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• Is a practically-used computation “correct” in any formal sense?
• Is there a more “efficient” computation that is correct?
• Is there any “fundamental limit” to achieving the computation?

EfficiencyCorrectness Fundamental Limits
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Use floats intricately.

Assume reals.

Assume differentiability.

Assume integrability.

Underlying theory

Actual implementations

Mathematically Correct?
Can Be More Efficient?

Any Fundamental Limits?



Function Evaluation
[Ongoing 1]
[Ongoing 2]
[POPL 18]
[PLDI 16]

Sample Generation
[Ongoing 1]
[Ongoing 2]
[PLDI 25a]

Differentiation
[ICLR 24]
[ICML 23]

[NeurIPS 20]

Integration
(≈ Probabilistic Inference)

[Submitted]
[PLDI 25b]
[POPL 23]
[POPL 20]

[AAAI 20]
 [NeurIPS 18]

Function Approximation
[CAV 25] [ICML 25]

Our Works
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(Dis)Prove Correctness.
Improve Efficiency.

Prove Fundamental Limits.
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Use floats intricately.

Assume reals.

Assume differentiability.

Assume integrability.

Actual implementations

Underlying theory


