𝑓 (𝑠) · 𝑏 − 𝑎
(𝑠 − 𝑏) (𝑠 − 𝑎)

= − 𝑓 (𝑢) − 𝑓 (𝑠)
𝑢 − 𝑠

����𝑏
𝑢=𝑎

+ 𝑓 (𝑠) · 1
𝑠 − 𝑢

����𝑏
𝑢=𝑎

= − 𝑓 (𝑢)
𝑢 − 𝑠

����𝑏
𝑢=𝑎

.

Here, the third line is by Equation (19), and the second last line is by the fundamental theorem of
calculus and the smoothness of (𝑓 (𝑠) − 𝑓 (𝑢))/(𝑠 − 𝑢) in 𝑢 (which was shown above).

Inductive case (𝑘 ≥ 2). The proof of the claim (i.e., Equation (6) for 𝑘 > 2) is similar to the previous
case:

H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 =
1
𝑘

𝑑

𝑑𝑠

(
H

∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘

𝑑𝑢

)
=

1
𝑘

𝑑

𝑑𝑠

(
− 1
𝑘 − 1

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘−1

����𝑏
𝑢=𝑎

+ 1
𝑘 − 1H

∫ 𝑏

𝑎

𝑓 ′ (𝑢)
(𝑢 − 𝑠)𝑘−1

𝑑𝑢

)
= − 1

𝑘

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘

����𝑏
𝑢=𝑎

+ 1
𝑘
H

∫ 𝑏

𝑎

𝑓 ′ (𝑢)
(𝑢 − 𝑠)𝑘

𝑑𝑢,

where the first and third line follow from Definition 3.8 and the second line uses the induction
hypothesis (Equation (20)).

Proof of (b). The linearity of the Hadamard finite part integral holds as follows:

H
∫ 𝑏

𝑎

𝑐1 𝑓1 (𝑢) + 𝑐2 𝑓2 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 =
1
𝑘!
𝑑𝑘

𝑑𝑠𝑘

(
C
∫ 𝑏

𝑎

𝑐1 𝑓1 (𝑢) + 𝑐2 𝑓2 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
=

1
𝑘!
𝑑𝑘

𝑑𝑠𝑘

(
𝑐1 · C

∫ 𝑏

𝑎

𝑓1 (𝑢)
𝑢 − 𝑠 𝑑𝑢 + 𝑐2 · C

∫ 𝑏

𝑎

𝑓2 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
= 𝑐1 ·

(
H

∫ 𝑏

𝑎

𝑓1 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

)
+ 𝑐2 ·

(
H

∫ 𝑏

𝑎

𝑓2 (𝑢)
(𝑢 − 𝑠)2𝑑𝑢

)
,

where the first line is by the definition of the Hadamard finite part integral, the second line is by
the linearity of the Cauchy principal value integral (Proposition 3.3(b)), and the last line is by the
linearity of differentiation and by the definition of the Hadamard finite part integral.

Proof of (c). Suppose that
∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )𝑘+1𝑑𝑢 is well-defined. Then, Proposition 3.7 implies that

𝑓 (𝑖 ) (𝑠) = 0 for all 𝑖 ∈ {0, . . . , 𝑘}. From this, we can prove the desired equality as follows:

H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 =
1
𝑘!
𝑑𝑘

𝑑𝑠𝑘

(
C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
=

1
𝑘!
𝑑𝑘

𝑑𝑠𝑘

(∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
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=
1
𝑘!

∫ 𝑏

𝑎

𝑑𝑘

𝑑𝑠𝑘

(
𝑓 (𝑢)
𝑢 − 𝑠

)
𝑑𝑢 =

1
𝑘!

∫ 𝑏

𝑎

𝑘! 𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 =

∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢.

Here, the first equality is by the definition of the Hadamard finite part integral, and the second
equality is by Propositions 3.1 and 3.3 with 𝑓 (𝑠) = 0. The third equality is by the Leibniz integral
rule (Lemma A.2) and the smoothness of 𝑓 (𝑢)/(𝑢 − 𝑠) in 𝑢 and 𝑠 (by Lemma A.6 with 𝑓 (𝑠) = 0). □
Proposition 3.10. For all integers 𝑘 ≥ 1 and smooth functions 𝑓 : R→ R,

H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢 =
1
𝑘!C

∫ 𝑏

𝑎

𝑓 (𝑘 ) (𝑢)
𝑢 − 𝑠 𝑑𝑢 −

𝑘∑︁
𝑖=1

(𝑖 − 1)!
𝑘!

𝑓 (𝑘−𝑖 ) (𝑢)
(𝑢 − 𝑠)𝑖

����𝑏
𝑢=𝑎

. (7)
«

Proof. The proof proceeds by induction on𝑘 . For𝑘 = 1, the claimed equality follows immediately
from Proposition 3.9. For 𝑘 ≥ 2, the desired equality can be shown as follows:

H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

=
1
𝑘
H

∫ 𝑏

𝑎

𝑓 ′ (𝑢)
(𝑢 − 𝑠)𝑘

𝑑𝑢 − 1
𝑘

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘

����𝑏
𝑢=𝑎

=
1
𝑘

(
1

(𝑘 − 1)!C
∫ 𝑏

𝑎

(𝑓 ′) (𝑘−1) (𝑢)
𝑢 − 𝑠 𝑑𝑢 −

𝑘−1∑︁
𝑖=1

(𝑖 − 1)!
(𝑘 − 1)!

(𝑓 ′) (𝑘−1−𝑖 ) (𝑢)
(𝑢 − 𝑠)𝑖

����𝑏
𝑢=𝑎

)
− 1
𝑘

𝑓 (0) (𝑢)
(𝑢 − 𝑠)𝑘

����𝑏
𝑢=𝑎

=
1
𝑘!C

∫ 𝑏

𝑎

𝑓 (𝑘 ) (𝑢)
𝑢 − 𝑠 𝑑𝑢 −

𝑘∑︁
𝑖=1

(𝑖 − 1)!
𝑘!

𝑓 (𝑘−𝑖 ) (𝑢)
(𝑢 − 𝑠)𝑖

����𝑏
𝑢=𝑎

,

where the first equality is by Proposition 3.9 and the second equality is by induction hypothesis on
(𝑘 − 1, 𝑓 ′). □
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A.4 Proofs for Appendix 3.3

Lemma A.7. Let𝑚 ≥ 0 be an integer and 𝑓 : R × R𝑚 → R be a smooth function. Then, for all
integers 𝑘 ≥ 0, the function

𝑔(𝑢, 𝑣,𝑤1, . . . ,𝑤𝑚) ≜
1

(𝑢 − 𝑣)𝑘+1

(
𝑓 (𝑢,𝑤1, . . . ,𝑤𝑚) −

𝑘∑︁
𝑖=0

𝜕𝑖

𝜕𝑢𝑖 𝑓 (𝑣,𝑤1, . . . ,𝑤𝑚)
𝑖! (𝑢 − 𝑣)𝑖

)
(21)

defined over (R2 \ {(𝑐, 𝑐) : 𝑐 ∈ R}) × R𝑚 can be extended to a smooth function 𝑔 : R2 × R𝑚 → R.
Moreover, 𝑔 satisfies

𝑔(𝑢,𝑢,𝑤1, . . . ,𝑤𝑚) =
𝜕𝑘+1

𝜕𝑢𝑘+1 𝑓 (𝑢,𝑤1, . . . ,𝑤𝑚)
𝑘! (𝑢,𝑤1, . . . ,𝑤𝑚 ∈ R).

«

Proof. This lemma is a generalization of Lemma A.6. The proof of this lemma is exactly the same
as the proof of Lemma A.6, except that we now add extra variables (𝑤1, . . . ,𝑤𝑚) to the arguments
of 𝑓 , 𝑔, and 𝑔. □

Proposition 3.12. For every integer𝑚 ≥ 0 and smooth function 𝑓 : R × R𝑚 → R, the function
𝑔(𝑠, 𝑣1, . . . , 𝑣𝑚) = C

∫ 𝑏

𝑎

𝑓 (𝑢,𝑣1,...,𝑣𝑚 )
𝑢−𝑠 𝑑𝑢 is smooth on (𝑎, 𝑏) × R𝑚 . Moreover, for every integer 𝑛 ≥ 0 and

𝑖1, . . . , 𝑖𝑛 ∈ {1, . . . ,𝑚},

𝜕𝑛

𝜕𝑣𝑖1 · · · 𝜕𝑣𝑖𝑛

(
C
∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
𝑢 − 𝑠 𝑑𝑢

)
= C

∫ 𝑏

𝑎

𝜕𝑛

𝜕𝑣𝑖1 · · ·𝜕𝑣𝑖𝑛
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)

𝑢 − 𝑠 𝑑𝑢. (8)
«

Proof. We first prove smoothness and then (8).

Proof of smoothness. The proof is a generalization of (a part of) the proof for Proposition 3.9(a).
By the linearity of the Cauchy principal value integral (Proposition 3.3(b)),

𝑔(𝑠, 𝑣) = C
∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣) − 𝑓 (𝑠, 𝑣)
𝑢 − 𝑠 𝑑𝑢 + C

∫ 𝑏

𝑎

𝑓 (𝑠, 𝑣)
𝑢 − 𝑠 𝑑𝑢

=

∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣) − 𝑓 (𝑠, 𝑣)
𝑢 − 𝑠 𝑑𝑢 + 𝑓 (𝑠, 𝑣) · ln(𝑠 − 𝑢)

���2𝑠−𝑏
𝑢=𝑎

(22)

for all (𝑠, 𝑣) ∈ (𝑎, 𝑏) × R𝑚 , where the equality for the first integral is by Proposition 3.3(c), and the
equality for the second integral is by the calculation we did in the proof of Proposition 3.9(a). Here,
Proposition 3.3(c) is applicable because the first integral in (22) is well-defined: the integrand of
this integral is smooth in 𝑢 by Lemma A.6, so this integral is well-defined.

Given this, it suffices to show that the two terms in (22) are smooth in (𝑠, 𝑣) on (𝑎, 𝑏) × R𝑚 . For
the first term, which is an integral, Lemma A.7 implies that its integrand is smooth in (𝑠,𝑢, 𝑣) on
R × R × R𝑚 . From this and Lemma A.5, the first term is smooth in (𝑠, 𝑣) on R × R𝑚 . The second
term is smooth in (𝑠, 𝑣) on (𝑎, 𝑏) × R𝑚 because 𝑠 ∈ (𝑎, 𝑏) implies 𝑎, 2𝑠 − 𝑏 < 𝑠 .

Proof of (8). Since all partial derivatives of 𝑓 (including higher-order ones) are smooth on
R × R𝑚 , it suffices to show the following: for every 𝑖 ∈ {1, . . . ,𝑚},

𝜕

𝜕𝑣𝑖

(
C
∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
𝑢 − 𝑠 𝑑𝑢

)
= C

∫ 𝑏

𝑎

𝜕
𝜕𝑣𝑖
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)

𝑢 − 𝑠 𝑑𝑢

for all (𝑠, 𝑣1, . . . , 𝑣𝑚) ∈ (𝑎, 𝑏) × R𝑚 . This claim holds as follows:
𝜕

𝜕𝑣𝑖

(
C
∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
𝑢 − 𝑠 𝑑𝑢

)
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=
𝜕

𝜕𝑣𝑖

(∫ 𝑠

𝑎

𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚) − 𝑓 (2𝑠 − 𝑢, 𝑣1, . . . , 𝑣𝑚)
𝑢 − 𝑠 𝑑𝑢 −

∫ 𝑎

2𝑠−𝑏

𝑓 (2𝑠 − 𝑢, 𝑣1, . . . , 𝑣𝑚)
𝑢 − 𝑠 𝑑𝑢

)
(23)

=

∫ 𝑠

𝑎

𝜕

𝜕𝑣𝑖

(
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚) − 𝑓 (2𝑠 − 𝑢, 𝑣1, . . . , 𝑣𝑚)

𝑢 − 𝑠

)
𝑑𝑢 −

∫ 𝑎

2𝑠−𝑏

𝜕

𝜕𝑣𝑖

(
𝑓 (2𝑠 − 𝑢, 𝑣1, . . . , 𝑣𝑚)

𝑢 − 𝑠

)
𝑑𝑢

=

∫ 𝑠

𝑎

(
𝜕
𝜕𝑣𝑖
𝑓
)
(𝑢, 𝑣1, . . . , 𝑣𝑚) −

(
𝜕
𝜕𝑣𝑖
𝑓
)
(2𝑠 − 𝑢, 𝑣1, . . . , 𝑣𝑚)

𝑢 − 𝑠 𝑑𝑢 −
∫ 𝑎

2𝑠−𝑏

(
𝜕
𝜕𝑣𝑖
𝑓
)
(2𝑠 − 𝑢, 𝑣1, . . . , 𝑣𝑚)

𝑢 − 𝑠 𝑑𝑢

= C
∫ 𝑏

𝑎

𝜕
𝜕𝑣𝑖
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)

𝑢 − 𝑠 𝑑𝑢,

where the first and the last equalities are by Proposition 3.3(a), and the second equality is by the
Leibniz integral rule (Lemma A.2). Here, the Leibniz rule is applicable because the two integrands
in (23) are smooth in (𝑢, 𝑣𝑖 ) on R2: the smoothness of the first integrand is by Lemma A.7, and that
of the second integrand is by 𝑎, 2𝑠 − 𝑏 < 𝑠 (due to 𝑠 ∈ (𝑎, 𝑏)). □

Proposition 3.13. For every integer 𝑚 ≥ 0, smooth function 𝑓 : R × R𝑚 → R, and integer
𝑘 ≥ 1, the function 𝑔(𝑠, 𝑣1, . . . , 𝑣𝑚) = H

∫ 𝑏

𝑎

𝑓 (𝑢,𝑣1,...,𝑣𝑚 )
(𝑢−𝑠 )𝑘+1 𝑑𝑢 is smooth on (𝑎, 𝑏) × R𝑚 . Moreover, for

every integer 𝑛 ≥ 0 and 𝑖1, . . . , 𝑖𝑛 ∈ {1, . . . ,𝑚},

𝜕𝑛

𝜕𝑣𝑖1 · · · 𝜕𝑣𝑖𝑛

(
H

∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

)
= H

∫ 𝑏

𝑎

𝜕𝑛

𝜕𝑣𝑖1 · · ·𝜕𝑣𝑖𝑛
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)

(𝑢 − 𝑠)𝑘+1
𝑑𝑢. (9)

«

Proof. As in the proof of Proposition 3.12, we first prove smoothness and then (9).

Proof of smoothness. By Proposition 3.10,

𝑔(𝑠, 𝑣) = 1
𝑘!C

∫ 𝑏

𝑎

𝜕𝑘

𝜕𝑢𝑘 𝑓 (𝑢, 𝑣)
𝑢 − 𝑠 𝑑𝑢 −

𝑘∑︁
𝑖=1

(𝑖 − 1)!
𝑘!

𝜕𝑘−𝑖

𝜕𝑢𝑘−𝑖 𝑓 (𝑢, 𝑣)
(𝑢 − 𝑠)𝑖

����𝑏
𝑢=𝑎

for all (𝑠, 𝑣) ∈ (𝑎, 𝑏) × R𝑚 . By Proposition 3.12, the integral in the RHS is smooth in (𝑠, 𝑣) on
(𝑎, 𝑏) × R𝑚 . Further, by 𝑠 ∈ (𝑎, 𝑏), the summation in the RHS is smooth in (𝑠, 𝑣) on (𝑎, 𝑏) × R𝑚 .
Hence, 𝑔 is smooth on (𝑎, 𝑏) × R𝑚 .

Proof of (9). Since all partial derivatives of 𝑓 (including higher-order ones) are smooth on
R×R𝑚 , it suffices to show the following as in the proof of Proposition 3.12: for every 𝑖 ∈ {1, . . . ,𝑚},

𝜕

𝜕𝑣𝑖

(
H

∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

)
= H

∫ 𝑏

𝑎

𝜕
𝜕𝑣𝑖
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

for all (𝑠, 𝑣1, . . . , 𝑣𝑚) ∈ (𝑎, 𝑏) × R𝑚 . This claim holds as follows:
𝜕

𝜕𝑣𝑖

(
H

∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

)
=

𝜕

𝜕𝑣𝑖

(
1
𝑘!C

∫ 𝑏

𝑎

𝜕𝑘

𝜕𝑢𝑘 𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
𝑢 − 𝑠 𝑑𝑢 −

𝑘∑︁
𝑖=1

(𝑖 − 1)!
𝑘!

𝜕𝑘−𝑖

𝜕𝑢𝑘−𝑖 𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
(𝑢 − 𝑠)𝑖

����𝑏
𝑢=𝑎

)
=

1
𝑘!C

∫ 𝑏

𝑎

𝜕
𝜕𝑣𝑖

𝜕𝑘

𝜕𝑢𝑘 𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
𝑢 − 𝑠 𝑑𝑢 −

𝑘∑︁
𝑖=1

(𝑖 − 1)!
𝑘!

𝜕
𝜕𝑣𝑖

𝜕𝑘−𝑖

𝜕𝑢𝑘−𝑖 𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
(𝑢 − 𝑠)𝑖

����𝑏
𝑢=𝑎

=
1
𝑘!C

∫ 𝑏

𝑎

𝜕𝑘

𝜕𝑢𝑘

(
𝜕
𝜕𝑣𝑖
𝑓
)
(𝑢, 𝑣1, . . . , 𝑣𝑚)
𝑢 − 𝑠 𝑑𝑢 −

𝑘∑︁
𝑖=1

(𝑖 − 1)!
𝑘!

𝜕𝑘−𝑖

𝜕𝑢𝑘−𝑖
(

𝜕
𝜕𝑣𝑖
𝑓
)
(𝑢, 𝑣1, . . . , 𝑣𝑚)

(𝑢 − 𝑠)𝑖

����𝑏
𝑢=𝑎
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= H
∫ 𝑏

𝑎

𝜕
𝜕𝑣𝑖
𝑓 (𝑢, 𝑣1, . . . , 𝑣𝑚)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢,

where the first and the last equalities are by Proposition 3.10, the second equality is by Proposi-
tion 3.12, and the third equality is by the smoothness of 𝑓 . □

Proposition 3.14. For every smooth function 𝑓 : R→ R and integer 𝑛 ≥ 1,
𝑑𝑛

𝑑𝑠𝑛

(
C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
= 𝑛! · H

∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑛+1

𝑑𝑢.
«

Proof. By the definition of the Hadamard finite part integral,
𝑑𝑛

𝑑𝑠𝑛

(
C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
= 𝑛! · 1

𝑛!
𝑑𝑛

𝑑𝑠𝑛

(
C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
= 𝑛! · H

∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑛+1𝑑𝑢.

□

Proposition 3.15. For every smooth function 𝑓 : R→ R and integers 𝑛, 𝑘 ≥ 1,
𝑑𝑛

𝑑𝑠𝑛

(
H

∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

)
=
(𝑛 + 𝑘)!
𝑘! · H

∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑛+𝑘+1

𝑑𝑢.
«

Proof. By the definition of the Hadamard finite part integral,

H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑛+𝑘+1

𝑑𝑢 =
1

(𝑛 + 𝑘)!
𝑑𝑛+𝑘

𝑑𝑠𝑛+𝑘

(
C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

)
=

1
(𝑛 + 𝑘)!

𝑑𝑛

𝑑𝑠𝑛

(
𝑑𝑘

𝑑𝑠𝑘

(
C
∫ 𝑏

𝑎

𝑓 (𝑢)
𝑢 − 𝑠 𝑑𝑢

))
=

𝑘!
(𝑛 + 𝑘)!

𝑑𝑛

𝑑𝑠𝑛

(
H

∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝑠)𝑘+1

𝑑𝑢

)
.

□
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B Proofs for Section 4

Lemma 4.1. For every expression 𝑒 , its semantics J𝑒K is smooth on Ctx. «

Proof. The proof is by induction on the structure of 𝑒 . A constant or a projection function
(which is used to interpret variables) is smooth. The constant and variable cases are covered by this
fact. Also, by assumption, the semantics of every function symbol ℎ is smooth, and if all of functions
𝑓 : R𝑚 → R and 𝑔1, . . . , 𝑔𝑚 : Ctx → R are smooth, then their composition 𝛾 ↦→ 𝑓 (𝑔1 (𝛾), . . . , 𝑔𝑚 (𝛾))
is smooth by the chain rule. Hence, the claim of the lemma on the function application case from
the induction hypothesis. □

Theorem 4.2. For every program 𝑝 and 𝛾 ∈ Ctx, if J𝑝K𝛾 ≠ err, then J𝑝K is smooth at 𝛾 . «

Proof. The proof is by induction on the structure of 𝑝 .
Case of 𝑥 = 𝑒 . To show that J𝑥 = 𝑒K(𝛾) = 𝛾 [𝑥 ↦→ J𝑒K𝛾] is well-defined and smooth, it suffices to
show that J𝑒K is smooth in 𝛾 . This follows from Lemma 4.1.
Case of 𝑦 = integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥 . Since 𝑦 = integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥 is not err, we are
guaranteed that 𝑠 ∉ FV(𝑒). It suffices to show that 𝑐 = (J𝑦 = integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥K𝛾) (𝑦) is
well-defined and smooth at 𝛾 .
The function 𝑔𝛾 (𝑢) = J𝑒K(𝛾 [𝑥 ↦→ 𝑢]) on R is smooth by Lemma 4.1. When 𝛾 (𝑠) ∉ [𝑎, 𝑏], the

integral
∫ 𝑏

𝑎

𝑔 (𝑢 )
(𝑢−𝛾 (𝑠 ) )𝑘 𝑑𝑢 is well-defined since its integrand is continuous on the closed interval [𝑎, 𝑏]

and thus bounded on the interval, and the Riemann integral of a bounded continuous function
over a closed interval is well-defined. The remaining case is 𝛾 (𝑠) ∈ (𝑎, 𝑏). In this case, we use
Propositions 3.3 and 3.9 and derive the well-definedness of J𝑝K𝛾 , the first case is 𝛾 (𝑠) ∈ (𝑎, 𝑏) ∧𝑘 = 1
and the second case is 𝛾 (𝑠) ∈ (𝑎, 𝑏) ∧ 𝑘 > 1.
For the smoothness of J𝑝K, it suffices to show that for some open set 𝑈 containing 𝛾 , J𝑝K is

smooth. When 𝛾 (𝑠) ∈ (𝑎, 𝑏), we set𝑈 ≜ {𝛾 ∈ Ctx | 𝛾 (𝑠) ∈ (𝑎, 𝑏)}. Then, if 𝑘 = 1, J𝑝K is smooth on
𝑈 by Proposition 3.12, and if 𝑘 > 1, J𝑝K is smooth on𝑈 by Proposition 3.13. It remains to deal with
the case 𝛾 (𝑠) ∉ [𝑎, 𝑏]. Let 𝑈 ≜ {𝛾 ∈ Ctx | 𝛾 (𝑠) ∉ [𝑎, 𝑏]}. The desired smoothness of J𝑝K on𝑈 then
follows from the repeated use of Lemma A.2.
Case of 𝑝1;𝑝2. Since J𝑝1;𝑝2K𝛾 is not err, we are guaranteed that 𝛾 ′ = J𝑝1K𝛾 is not err. Furthermore,
by the inductive hypothesis, it denotes a smooth function in the parameters at 𝛾 . We can repeat
this argument for 𝑝2 at 𝛾 ′.
Case of ifpos 𝑒 then 𝑝1 else 𝑝2. Since Jifpos 𝑒 then 𝑝1 else 𝑝2K𝛾 ≠ err, we know that there is a
ball 𝐵 in parameter space around 𝛾 that lies exclusively within 𝑝1 or exclusively within 𝑝2 (this is
because the region 𝑆 = R \ {0} is open, so for point 𝑝 , there exists an 𝜖 > 0 such that 𝐵𝑝 (𝜖) ⊂ 𝑆). In
either case, we can directly apply the inductive hypothesis to get the desired result.
Case of for 𝑥 in range(𝑎, 𝑏, 𝑐) : 𝑝 . We prove this by induction on 𝑎. In the base case where 𝑎 ≥ 𝑏,
this function is the identity, which is smooth. In the inductive case, where 𝑎 < 𝑏, we have that
𝑐 > 0, guaranteeing eventual termination, and that J𝑝K(𝛾 [𝑥 ↦→ 𝑎]) ≠ err for any iteration because
we know that the output is not err. □
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C Proofs for Section 5

Lemma 5.2. The derivative transformation is correct for every expression 𝑒 , 𝑛 ∈ N0, and 𝑧 ∈ Var:
J𝐷 [𝑒] (𝑧, 𝑛)K𝛾 = 𝑓 (𝑛) (𝛾 (𝑧)) for all𝛾 ∈ Ctx, where 𝑓 : R→ R is defined by 𝑓 (𝑢) = J𝑒K(𝛾 [𝑧 ↦→ 𝑢]). «

Proof. It is equivalent to prove the following: for all expressions 𝑒 and 𝑛 ∈ N0,

J𝐷 [𝑒] (𝑧, 𝑛)K(𝛾 [𝑧 ↦→ 𝑢]) = 𝑑𝑛

𝑑𝑢𝑛

(
J𝑒K(𝛾 [𝑧 ↦→ 𝑢])

)
(𝛾 ∈ Ctx, 𝑢 ∈ R).

We prove this claim by induction on 𝑛 and the structure of 𝑒 . For 𝑛 = 0, the claim holds because the
0th derivative of a function is the function itself. For 𝑛 ≥ 1, we have three cases for 𝑒 . If 𝑒 is 𝑐 or
𝑥 , then the claim holds because (i) the 𝑛th derivative of a constant function is 0, and (ii) the 𝑛th
derivative of the identity function is 1[𝑛 = 1 ∧ 𝑧 = 𝑥]. If 𝑒 is ℎ(𝑒1, . . . , 𝑒𝑚), then the claim holds as
follows: for every 𝛾 ∈ Ctx and 𝑢 ∈ R,

J𝐷 [ℎ(𝑒1, . . . , 𝑒𝑚)] (𝑧, 𝑛)K(𝛾 [𝑧 ↦→ 𝑢])
= J𝐷 [𝑑ℎ1 · 𝑑𝑒1 + · · · + 𝑑ℎ𝑚 · 𝑑𝑒𝑚] (𝑧, 𝑛 − 1)K(𝛾 [𝑧 ↦→ 𝑢])

=
𝑑𝑛−1

𝑑𝑢𝑛−1

(
J𝑑ℎ1 · 𝑑𝑒1 + · · · + 𝑑ℎ𝑚 · 𝑑𝑒𝑚K(𝛾 [𝑧 ↦→ 𝑢])

)
=
𝑑𝑛−1

𝑑𝑢𝑛−1

( 𝑚∑︁
𝑖=1

J𝑑ℎ𝑖K(𝛾 [𝑧 ↦→ 𝑢]) · J𝑑𝑒𝑖K(𝛾 [𝑧 ↦→ 𝑢])
)

=
𝑑𝑛−1

𝑑𝑢𝑛−1

( 𝑚∑︁
𝑖=1

JD𝑖ℎ(𝑒1, . . . , 𝑒𝑚)K(𝛾 [𝑧 ↦→ 𝑢]) · J𝐷 [𝑒] (𝑧, 1)K(𝛾 [𝑧 ↦→ 𝑢])
)

=
𝑑𝑛−1

𝑑𝑢𝑛−1

( 𝑚∑︁
𝑖=1

JD𝑖ℎK
(
J𝑒1K(𝛾 [𝑧 ↦→ 𝑢]), . . . , J𝑒𝑚K(𝛾 [𝑧 ↦→ 𝑢])

)
· 𝑑
𝑑𝑢

(
J𝑒𝑖K(𝛾 [𝑧 ↦→ 𝑢])

))
=
𝑑𝑛−1

𝑑𝑢𝑛−1

(
𝑑

𝑑𝑢

(
JℎK

(
J𝑒1K(𝛾 [𝑧 ↦→ 𝑢]), . . . , J𝑒𝑚K(𝛾 [𝑧 ↦→ 𝑢])

) ))
=
𝑑𝑛−1

𝑑𝑢𝑛−1

(
𝑑

𝑑𝑢

(
Jℎ(𝑒1, . . . , 𝑒𝑚)K(𝛾 [𝑧 ↦→ 𝑢])

))
=
𝑑𝑛

𝑑𝑢𝑛

(
Jℎ(𝑒1, . . . , 𝑒𝑚)K(𝛾 [𝑧 ↦→ 𝑢])

)
.

Here, the second, fourth, and fifth lines are by the definition of 𝐷 [·] (𝑧, 𝑛), J·K, 𝑑ℎ𝑖 , and 𝑑𝑒𝑖 . The
third line is by induction hypothesis on 𝑛 − 1. The fourth-to-last line is by the definition of J·K
and induction hypothesis on (𝑛, 𝑒𝑖 ). The third-to-last line is by the chain rule and the assumption
that JD𝑖ℎK is the 𝑖th partial derivative of JℎK. The last two lines are by the definition of J·K and
differentiation. □

Lemma 5.1. For every context 𝛾 and expression 𝑒 , we have that (𝛾, 𝑒) ⇓ 𝑐 if and only if J𝑒K𝛾 = 𝑐 . «

Proof. The proof follows by induction on the structure of 𝑒 . □

Theorem 5.5 (Unbiasedness and Finite Variance). Let 𝑝 ≡ (𝑦 = integral (𝑎, 𝑏) 𝑒/(𝑥 −𝑠)𝑘 d𝑥)
and 𝛾,𝛾 ′ ∈ Ctx with J𝑝K𝛾 ≠ err. Let 𝑐, 𝑐′ be estimators defined by 𝑐 ≜ 𝛾 (𝑦) and 𝑐′ ≜ 𝛾 ′ (𝑦),
where (𝛾,𝛾 ′, 𝑝) ⇓𝑜 𝛾,𝛾 ′. Then, 𝑐 and 𝑐′ have finite variance, and are unbiased for J𝑝K(𝛾) (𝑦) and∑

𝑧∈Var
𝑑
𝑑𝑡

J𝑝K(𝛾 [𝑧 ↦→ 𝑡]) (𝑦)
��
𝑡=𝛾 (𝑧 ) · 𝛾

′ (𝑧), respectively. «

Proof. We first show that 𝑐 is an unbiased estimator for 𝜃 . Let 𝑐0 ≜ 𝜃 . If 𝛾 (𝑠) ∉ [𝑎, 𝑏] and 𝑎 = 𝑏,
we have 𝑐 = 0 by the operational semantics and also 𝑐0 = 0 by the denotational semantics. Hence,
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we have the desired E[𝑐] = 𝑐0 in this case. If 𝛾 (𝑠) ∈ [𝑎, 𝑏] and 𝑎 ≠ 𝑏, we show the unbiasedness as
follows:

E[𝑐] = E𝑡←U(𝑎,𝑏 )
[
(𝑏 − 𝑎) · J𝑒K(𝛾 [𝑥 ↦→ 𝑡])

(𝑡 − 𝛾 (𝑠))

]
=

∫ 𝑏

𝑎

1
𝑏 − 𝑎 ·

(𝑏 − 𝑎) · J𝑒K(𝛾 [𝑥 ↦→ 𝑡])
(𝑡 − 𝛾 (𝑠)) 𝑑𝑡

=

∫ 𝑏

𝑎

J𝑒K(𝛾 [𝑥 ↦→ 𝑡])
(𝑡 − 𝛾 (𝑠)) 𝑑𝑡

= 𝑐0,

where the first equality follows from operational semantics and Lemma 5.1, the second from the
definition of expectation, and the last equality from the denotational semantics. It remains to deal
with the case that 𝛾 (𝑠) ∈ (𝑎, 𝑏). Assume 𝛾 (𝑠) ∈ (𝑎, 𝑏). If 𝑘 = 1 and 𝛾 (𝑠) ∈ [(𝑎 + 𝑏)/2, 𝑏), we have

E[𝑐] = E𝑡←U(𝑎,2𝛾 (𝑠 )−𝑏 )
[
E𝑡 ′←U(𝛾 (𝑠 ),𝑏 )

[
((2𝛾 (𝑠) − 𝑏) − 𝑎) · J𝑒K(𝛾 [𝑥 ↦→ 𝑡])

(𝑡 − 𝛾 (𝑠)) (24)

+
(𝑏 − 𝛾 (𝑠)) ·

(
J𝑒K(𝛾 [𝑥 ↦→ 𝑡 ′]) − J𝑒K(𝛾 [𝑥 ↦→ 2𝛾 (𝑠) − 𝑡 ′])

)
(𝑡 ′ − 𝛾 (𝑠))

] ]
(25)

= E𝑡 ′←U(𝑎,2𝛾 (𝑠 )−𝑏 )

[
((2𝛾 (𝑠) − 𝑏) − 𝑎) · J𝑒K(𝛾 [𝑥 ↦→ 𝑡])

(𝑡 − 𝛾 (𝑠))

]
(26)

+ E𝑡←U(𝛾 (𝑠 ),𝑏 )
[ (𝑏 − 𝛾 (𝑠)) · (J𝑒K(𝛾 [𝑥 ↦→ 𝑡 ′]) − J𝑒K(𝛾 [𝑥 ↦→ 2𝛾 (𝑠) − 𝑡 ′])

)
(𝑡 ′ − 𝛾 (𝑠))

]
(27)

=

∫ 2𝛾 (𝑠 )−𝑏

𝑎

1
(2𝛾 (𝑠) − 𝑏) − 𝑎 ·

((2𝛾 (𝑠) − 𝑏) − 𝑎) · J𝑒K(𝛾 [𝑥 ↦→ 𝑡])
(𝑡 − 𝛾 (𝑠)) 𝑑𝑡 (28)

+
∫ 𝑏

𝛾 (𝑠 )

1
𝑏 − 𝛾 (𝑠) ·

(𝑏 − 𝛾 (𝑠)) ·
(
J𝑒K(𝛾 [𝑥 ↦→ 𝑡 ′]) − J𝑒K(𝛾 [𝑥 ↦→ 2𝛾 (𝑠) − 𝑡 ′])

)
(𝑡 ′ − 𝛾 (𝑠)) 𝑑𝑡 ′ (29)

=

∫ 2𝛾 (𝑠 )−𝑏

𝑎

J𝑒K(𝛾 [𝑥 ↦→ 𝑡])
(𝑡 − 𝛾 (𝑠)) 𝑑𝑡 +

∫ 𝑏

𝛾 (𝑠 )

J𝑒K(𝛾 [𝑥 ↦→ 𝑡 ′]) − J𝑒K(𝛾 [𝑥 ↦→ 2𝛾 (𝑠) − 𝑡 ′])
(𝑡 ′ − 𝛾 (𝑠)) 𝑑𝑡 ′ (30)

= C
∫ 𝑏

𝑎

J𝑒K(𝛾 [𝑥 ↦→ 𝑢])
𝑢 − 𝛾 (𝑠) 𝑑𝑢 (31)

= 𝑐0. (32)

The first equality follows from the operational semantics and Lemma 5.1, the second and third
from the definition of expectation, the fifth from Proposition 3.6, and the last from the denotational
semantics. The case that 𝑘 = 1 and 𝛾 (𝑠) ∈ (𝑎, (𝑎 + 𝑏)/2] can be proved similarly. The remaining
case is that 𝑘 > 1 and 𝛾 (𝑠) ∈ (𝑎, 𝑏). Assume 𝑘 > 1 and 𝛾 (𝑠) ∈ (𝑎, 𝑏). Let 𝑒𝑖 = 𝐷 [𝑒] (𝑥, 𝑖) for all
𝑖 ∈ {0, . . . , 𝑘 − 1}, and let 𝑓 : R → R be the smooth function defined by 𝑓 (𝑢) = J𝑒K(𝛾 [𝑥 ↦→ 𝑢]).
Then, the random variable 𝑐 has the following form by Lemma 5.1, the operational semantics, and
the correctness of the 𝐷 operator:

𝑐 =
𝑐′

(𝑘 − 1)! −
𝑘−1∑︁
𝑖=1

(𝑖 − 1)!
(𝑘 − 1)!

(
J𝑒𝑘−1−𝑖K[𝑥 ↦→ 𝑏]
(𝑏 − 𝛾 (𝑠))𝑖 − J𝑒𝑘−1−𝑖K[𝑥 ↦→ 𝑎]

(𝑎 − 𝛾 (𝑠))𝑖

)
=

𝑐′

(𝑘 − 1)! −
𝑘−1∑︁
𝑖=1

(𝑖 − 1)!
(𝑘 − 1)!

(
𝑓 (𝑘−1−𝑖 ) (𝑏)
(𝑏 − 𝛾 (𝑠))𝑖 −

𝑓 (𝑘−1−𝑖 ) (𝑎)
(𝑎 − 𝛾 (𝑠))𝑖

)
,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 164. Publication date: June 2025.



164:42 Jesse Michel, Wonyeol Lee, and Hongseok Yang

where 𝑐′ is a random variable such that
(𝛾, 𝑡, integral (𝑎, 𝑏) 𝑒𝑘−1/(𝑥 − 𝑠) d𝑥) ⇓𝑜 𝑐′ .

Using this observation, we derive the desired unbiasedness of 𝑐 as follows:

E𝑐 [𝑐] = E𝑐′
[

𝑐′

(𝑘 − 1)! −
𝑘−1∑︁
𝑖=1

(𝑖 − 1)!
(𝑘 − 1)!

(
𝑓 (𝑘−1−𝑖 ) (𝑏)
(𝑏 − 𝛾 (𝑠))𝑖 −

𝑓 (𝑘−1−𝑖 ) (𝑎)
(𝑎 − 𝛾 (𝑠))𝑖

)]
(33)

=
E𝑐′ [𝑐′]
(𝑘 − 1)! −

𝑘−1∑︁
𝑖=1

(𝑖 − 1)!
(𝑘 − 1)!

(
𝑓 (𝑘−1−𝑖 ) (𝑏)
(𝑏 − 𝛾 (𝑠))𝑖 −

𝑓 (𝑘−1−𝑖 ) (𝑎)
(𝑎 − 𝛾 (𝑠))𝑖

)
(34)

=
1

(𝑘 − 1)!C
∫ 𝑏

𝑎

𝑓 (𝑘−1) (𝑢)
𝑢 − 𝛾 (𝑠) 𝑑𝑢 −

𝑘−1∑︁
𝑖=1

(𝑖 − 1)!
(𝑘 − 1)!

(
𝑓 (𝑘−1−𝑖 ) (𝑏)
(𝑏 − 𝛾 (𝑠))𝑖 −

𝑓 (𝑘−1−𝑖 ) (𝑎)
(𝑎 − 𝛾 (𝑠))𝑖

)
(35)

= H
∫ 𝑏

𝑎

𝑓 (𝑢)
(𝑢 − 𝛾 (𝑠))𝑘

𝑑𝑢 (36)

= H
∫ 𝑏

𝑎

J𝑒K(𝛾 [𝑥 ↦→ 𝑢])
(𝑢 − 𝛾 (𝑠))𝑘

𝑑𝑢 (37)

= 𝑐0 . (38)
Here the third equality follows from the unbiasedness of the operational semantics in the case of the
Cauchy principal value integral, which we showed above. The fourth equality uses Proposition 3.10,
and the last two equalities follow from the definition of 𝑓 and the denotational semantics.
Next, we show that 𝑐 has finite variance. We will prove that |𝑐 | < 𝐵 for some non-random

constant 𝐵 > 0. Note that the boundedness of 𝑐 implies
Var (𝑐) = E[(𝑐 − E[𝑐])2] ≤ 2E[𝑐2] + 2(E[𝑐])2 < 4𝐵2 < ∞,

that is, the finiteness of the variance of 𝑐 .
Let

𝑓 : R→ R, 𝑓 (𝑢) ≜ J𝑒K(𝛾 [𝑥 ↦→ 𝑢]).
Note that 𝑓 is smooth. When 𝛾 (𝑠) ∉ [𝑎, 𝑏],

𝑐 = (𝑏 − 𝑎) · 𝑓 (𝑡)
𝑡 − 𝛾 (𝑠) for some random 𝑡 ∈ [𝑎, 𝑏],

but the right-hand side of this equation is a continuous function on 𝑡 evaluated at some point in
the closed interval [𝑎, 𝑏], and so it is bounded. When 𝛾 (𝑠) ∈ [(𝑎 + 𝑏)/2, 𝑏) and 𝑘 = 1,

𝑐 =
((2𝛾 (𝑠) − 𝑏) − 𝑎) · 𝑓 (𝑡)

(𝑡 − 𝛾 (𝑠)) + (𝑏 − 𝛾 (𝑠)) · (𝑓 (𝑡
′) − 𝑓 (2𝛾 (𝑠) − 𝑡 ′))

(𝑡 ′ − 𝛾 (𝑠))
for some random 𝑡 ∈ [𝑎, (2𝛾 (𝑠) −𝑏)] and 𝑡 ′ ∈ [𝛾 (𝑠), 𝑏]. But the right-hand side of this equation is a
continuous function on (𝑡, 𝑡 ′) evaluated at some pair in the closed rectangle [𝑎, (2𝛾 (𝑠)−𝑏)]×[𝛾 (𝑠), 𝑏],
where the continuity with respect to 𝑡 ′ follows from Lemma A.1. Thus, the right-hand side is
bounded. The case that 𝛾 (𝑠) ∈ (𝑎, (𝑎 + 𝑏)/2] and 𝑘 = 1 can be handled similarly. The remaining
case is that 𝑘 > 1 and 𝛾 (𝑠) ∈ (𝑎, 𝑏). In this case,

𝑐 =
𝑐′

(𝑘 − 1)! −
𝑘−1∑︁
𝑖=1

(𝑖 − 1)!
(𝑘 − 1)!

(
𝑓 (𝑘−1−𝑖 ) (𝑏)
(𝑏 − 𝛾 (𝑠))𝑖 −

𝑓 (𝑘−1−𝑖 ) (𝑎)
(𝑎 − 𝛾 (𝑠))𝑖

)
where 𝑐′ is a random variable such that

(𝛾, 𝑡, integral (𝑎, 𝑏) 𝐷 [𝑒] (𝑥, 𝑘 − 1)/(𝑥 − 𝑠) d𝑥) ⇓𝑜 𝑐′ .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 164. Publication date: June 2025.



Semantics of Integrating and Differentiating Singularities 164:43

By what we have already shown for the 𝑘 = 1 case, the random variable 𝑐′ is bounded. Thus, 𝑐 is
bounded as well.
We now prove the case of the derivative. First, we expand the derivative:

𝜃 ′ ≜
∑︁
𝑧∈Var

𝜕J𝑝K(𝛾 [𝑧 ↦→ 𝑧]) (𝑦)
𝜕𝑧

𝛾 ′ (𝑧)

=
∑︁
𝑧∈Var

𝜕Jintegral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥K(𝛾 [𝑧 ↦→ 𝑧]) (𝑦)
𝜕𝑧

𝛾 ′ (𝑧).

Next, the Integral-Assign rule in the operational semantics (Figure 5) maps 𝑦 to 𝑘 · 𝑐′ · 𝛾 ′ (𝑠) +∑
𝑧∈Var∧𝑧≠𝑠 𝑐

′
𝑧 · 𝛾 ′ (𝑧) and does not change the other variables. Taking expectation of this expression

and using the linearity of expectation, we have:

E𝑐′,𝑐′𝑧

[
𝑘 · 𝑐′ · 𝛾 ′ (𝑠) +

∑︁
𝑧∈Var∧𝑧≠𝑠

𝑐′𝑧 · 𝛾 ′ (𝑧)
]
= 𝑘 · E𝑐′ [𝑐′] · 𝛾 ′ (𝑠) +

∑︁
𝑧∈Var∧𝑧≠𝑠

E𝑐′𝑧 [𝑐
′
𝑧] · 𝛾 ′ (𝑧). (39)

Now we break the proof into cases.
Case of 𝑠 ∈ (𝑎, 𝑏) and 𝑘 = 1: Expanding the definition of 𝛾 ′out, we have:

𝜃 ′ =
∑︁
𝑧∈Var

𝜕

(
C
∫ 𝑏

𝑎

𝑔 (𝑢,𝑧,𝑧 )
𝑥−𝛾 (𝑠 ) 𝑑𝑢

)
𝜕𝑧

𝛾 ′ (𝑧) where 𝑔(𝑢, 𝑧, 𝑧) ≜ J𝑒K(𝛾 [𝑥 ↦→ 𝑢] [𝑧 ↦→ 𝑧])

=

𝜕

(
C
∫ 𝑏

𝑎

𝑔 (𝑢,𝑧,𝑧 )
𝑥−𝛾 (𝑠 ) 𝑑𝑢

)
𝜕𝛾 (𝑠) 𝛾 ′ (𝑠) +

∑︁
𝑧∈Var∧𝑧≠𝑠

𝜕

(
C
∫ 𝑏

𝑎

𝑔 (𝑢,𝑧,𝑧 )
𝑥−𝛾 (𝑠 ) 𝑑𝑢

)
𝜕𝑧

𝛾 ′ (𝑧)

=

(
H

∫ 𝑏

𝑎

𝑔(𝑢, 𝑧, 𝑧)
(𝑥 − 𝛾 (𝑠))2𝑑𝑢

)
𝛾 ′ (𝑠) +

∑︁
𝑧∈Var∧𝑧≠𝑠

(
C
∫ 𝑏

𝑎

𝜕𝑔 (𝑢,𝑧,𝑧 )
𝜕𝑧

𝑥 − 𝛾 (𝑠)𝑑𝑢
)
𝛾 ′ (𝑧),

where the last equation follows from Proposition 3.12 and Proposition 3.14. Since 𝑘 = 1 and by
Equation (24) and Lemma 5.2, we conclude that Equation (39) is equivalent to the above expression.
Case of 𝑠 ∈ (𝑎, 𝑏) and 𝑘 > 1: Expanding the definition of 𝛾 ′out, we have:

𝜃 ′ =
∑︁
𝑧∈Var

𝜕

(
H

∫ 𝑏

𝑎

𝑔 (𝑢,𝑧,𝑧 )
(𝑥−𝛾 (𝑠 ) )𝑘 𝑑𝑢

)
𝜕𝑧

𝛾 ′ (𝑧) where 𝑔(𝑢, 𝑧, 𝑧) ≜ J𝑒K(𝛾 [𝑥 ↦→ 𝑢] [𝑧 ↦→ 𝑧])

=

𝜕

(
H

∫ 𝑏

𝑎

𝑔 (𝑢,𝑧,𝑧 )
(𝑥−𝛾 (𝑠 ) )𝑘 𝑑𝑢

)
𝜕𝛾 (𝑠) 𝛾 ′ (𝑠) +

∑︁
𝑧∈Var∧𝑧≠𝑠

𝜕

(
H

∫ 𝑏

𝑎

𝑔 (𝑢,𝑧,𝑧 )
(𝑥−𝛾 (𝑠 ) )𝑘 𝑑𝑢

)
𝜕𝑧

𝛾 ′ (𝑧)

= 𝑘 ·
(
H

∫ 𝑏

𝑎

𝑔(𝑢, 𝑧, 𝑧)
(𝑥 − 𝛾 (𝑠))𝑘+1

𝑑𝑢

)
𝛾 ′ (𝑠) +

∑︁
𝑧∈Var∧𝑧≠𝑠

(
H

∫ 𝑏

𝑎

𝜕𝑔 (𝑢,𝑧,𝑧 )
𝜕𝑧

(𝑥 − 𝛾 (𝑠))𝑘
𝑑𝑢

)
𝛾 ′ (𝑧),

where the last equation follows from Proposition 3.13 and Proposition 3.15. By Equation (33) and
Lemma 5.2, we conclude that Equation (39) is equivalent to the above expression.
Case of 𝑠 ∉ (𝑎, 𝑏): Expanding the definition of 𝛾 ′out, we have:

𝜃 ′ =
∑︁
𝑧∈Var

𝜕

(∫ 𝑏

𝑎

𝑔 (𝑢,𝑧,𝑧 )
(𝑥−𝛾 (𝑠 ) )𝑘 𝑑𝑢

)
𝜕𝑧

𝛾 ′ (𝑧) where 𝑔(𝑢, 𝑧, 𝑧) ≜ J𝑒K(𝛾 [𝑥 ↦→ 𝑢] [𝑧 ↦→ 𝑧])
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=

𝜕

(∫ 𝑏

𝑎

𝑔 (𝑢,𝑧,𝑧 )
(𝑥−𝛾 (𝑠 ) )𝑘 𝑑𝑢

)
𝜕𝛾 (𝑠) 𝛾 ′ (𝑠) +

∑︁
𝑧∈Var∧𝑧≠𝑠

𝜕

(∫ 𝑏

𝑎

𝑔 (𝑢,𝑧,𝑧 )
(𝑥−𝛾 (𝑠 ) )𝑘 𝑑𝑢

)
𝜕𝑧

𝛾 ′ (𝑧)

= 𝑘 ·
(∫ 𝑏

𝑎

𝑔(𝑢, 𝑧, 𝑧)
(𝑥 − 𝛾 (𝑠))𝑘+1

𝑑𝑢

)
𝛾 ′ (𝑠) +

∑︁
𝑧∈Var∧𝑧≠𝑠

(∫ 𝑏

𝑎

𝜕𝑔 (𝑢,𝑧,𝑧 )
𝜕𝑧

(𝑥 − 𝛾 (𝑠))𝑘
𝑑𝑢

)
𝛾 ′ (𝑧),

where the last equation follows from Lemma A.2. The equivalence of Equation (39) and the above
equation follows from the definition of the correctness of standard Monte Carlo integration and
Lemma 5.2.
The proof bounded variance matches the primal case. □

Corollary 5.6. Let 𝑝 ≡ (𝑦 = integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥) and 𝛾,𝛾 ′ ∈ Ctx with J𝑝K𝛾 ≠ err.
Separate runs of the operational semantics produce (i.i.d.) random variables {𝑐𝑖 }𝑖∈N, {𝑐′𝑖 }𝑖∈N, that
is, for all 𝑖 ∈ N, we obtain (𝛾,𝛾 ′, 𝑝) ⇓𝑜 𝛾𝑖 , 𝛾 ′𝑖 with 𝑐𝑖 ≜ 𝛾𝑖 (𝑦) and 𝑐′𝑖 ≜ 𝛾 ′𝑖 (𝑦). Define estimators
𝑇𝑚 ≜

1
𝑚

∑𝑚
𝑖=1 𝑐𝑖 and 𝑇

′
𝑚 ≜

1
𝑚

∑𝑚
𝑖=1 𝑐

′
𝑖 for𝑚 ∈ N. Then, (𝑇𝑚)𝑚∈N consists of unbiased estimators for

𝜃 ≜ J𝑝K(𝛾) (𝑦), and it is strongly consistent for 𝜃 . Likewise, (𝑇 ′𝑚)𝑚∈N consists of unbiased estimators
for 𝜃 ′ ≜

∑
𝑧∈Var

𝑑
𝑑𝑡

J𝑝K(𝛾 [𝑧 ↦→ 𝑡]) (𝑦)
��
𝑡=𝛾 (𝑧 ) · 𝛾

′ (𝑧), and it is strongly consistent for 𝜃 ′. «

Proof. Let an arbitrarily variable 𝑥 ∈ Var be given. Since all 𝑐𝑖 ’s are independent and identically
distributed, and 𝑐1 has finite variance and its expectation is 𝜃 by Theorem 5.5, we can apply
Proposition 5.4 and derive the desired conclusion, that is, the estimator family (𝑇𝑚)𝑚∈N constructed
by taking the average over the 𝑐𝑖 ’s is strongly consistent for 𝜃 and consists of unbiased estimators
for 𝜃 . After applying the linearity of expectation, the proof for the derivative for each term in the
sum is similar to the above proof. □

Proposition C.1 ([82, Theorem 2.3]). Let 𝑋 be random element defined on R𝑘 . Let 𝑔 : R𝑘 → R𝑚
be a continuous function. If the estimator family (𝑋𝑛)𝑛∈N is consistent for 𝑋 , then the estimator family
(𝑔(𝑋𝑛))𝑛∈N is consistent for 𝑔(𝑋 ). «

Lemma C.2. For arbitrary 𝑦, let 𝜃 ≜ J𝑝K𝛾 (𝑦) and 𝜃 ′ ≜ ∑
𝑧∈VarJ𝑝K(𝛾 [𝑧 ↦→ 𝑡]) (𝑦)

��
𝑡=𝛾 (𝑧 )𝛾

′ (𝑧). For
every deterministic statement in 𝑝 (everything rule but integral assignment) such that 𝑝 does not
denote err at 𝛾 , if (𝛾,𝛾 ′, 𝑝) ⇓𝑜 𝛾1, 𝛾 ′1 then 𝛾1 (𝑦) = 𝜃 and 𝛾 ′1 (𝑦) = 𝜃 ′. «

Proof. For assignment, J𝑥 = 𝑒K(𝛾) is the identity for all 𝑧 ≠ 𝑥 and likewise for (𝛾,𝛾 ′, 𝑥 = 𝑒) ⇓𝑜
𝛾1, 𝛾

′
1. For 𝑥 = 𝑧, we apply Lemma 5.1 to show equivalence in the primal case and Lemma 5.2 to

show equivalence in the derivative case.
For sequential composition, by the inductive hypothesis we have that if (𝛾,𝛾 ′, 𝑝1) ⇓𝑜 𝛾1, 𝛾 ′1 then

𝛾1 (𝑦) = 𝜃1 ≜ J𝑝1K(𝛾) (𝑦) and𝛾 ′1 (𝑦) = 𝜃 ′1 ≜
∑

𝑧∈VarJ𝑝1K(𝛾 [𝑧 ↦→ 𝑡]) (𝑦)
��
𝑡=𝛾 (𝑧 )𝛾

′ (𝑧) and if (𝛾1, 𝛾 ′1, 𝑝2) ⇓𝑜
𝛾2, 𝛾

′
2 then 𝛾2 (𝑦) = 𝜃2 ≜ J𝑝2K(𝛾1) (𝑦) and 𝛾 ′2 (𝑦) = 𝜃 ′2 ≜

∑
𝑧∈VarJ𝑝1K(𝛾1 [𝑧 ↦→ 𝑡]) (𝑦)

��
𝑡=𝛾1 (𝑧 )𝛾

′
1 (𝑧).

Composing these two results gives the desired conclusion.
For conditionals, the proof breaks into two cases. When 𝑐 > 0 in (𝛾, 𝑒) ⇓ 𝑐 , the operational

semantics evaluates (𝛾,𝛾 ′, 𝑝1) ⇓𝑜 𝛾1, 𝛾 ′1. We can apply the inductive hypothesis to show the desired
conclusion. When 𝑐 < 0, the proof is analogous to the above.
The for-loop base case is the identity for both the operational and denotational semantics, and

the recursive case holds by the inductive hypothesis. □

Lemma C.3. Let 𝑝 ≜ (𝑝1; 𝑧 = 𝑒) be a well-typed program such that 𝑧 = 𝑒 is a deterministic
assignment and either 𝑝1 ≜ (𝑦 = integral (𝑎, 𝑏) 𝑒1/(𝑥 − 𝑠)𝑘 d𝑥) is an integral assignment or
𝑝1 ≜ (𝑦 = 𝑒1) an assignment that is not a deterministic assignment. For every 𝛾 ∈ Ctx such that the
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denotation of 𝑝 is not err and every derivative context 𝛾 ′ ∈ Ctx, we have that

J𝑝K(𝛾) = J𝑧 = 𝑒;𝑝1K(𝛾).

Let 𝜃 ≜ J𝑝K(𝛾) (𝑦) and 𝜃 ′ ≜ ∑
𝑤∈VarJ𝑝1K(𝛾 [𝑤 ↦→ 𝑡]) (𝑦)

��
𝑡=𝛾 (𝑤 )𝛾

′ (𝑤). Let the family of random
variables {𝑐𝑖 }𝑖∈N,{𝑐′𝑖 }𝑖∈N, {𝑑𝑖 }𝑖∈N, and {𝑑 ′𝑖 }𝑖∈N obtained by the operational semantics for each of the
two above programs (specifically, (𝛾,𝛾 ′, 𝑝) ⇓𝑜 𝛾𝑖 , 𝛾 ′𝑖 and (𝛾,𝛾 ′, 𝑧 = 𝑒; 𝑝1) ⇓𝑜 𝛾𝑖 , 𝛾 ′𝑖 with 𝑐𝑖 = 𝛾𝑖 (𝑦),
𝑐′𝑖 = 𝛾𝑖 (𝑦), 𝑑𝑖 = 𝛾𝑖 (𝑦), and 𝑑 ′𝑖 = 𝛾𝑖 (𝑦)) be given. Then, 𝑇𝑚 = 1

𝑚

∑𝑚
𝑖=1 𝑐𝑖 and 𝑈𝑚 = 1

𝑚

∑𝑚
𝑖=1 𝑑𝑖 are

strongly consistent for 𝜃 and 𝑇 ′𝑚 = 1
𝑚

∑𝑚
𝑖=1 𝑐

′
𝑖 and𝑈

′
𝑚 = 1

𝑚

∑𝑚
𝑖=1 𝑑

′
𝑖 are strongly consistent for 𝜃 ′. Also,

𝛾1 (𝑥) = 𝛾2 (𝑥) and 𝛾 ′1 (𝑥) = 𝛾 ′2 (𝑥) for every 𝑥 ≠ 𝑦 such that 𝑥 ∈ Var. «

Proof. We assert that 𝑧 ∉ FV(𝑝1) because we can always rename 𝑧 to a variable not in FV(𝑝1).
By the definition of sequential composition and assignment in the denotational semantics:

J𝑝1; 𝑧 = 𝑒K(𝛾) = J𝑧 = 𝑒K(𝛾 [𝑦 ↦→ 𝑐]) = (𝛾 [𝑦 ↦→ 𝑐]) [𝑧 ↦→ J𝑒K𝛾],

where 𝑐 in the second equation is as defined in the denotational semantics for the integral case
and 𝑐 = J𝑒1K𝛾 in the assignment case. Since 𝑧 = 𝑒 satisfies the Deterministic (assn) rule, we know
that 𝑦 ∉ FV(𝑒) we have:

(𝛾 [𝑦 ↦→ 𝑐]) [𝑧 ↦→ J𝑒K𝛾] = (𝛾 [𝑧 ↦→ J𝑒K𝛾]) [𝑦 ↦→ 𝑐], (40)

Now we can expand this expression to:

(𝛾 [𝑧 ↦→ J𝑒K𝛾]) [𝑦 ↦→ 𝑐] = J𝑝1K(𝛾 [𝑧 ↦→ J𝑒K𝛾]) = J𝑧 = 𝑒; 𝑝1K(𝛾).

This proves the first identity.
To prove the operational semantics correct, we first observe that in the derivation tree for 𝑝 we

apply the Comp rule in Figure 8, the appropriate derivation for 𝑝1, and then Expr-Assign rule for
𝑧 = 𝑒 . Since the Expr-Assign only binds 𝑧, the binding for 𝑦 is unchanged, and 𝑒1 only depends
on deterministic variables, by the type system, we can apply Theorem 5.5 to prove consistency.
Since 𝑒 does not depend on 𝑦 and moreover, is deterministic by the type system, we can apply 5.1
to prove correctness for 𝑧. The proof for 𝑧 = 𝑒;𝑝1 is similar.

□

Lemma C.4. Let 𝑝 ≜ (𝑧 = 𝑒 ;𝑦 = integral (𝑎, 𝑏) 𝑒1/(𝑥 − 𝑠)𝑘 d𝑥) be a well-typed program such that
𝑧 ≠ 𝑠 . For every 𝛾 ∈ Ctx such that the denotation of 𝑝 is not err, there exists an 𝑒2 such that:

J𝑝K(𝛾) = J𝑦 = integral (𝑎, 𝑏) 𝑒2/(𝑥 − 𝑠)𝑘 d𝑥 ; 𝑧 = 𝑒K(𝛾).

Further, let 𝜃 ≜ J𝑝K𝛾 (𝑦) and 𝜃 ′ ≜ ∑
𝑤∈VarJ𝑝1K(𝛾 [𝑤 ↦→ 𝑡]) (𝑦)

��
𝑡=𝛾 (𝑤 )𝛾

′ (𝑤). Let the family of
random variables {𝑐𝑖 }𝑖∈N, {𝑐′𝑖 }𝑖∈N, {𝑑𝑖 }𝑖∈N, and {𝑑 ′𝑖 }𝑖∈N obtained by the operational semantics for each
of the two above programs (specifically, (𝛾,𝛾 ′, 𝑝) ⇓𝑜 𝛾𝑖 , 𝛾 ′𝑖 and (𝛾,𝛾 ′, 𝑧 = 𝑒 ;𝑦 = integral (𝑎, 𝑏) 𝑒2/(𝑥 −
𝑠)𝑘 d𝑥) ⇓𝑜 𝛾𝑖 , 𝛾 ′𝑖 with 𝑐𝑖 = 𝛾𝑖 (𝑦), 𝑐′𝑖 = 𝛾 ′𝑖 (𝑦),𝑑𝑖 = 𝛾𝑖 (𝑦), and𝑑 ′𝑖 = 𝛾 ′𝑖 (𝑦)) be given. Then,𝑇𝑚 = 1

𝑚

∑𝑚
𝑖=1 𝑐𝑖

and𝑈𝑚 = 1
𝑚

∑𝑚
𝑖=1 𝑑𝑖 are strongly consistent for 𝜃 and𝑇

′
𝑚 = 1

𝑚

∑𝑚
𝑖=1 𝑐

′
𝑖 and𝑈

′
𝑚 = 1

𝑚

∑𝑚
𝑖=1 𝑑

′
𝑖 are strongly

consistent for 𝜃 ′. Also, 𝛾1 (𝑥) = 𝛾2 (𝑥) and 𝛾 ′1 (𝑥) = 𝛾 ′2 (𝑥) for every 𝑥 ≠ 𝑦 such that 𝑥 ∈ Var. «

Proof. First, we assume that 𝑦 ∉ FV(𝑒) because we can always rename 𝑦 to a variable not in
FV(𝑝) both in 𝑒 and in Var . Let 𝑝1 ≜ 𝑦 = integral (𝑎, 𝑏) 𝑒1/(𝑥 − 𝑠)𝑘 d𝑥 .
If 𝑧 = 𝑥 , then by the definition of sequential composition and assignment in the denotational

semantics:

J𝑥 = 𝑒;𝑝1K(𝛾) = J𝑝1K(𝛾 [𝑥 ↦→ J𝑒K𝛾]) = (𝛾 [𝑥 ↦→ J𝑒K𝛾]) [𝑦 ↦→ 𝑐],
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where 𝑐 is as defined in the denotational semantics. Since 𝑥 is bound in the integral, we know that
𝑥 ∉ FV(𝑝1) and therefore:

(𝛾 [𝑥 ↦→ J𝑒K𝛾]) [𝑦 ↦→ 𝑐] = (𝛾 [𝑦 ↦→ 𝑐]) [𝑥 ↦→ J𝑒K𝛾]
= J𝑥 = 𝑒K(𝛾 [𝑦 ↦→ 𝑐])
= J𝑝1;𝑥 = 𝑒K(𝛾).

This proves the desired identity.
If 𝑧 ≠ 𝑥 and 𝑧 ≠ 𝑠 , then by the definition of sequential composition and assignment in the

denotational semantics:

J𝑧 = 𝑒;𝑝1K(𝛾) = J𝑝1K(𝛾 [𝑥 ↦→ J𝑒K𝛾]).
By the type system (Figure 22), 𝑧 ∉ FV(𝑒1) and thus, we can set 𝑒2 to 𝑒1 where each 𝑧 is replaced by
𝑒 , noting that the denotation of 𝑒1 and 𝑒2 are equal at 𝛾 . Let 𝑝2 ≜ 𝑦 = integral (𝑎, 𝑏) 𝑒2/(𝑥 − 𝑠)𝑘 d𝑥 .
We apply a similar argument as in the 𝑧 = 𝑥 case after replacing 𝑒1 with 𝑒2.

J𝑝1K(𝛾 [𝑥 ↦→ J𝑒K𝛾]) = J𝑝2K(𝛾 [𝑥 ↦→ J𝑒K𝛾])
= (𝛾 [𝑥 ↦→ J𝑒K𝛾]) [𝑦 ↦→ 𝑐]
= (𝛾 [𝑦 ↦→ 𝑐]) [𝑥 ↦→ J𝑒K𝛾]
= J𝑥 = 𝑒K(𝛾 [𝑦 ↦→ 𝑐])
= J𝑥 = 𝑒;𝑝2K(𝛾),

where 𝑐 in the second and third equation is as defined in the denotational semantics.
To prove the operational semantics correct, we first observe that in the derivation tree for 𝑝 we

apply the Comp rule in Figure 8, the Expr-Assign rule for 𝑧 = 𝑒 , and the Integral-Assign rule for
𝑝1. Since the Integral-Assign rule only binds 𝑦, and 𝑒1 only depend on deterministic variables by
the type system, so we can apply 5.5 to prove consistency. Since the Integral-Assign rule only
binds 𝑦, the binding for 𝑧 is unchanged, and since 𝑒 only depends on deterministic variables, we
can apply 5.1 to prove correctness for 𝑧. The proof for 𝑧 = 𝑒; 𝑝2 is similar. □

Theorem 5.7 (Consistency). Let 𝑝 be a well-typed program, 𝑥 ∈ Var be an arbitrary variable,
and 𝛾,𝛾 ′ ∈ Ctx be contexts with J𝑝K𝛾 ≠ err. Separate runs of the operational semantics produce
(i.i.d.) random variables {𝑐𝑖 }𝑖∈N and {𝑐′𝑖 }𝑖∈N, that is, for all 𝑖 ∈ N, we obtain (𝛾,𝛾 ′, 𝑝) ⇓𝑜 𝛾𝑖 , 𝛾 ′𝑖 with
𝑐𝑖 ≜ 𝛾𝑖 (𝑥) and 𝑐′𝑖 ≜ 𝛾 ′𝑖 (𝑥). Then, the family of estimators 𝑇𝑚 ≜ 1

𝑚

∑𝑚
𝑖=1 𝑐𝑖 is strongly consistent for

J𝑝K(𝛾) (𝑥), and𝑇 ′𝑚 ≜ 1
𝑚

∑𝑚
𝑖=1 𝑐

′
𝑖 is strongly consistent for

∑
𝑧∈Var

𝑑
𝑑𝑡

J𝑝K(𝛾 [𝑧 ↦→ 𝑡]) (𝑥)
��
𝑡=𝛾 (𝑧 ) ·𝛾

′ (𝑧). «

Proof. We start by breaking the program into a normal form with three parts: a deterministic
part, a block of integral assignments, and a part that depends on the result of integration, but does
not have any integral assignments.
We statically unroll all for-loops. For now, we consider the case where the first integral does

not occur within a conditional block. The first step of normalization moves the deterministic
assignments that occur after the first integral assignment above it. We define a deterministic assign
statement as an assign statement that satisfies the Deterministic (assn) rule in Figure 22. The
region of the program after the first integral is free of control flow and therefore the only cases we
need to consider is swapping an assign statement that is not deterministic with a deterministic
assignment statement and swapping an integral assignment statement with a deterministic assign
statement. We prove the correctness of this transformation in Lemma C.3.
The second step of the normalization process is to move all the integral assignment statements

up into a block following the first integral assignment. The type system ensures that there is no
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nesting of integrals, so the free variables of the integrand (excluding the variable of integration)
are statically determined (i.e., there is no need to quantify over all possible traces). In other words,
the random variables produced by the sampling in the operational semantics are independent.

Since the integrals do not depend on each other and there is now control flow in this region of the
program as enforced by the type system, we can move up all the integral assignment expressions
to the first integral assignment. More formally, the only cases are the sequential composition of
programs of the form: 𝑥 = 𝑒 and 𝑦 = integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥 . Thus, it is sufficient to prove
that there is a way to swap expression assignment and integral assignment. We prove this result in
Lemma C.4.
Now that we have transformed the program into a normal form, we prove that each part is

correct.
The deterministic part of the program that can have discontinuities is correct by Lemma C.2,

which shows that for every input context 𝛾 , the denotational semantics and operational semantics
produce an equivalent output context 𝛾∗ for every deterministic statement.

Next, Corollary 5.6 applies to each integral assignment, giving a proof that the family of estimators
(𝑇𝑚)𝑚∈N is a consistent estimator for the function denoted by this line. We can collect all these
random variables into a new random variable 𝑋 ≜ (𝑋1, . . . , 𝑋𝑘 ), where 𝑘 is the number of integrals
in the program. We can collect the estimator for each of these random variables into a product
𝑋𝑛 ≜ (𝑇(1,𝑛) , . . . ,𝑇(𝑘,𝑛) ) for each𝑦1, . . . , 𝑦𝑘 that is assigned to an integral. Since the limit of a product
is equal to the product of limits, we have that 𝑋𝑛 is a strongly consistent for 𝑋 .
The remaining part of the program corresponds to a deterministic, total, smooth function 𝑔 from

the random variables in R𝑘 to R |Var | that takes the random variable 𝑋 . Totality comes from the
fact that the denotation is not err at 𝛾 , satisfying the precondition of Theorem 4.2 and the fact that
there are no conditional statements in this part of the program. Now we can apply Proposition C.1
to prove that (𝑔(𝑋𝑛))𝑛∈N is consistent for 𝑔(𝑋 ), and Lemma C.2 shows the equivalence between
the denotational and operational semantics for the deterministic statements that define 𝑔.

Since the lemmas also apply to the lemmas, we can apply the same reasoning to the derivative of
the program.

□
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D Additional Results for Section 6

We provide a few additional results for the experiments in Appendix 6 for the sake of completeness.

D.1 Timing Benchmark Results for the Finite Hilbert Transform

Table 4 shows the median time as well as the standard deviation (in milliseconds) over 25 runs of
the time for the Standard, Ours, Deriv. Standard, and Deriv. Ours methods on the finite Hilbert
transform. As in the the rest of the evaluation, we use 10,000 samples to estimate the singular
integrals. We drop the first iteration to avoid timing the JIT compilation of JAX, where the first
iteration took about 1 order of magnitude longer than subsequent ones for Standard and Deriv.
Standard. Without JIT compilation (i.e., using jax.jit), our method is slower than the baseline
(Standard). However, with JIT compilation, our method is roughly as fast as the baseline (Standard
(JIT)).

Table 4. Comparison of median times (in ms ± standard deviation) for Standard, Ours, Deriv. Standard, and

Deriv Ours on the finite Hilbert transform, without and with running jax.jit.

𝑓 (𝑢) Standard Ours Deriv. Standard Deriv. Ours

𝑢 0.91 ± 0.09 3.01 ± 0.42 3.49 ± 0.14 19.67 ± 8.72
𝑢2 1.15 ± 0.04 4.04 ± 0.15 3.74 ± 0.22 25.11 ± 2.39
𝑒𝑢 1.10 ± 0.10 3.40 ± 0.21 3.39 ± 0.18 22.55 ± 1.78
𝑢𝑒𝑢 1.21 ± 0.07 3.82 ± 0.12 3.76 ± 0.22 37.44 ± 10.69
sin(𝑢) 1.10 ± 0.06 3.79 ± 0.19 3.37 ± 0.19 32.68 ± 6.60
cos(𝑢) 1.09 ± 0.06 3.42 ± 0.22 4.10 ± 0.78 33.93 ± 1.66

𝑓 (𝑢) Standard (JIT) Ours (JIT) Deriv. Standard (JIT) Deriv. Ours (JIT)

𝑢 0.21 ± 0.06 0.22 ± 0.04 0.20 ± 0.13 0.21 ± 0.04
𝑢2 0.21 ± 0.12 0.21 ± 0.08 0.23 ± 0.05 0.18 ± 0.09
𝑒𝑢 0.22 ± 0.13 0.28 ± 0.49 0.21 ± 0.04 0.24 ± 0.09
𝑢𝑒𝑢 0.22 ± 0.04 0.25 ± 0.09 0.20 ± 0.12 0.23 ± 0.02
sin(𝑢) 0.22 ± 0.13 0.25 ± 0.11 0.24 ± 0.10 0.27 ± 0.03
cos(𝑢) 0.21 ± 0.13 0.29 ± 0.07 0.23 ± 0.04 0.20 ± 0.08

D.2 Training Curves

We provide the training curves for each of the experiments in Appendix 6. Each plot shows the
training loss over iterations where the integral estimation uses 50 samples. Fig. 12 shows the
training loss for the thin airfoil problem with the NACA 6412 airfoil. Fig. 13 shows the training loss
for the symmetrical airfoil problem with the NACA 0012 airfoil. Fig. 14 shows the training loss for
the crack problem in Harold Page Starr [35]. Finally, Fig. 15 shows the training loss for the crack
problem in Kaya and Erdogan [38].

D.3 Analysis of the Small Anomaly in the Crack Problem Simulation

There is a small anomaly near 0 in Figure 10b for the crack problem in Harold Page Starr [35]. To
confirm that this is an edge effect that results from running the simulation with relatively few
samples we (1) provide the five plots that make up the aggregated results in Figures 16-20 and
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Fig. 12. Train loss over iterations for the asym-

metrical airfoils.
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Fig. 13. Train loss over iterations for the symmet-

rical airfoil.
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Fig. 14. The loss function for the crack function

in Harold Page Starr [35].
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Fig. 15. The log loss for the crack function in Kaya

and Erdogan [38].
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Fig. 16. A plot from experiment

Figure 10b, where the random

seed is 0.
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Fig. 17. A plot from experiment

Figure 10b, where the random

seed is 1.

(2) run the simulation again with 500 samples for the singular integral instead of 50 samples in
Figure 21.
Figures 16-20 show that the anomaly comes primarily from a single run (Figure 17) of the

simulation and not prominent in the other runs. In Figure 21, we see that the anomaly near 0 is no
longer present when we use 500 samples for the singular integral.
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Fig. 18. A plot from experi-

ment Figure 10b, where the

random seed is 2.

0.0 0.2 0.4 0.6 0.8 1.0

Position

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
ra

ck
D

is
p

la
ce

m
en

t

Ours

Standard

Ground Truth

Fig. 19. A plot from experi-

ment Figure 10b, where the

random seed is 3.
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Fig. 20. A plot from experi-

ment Figure 10b, where the

random seed is 4.
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(a) Train loss over iterations.
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(b) Test loss over iterations.
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(c) Learned solution.

Fig. 21. A numerical solution to the crack problem in Harold Page Starr [35] using a 500 sample estimate for

the singular integral.
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Res-of-Integral (Assn)
FV(𝑒) ∩ 𝑆 ≠ ∅

(𝑆, 𝑥 = 𝑒) → 𝑆 ∪ {𝑥}

Deterministic (Assn)
FV(𝑒) ∩ 𝑆 = ∅
(𝑆, 𝑥 = 𝑒) → 𝑆

No-Nesting(
({𝑠} ∪ FV(𝑒)) \ {𝑥}

)
∩ 𝑆 ≠ ∅

(𝑆,𝑦 = integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥) → err

Res-of-Integral (Base)(
({𝑠} ∪ FV(𝑒)) \ {𝑥}

)
∩ 𝑆 = ∅

(𝑆,𝑦 = integral (𝑎, 𝑏) 𝑒/(𝑥 − 𝑠)𝑘 d𝑥) → 𝑆 ∪ {𝑦}

(𝑆, 𝑝1) → err
(𝑆, 𝑝1;𝑝2) → err

(𝑆, 𝑝1) → 𝑆 ′ (𝑆 ′, 𝑝2) → err
(𝑆, 𝑝1; 𝑝2) → err

(𝑆, 𝑝1) → 𝑆 ′ (𝑆 ′, 𝑝2) → 𝑆 ′′

(𝑆, 𝑝1; 𝑝2) → 𝑆 ′′

No-If-After-Sample
𝑆 ≠ ∅

(𝑆, ifpos 𝑒 then 𝑝1 else 𝑝2) → err
𝑆 = ∅ (𝑆, 𝑝1) → err

(𝑆, ifpos 𝑒 then 𝑝1 else 𝑝2) → err

𝑆 = ∅ (𝑆, 𝑝2) → err
(𝑆, ifpos 𝑒 then 𝑝1 else 𝑝2) → err

𝑆 = ∅ (𝑆, 𝑝1) → 𝑆 ′ (𝑆, 𝑝2) → 𝑆 ′′

(𝑆, ifpos 𝑒 then 𝑝1 else 𝑝2) → 𝑆 ′ ∪ 𝑆 ′′

𝑄0 ≜ 𝑆 𝑘 = ⌊(𝑏 − 𝑎)/𝑐⌋ ∃𝑖 ∈ {0, . . . , 𝑘 − 1}. (𝑄𝑖 , 𝑝) → 𝑄𝑖+1 𝑄𝑖+1 = err
(𝑆, for 𝑥 in range(𝑎, 𝑏, 𝑐) : 𝑝) → err

𝑆0 ≜ 𝑆 𝑘 = ⌊(𝑏 − 𝑎)/𝑐⌋ ∀𝑖 ∈ {0, . . . , 𝑘 − 1}. (𝑆𝑖 , 𝑝) → 𝑆𝑖+1

(𝑆, for 𝑥 in range(𝑎, 𝑏, 𝑐) : 𝑝) → 𝑆𝑘

Fig. 22. The helper typing rule is defined as (𝑆, 𝑝) → 𝑄 , where 𝑆 is a set of variables and 𝑄 is either a set

of variables or err. In the above, whenever we write 𝑆 with subscripts or super scripts, it represents a set. It

checks that no if-statements occur after an integral and that integrals are not nested.

E Type System

Figure 22 depicts a type system that returns a (conservative) set of variables of integration that
represent random variables in the operational semantics. It is a conservative analysis due to
conditionals because the analysis may add a variable to the set of random variables when it is only
a random variable in a branch that is never executed. It checks that no if-statements occur before
an integral and that integrals are not nested. The helper typing rule is defined as (𝑆, 𝑝) → 𝑄 , where
𝑆 is a set of variables and 𝑄 is either a set of variables or err.

We present the following definition of a well-typed program.

Definition E.1. A program 𝑝 is well-typed if 𝑄 ≠ err, where ({}, 𝑝) → 𝑄 . △
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F Boundaries of the Available Theory

In this section, we discuss the limitations of the theory of singular integrals, which also provide
a practical set of limitations of SingularFlow. In the following, we adopt the convention that
𝑓 (𝑥) is a smooth function and 𝑎, 𝑏 ∈ R with 𝑎 < 𝑏. Much of the inspiration for examples comes
from Kutt [43, Pages 47-48].
Hadamard Finite Part Integral of a Nonnegative Integrand can be Negative. The Riemann
integral of a nonnegative function is nonnegative, which accords with the view of integration as
the area under a curve. The Hadamard finite part integral does not satisfy this property as shown
below.

Example F.1. Recall from Proposition 3.10 thatH
∫ 𝑏

𝑎

𝑓 (𝑢 )
(𝑢−𝑠 )2𝑑𝑢 = C

∫ 𝑏

𝑎

𝑓 (1) (𝑢 )
𝑢−𝑠 𝑑𝑢 − 𝑓 (𝑢 )

(𝑢−𝑠 )

���𝑏
𝑢=𝑎

. So,

H
∫ 1
−1

1
𝑥2𝑑𝑥 , with (𝑎, 𝑏) = (−1, 1) and 𝑓 (𝑥) = 1, is equal to C

∫ 1
−1

0
𝑥
𝑑𝑥−𝑓 (1)−𝑓 (−1) = 0−1−1 = −2. In

conclusion, the integrand 1/𝑥2 is nonnegative, but the Hadamard finite part integral is negative. △

Singular Integrals are not Monotone Operators. The Riemann integral is monotone because if
𝑓 (𝑥) ≤ 𝑔(𝑥) for almost all 𝑥 ∈ R, then

∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 ≤

∫ 𝑏

𝑎
𝑔(𝑥)𝑑𝑥 . Informally, the Riemann integral

is monotone because the area under the curve of 𝑓 is smaller than the area under the curve of 𝑔. In
contrast, the Hadamard finite part integral is not monotone as we show in the following example.

Example F.2. The inequality 1
𝑥3 < 1+𝑥

𝑥3 for all real 𝑥 ≠ 0 holds because if 𝑥 ≠ 0 then 0 < 1
𝑥2 .

However, the Hadamard finite part integral of these functions is in the reverse orderH
∫ 1
−1

𝑥+1
𝑥3 𝑑𝑥 <

H
∫ 1
−1

1
𝑥3𝑑𝑥 . This is a consequence ofH

∫ 1
−1

𝑥+1
𝑥3 𝑑𝑥 = H

∫ 1
−1

1
𝑥2𝑑𝑥+H

∫ 1
−1

1
𝑥3𝑑𝑥 = −2+H

∫ 1
−1

1
𝑥3𝑑𝑥 . △

Inequalities Depending on Convexity do not Necessarily Hold. Likewise, inequalities that
are true of standard integrals do not necessarily hold for singular integrals.

Example F.3. The function 𝑥 ↦→ |𝑥 | on R is convex. Jensen’s inequality states that�����∫ 𝑏

𝑎

𝑓 (𝑥)
𝑏 − 𝑎𝑑𝑥

����� ≤ ∫ 𝑏

𝑎

|𝑓 (𝑥) |
𝑏 − 𝑎 𝑑𝑥, but

����H∫ 1

−1

1
𝑥2

1
2𝑑𝑥

���� = 1 > −1 = H
∫ 1

−1

���� 1𝑥2 ���� 12𝑑𝑥 .
Similarly, for the concave function ln, Jensen’s inequality says that

ln
(∫ 𝑏

𝑎

𝑓 (𝑥)
𝑏 − 𝑎𝑑𝑥

)
≥

∫ 𝑏

𝑎

ln 𝑓 (𝑥)
𝑏 − 𝑎 𝑑𝑥.

However, the opposite is true for the standard normal distribution (using Example F.2):

ln
(∫ 1

−1

𝑒
− 1

2𝑥2

2 𝑑𝑥

)
≈ −1.56 < 0.5 = −14 · H

∫ 1

−1

1
𝑥2
𝑑𝑥 = H

∫ 1

−1
− 1
2𝑥2

1
2𝑑𝑥 = H

∫ 1

−1

ln
(
𝑒
− 1

2𝑥2
)

2 𝑑𝑥.
△

The failure of Jensen’s inequality to hold has practical consequences. Without Jensen’s inequality,
we cannot prove that the ELBO is a lower bound on the log likelihood and as such, we cannot
justify variational inference when the integral is specified in terms of singular integration [9].
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G Related Work in Math, Numerics, and Computer Graphics

Mathematical Foundations of Singular Integrals. Cauchy [16] and Hadamard [34] introduce
the Cauchy principal value and Hadamard finite part integrals, respectively. Gelfand and Shilov [29]
studied singular integrals in the context of distribution theory and provided a formal justification
of the Hadamard finite part integral. Their setup was different from ours in that they studied
differentiating the integral operator (i.e., distribution), while we study differentiating with respect
to a parameter in the integral. Calderon and Zygmund [12] study singular integrals depending on
a parameter such as the Hilbert transform but do not study their derivatives as Hadamard finite
part integrals. Stein [79] wrote a classic book on singular integrals, and Abels [2] provides a more
modern treatment with many applications. King [40] is a comprehensive book covering the Cauchy
principal value integral and its applications in the context of the Hilbert transform. Estrada and
Kanwal [23], Ladopoulos [44] are texts on singular integral equations and their applications, such
as in aerodynamics and mechanical engineering (studied in this paper), as well as many other
domains.
Numerical Techniques for Singular Integrals. Researchers in the numerical analysis community
developed techniques for evaluating singular integrals and for solving singular integral equations.
We provide a brief overview but note that the literature is vast. Longman [53] develop a symmetric
sampling technique for Cauchy principal value integrals. Kutt [43] develops numerical methods
accounting for singularities, including those at an endpoint of the interval of integration, which is
interesting future work. Monegato [63] provides an excellent overview.

Piessens et al. [71] is a FORTRAN library that provides a variety of quadrature rules, including for
singular integrals. FeynCalc [59] is a Mathematica package that supports regularization integrals
but does not apply to the benchmarks in this paper.8 Slevinsky and Olver [78] develop a spectral
method (i.e., using the Fourier transforms) that uses Chebyshev polynomials to efficiently evaluate
singular integral equations. They build a Julia package that they apply to problems in fracture
mechanics, electricity and magnetism, and solving the Helmholtz equation.
Singular Integrals in Computer Graphics. In computer graphics, researchers often want to
create physically accurate simulations of physical phenomena. One approach to creating such
simulations is to solve partial differential equations (PDEs) that model the physical phenomena.
Some PDEs can be converted into an integral equation using Green’s functions and solved using
numerical methods. Nabizadeh et al. [65] solve problems on infinite domains using the Kelvin
transform, which applies a change of coordinates 𝑥 ↦→ 𝑦 = 𝑥/|𝑥 |2 to map an infinite domain around
an object to a finite domain in the interior of the object. The problem is solved on a finite domain
with a singularity that is accounted for in a hand-coded way.

Recent work develops aMonte Carlo solver for integral equations that caches function evaluations
for efficiency [62]. Caching is not compatible with importance sampling (preventing handling
singularities by importance sampling with a function proportional to the integrand around the
singularity) and instead they use heuristics (e.g., clamping) to mitigate singularities [62, Section 3.3].
Other recent work presents a technique for rendering functions with singularities efficiently [31].

8As confirmed in correspondence with the developer.
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